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Abstract: Aging is associated with an alteration of intercellular communication. These changes in the 

extracellular environment contribute to the aging phenotype and have been linked to different aging-

related diseases. Extracellular vesicles (EVs) are factors that mediate the transmission of signaling 

molecules between cells. In the aging field, these EVs have been shown to regulate important aging 

processes, such as oxidative stress or senescence, both in vivo and in vitro. EVs from healthy cells, 

particularly those coming from stem cells (SCs), have been described as potential effectors of the 

regenerative potential of SCs. Many studies with different animal models have shown promising results 

in the field of regenerative medicine. EVs are now viewed as a potential cell-free therapy for tissue 

damage and several diseases. Here we propose EVs as regulators of the aging process, with an important 

role in tissue regeneration and a raising therapy for age-related diseases. 
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1. Introduction 

Stem cell therapy has been the leading framework in regenerative medicine. Owing 

to their self-renewal capacity, exogenous stem cells should be able to regenerate different 

tissues after damage. Mesenchymal stem cells (MSCs), due to their easy isolation, culture, 

and low immunogenicity, have been the most studied type of cells for their application in 

a clinical setting [1]. Historically, the main hypothesis was that stem cells should have the 

ability to integrate into damaged tissue and repopulate it through asymmetric division. 

However, more recent studies have shown that allogeneic MSCs have a limited potential 

for integration into a tissue, as most commonly, less than 1% of the transferred cells 

survive more than a week in the host organism [2,3,4,5]. Despite these facts, MSCs 

therapies have been demonstrated to be beneficial for many conditions and improve the 

regeneration of several tissues, suggesting that the most significant effects of these cells 

are mediated by paracrine mechanisms [6,7]. Thus, the secretome of MSCs has been 

positioned as a potential therapy for tissue repair and regeneration. 

Among all the factors that stem cells release to the extracellular environment, both in 

vivo and in vitro, extracellular vesicles (EVs) have emerged as a very interesting choice. These 

lipid bilayer vesicles are released by virtually every cell type and contain a myriad of 

molecules that are thought to be responsible for their role in the communication between cells, 

through the exchange of proteins, nucleic acids, or lipids [8,9]. There are many types of EVs, 

such as exosomes, microvesicles, ectosomes, oncosomes, or apoptotic bodies, these are 

classified attending to their biological origin and role [8]. However, this classification is not 

the most convenient due to the lack of methods that can separate specifically the different 

subtypes of EVs. The most used methods for isolating and separating EVs rely on their size 
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(i.e., differential ultracentrifugation, filtration, size exclusion chromatography, or high 

molecular weight filters). Other methods are based on the differences in EVs density (density 

gradient) or specific surface molecules (immunoaffinity isolation techniques). The 

International Society for Extracellular Vesicles proposes a classification based on the size of 

the vesicles, distinguishing small extracellular vesicles (<200 nm in diameter) from other 

medium and larger vesicles [9]. Although small extracellular vesicles are probably the most 

studied, here we will describe findings related to all types of EVs, regardless of the 

nomenclature used by the authors of each study. 

The use of EVs adds several advantages over the use of stem cells to improve tissue 

regeneration. EVs are more stable, their dosage is easier, they do not have a risk of 

aneuploidy, and they have a lower incidence of immune rejection [7]. EVs from several 

types of stem cells have demonstrated their potential to improve regeneration in many 

different tissues after induced damage, such as the kidney, liver, heart, or brain [10]. 

Aging is characterized by a loss of tissue regenerative capacity. All the stem cells’ 

niches that are present in an adult organism lose the ability to regenerate properly, both 

in basal conditions and after damage, with a lower number of potential divisions over a 

longer period [11]. As aging progresses, progenitor cells responsible for damaged tissue 

regeneration suffer molecular traits that affect their ability to replicate, such as DNA 

damage accumulation, telomere attrition, or senescence [12]. EVs from stem cells and 

other cell types are now being studied as potential regulators of many processes 

associated with aging, such as cellular senescence, oxidative stress, telomere dysfunction, 

autophagy inefficiency, inflammation, and metabolic dysregulation. 

In this review, we aim to point out the idea that EVs from different sources such as 

stem cells could be beneficial for the aging-associated decline in tissue function and age-

related diseases, aiding tissue regeneration through different pathways. 

2. Role of EVs in the Aging Process 

Aging is characterized by molecular and cellular traits that are thought to be the 

drivers of this process, which ultimately lead to tissue dysfunction and an increased risk 

of death [12,13]. EVs from different cells have been described as factors that can modify 

these aging-associated processes (Figure 1). Here, we will describe some of the last 

findings regarding the role of EVs in aging. 

 

Figure 1. Graphical explanation of the role of EVs in the modulation of multiple processes associated 

with aging. The concrete effects of these processes are described in the manuscript, and EVs have 

been shown to participate in both directions. Depending on cell source and condition, EVs have 

beneficial or deleterious effects on age-related processes. 

2.1. Cellular Senescence 
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Cellular senescence is a physiological process that some cells suffer when exposed to 

different types of damage, such as DNA damage, oncogene activation, telomere attrition, 

or radiation [14]. These cells enter a cell cycle arrest that prevents their proliferation as a 

tumor suppressor mechanism. However, the accumulation of these cells during aging, 

due to increased production and a decreased clearance by the immune system, has been 

linked to several aging processes and pathologies [15]. An important contributor to the 

deleterious effect of senescent cells is the accumulation of different factors in the 

extracellular milieu, the senescence-associated secretory phenotype (SASP) [16]. These 

factors have been described as drivers of paracrine senescence, cancer growth, and 

inflammation, among others [17]. As players in intercellular communication, EVs are now 

regarded as important factors of the SASP [18], with an important role in the deleterious 

effects of senescence, referred to as evSASP [19,20]. The release of EVs is typically 

increased in senescent cells, and its content changes when cells become senescent, 

suggesting an important mechanism to target in cellular senescence [20,21]. 

Some studies have shown a promising therapeutic effect of EVs from healthy, non-

senescent cells, such as stem cells, in the modulation of senescence. EVs from healthy cells 

can decrease senescence both in vivo and in vitro [22,23,24] through several proposed 

mechanisms, such as the transmission of miRNAs [22,24], antioxidant enzymes [23], or 

metabolic changes [25]. Due to their immunomodulatory roles, EVs can act through the 

modulation of the SASP, decreasing the pro-inflammatory changes in the 

microenvironment induced by the accumulation of senescent cells. One of the proposed 

mechanisms that might explain the effects of EVs on senescence is viewing EVs from 

healthy cells as senomorphics, factors that can decrease the burden of senescent cells, not 

by directly inducing their selective apoptosis as senolytics but by modifying the 

extracellular environment and inhibiting the SASP [24,26]. 

2.2. Oxidative Stress 

Oxidative stress, and more concretely, the fine control of the redox status of a cell or 

a tissue, is thought to contribute to the aging process and age-related morbidities [27,28]. 

The balance between oxidative and reductive molecules is crucial to the proper 

functionality of the cells. During aging, dysregulation of these control mechanisms occurs, 

with some tissues tending to accumulate oxidative damage in several macromolecules, 

mainly lipids, proteins, or DNA. This damage contributes to the development of age-

related pathologies, such as Alzheimer’s [29] or frailty [30,31]. EVs are now viewed as 

important factors that regulate the redox status through the transfer of molecules with 

antioxidant properties between cells, protecting against oxidative damage in several 

models of acute damage and during aging [23,24,32]. The different conditions associated 

with the culture of cells can modify EVs release, and the content of the oxygen tension in 

the culture is of the utmost importance [33,34]. EVs from cells cultured under a 

physiological oxygen tension show increased therapeutic effects in some models of tissue 

damage, with changes in their content and release, suggesting that oxygen availability is 

an important mechanism that modulates EV biogenesis and content [35,36]. 

2.3. Telomere Dysfunction 

Telomere shortening and damage, as well as dysregulation of the machinery that 

controls the structure of telomeres, are important players in the aging process and are 

tightly related to other processes of aging, such as senescence or genomic instability 

[37,38]. In these terms, EVs have been shown to contain short non-coding telomere RNA 

transcripts that can induce the release of inflammatory cytokines in recipient cells, linking 

telomere dysfunction and inflammation through EV release [39]. EVs from stem cells have 

been shown to increase telomerase activity in a model of osteoporosis in mice. Moreover, 

EVs have been described as factors that regulate telomere-related bystander effects in 

irradiated breast cancer cells. EVs from irradiated cells decreased telomerase activity in 

recipient cells, with shorter telomeres over time in these cells [40]. RNAse treatment 
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suppressed these effects, suggesting the role of RNAs contained in EVs in the regulation 

of telomere function. In a more recent study, telomere vesicle transfer from antigen-

presenting cells elongated telomeres in recipient T cells independently of telomerase 

activity [41]. 

2.4. Autophagy 

The correct regulation of autophagy is key to maintaining proteostasis during aging, 

and a loss of this regulatory mechanism has been linked to aging and age-related diseases 

[42,43]. During aging, there is an accumulation of damaged components of the proteome, 

both intracellular and extracellular, such as misfolded or aggregated proteins [12]. Trying 

to improve autophagy signaling is an interesting approach to treating age-related 

diseases, such as Parkinson’s or Alzheimer’s [44]. Autophagy is closely related to the 

biogenesis of extracellular vesicles, as exosomes are included in multivesicular bodies 

before their release [8], and some autophagy-related proteins, such as ATG5, have been 

shown to regulate exosome biogenesis [45]. EVs from different types of MSCs have been 

demonstrated to promote the autophagic flux in several disorders associated with aging. 

In a model of diabetic nephropathy, EVs from ADSCs inhibited excessive mTOR 

activation, leading to increased autophagy [46,47]. A similar effect of improved outcomes 

due to autophagy activation has been observed in liver fibrosis [48] and spinal cord injury 

[49]. Therefore, the modulation of autophagy by EVs, and vice versa, may serve as a 

therapeutic tool in age-related conditions and the maintenance of proteostasis. 

2.5. Inflammation 

One of the most studied effects of EVs is their potential role in regulating the immune 

system, as EVs from damaged cells usually induce an activation of the immune system, 

leading to the release of pro-inflammatory factors [50]. On the other hand, EVs from MSCs 

are now viewed as significant anti-inflammatory and immunomodulatory factors [51,52]. 

MSCs themselves have been studied for a long time as promising therapeutics for 

inflammatory diseases, as they have been shown to decrease the pro-inflammatory 

activity of several cell types, such as neural, vascular, or osteochondral [53]. During aging, 

an imbalance between pro and anti-inflammatory factors occurs, leading to an 

accumulation of pro-inflammatory factors in the extracellular environment that 

accompanies normal aging and that has been linked to several age-related diseases [54]. 

This chronic inflammation has been termed “inflammaging”, and the interventions 

targeting this process have beneficial effects for age-related conditions [55,56]. As stated 

before, the beneficial effect of EVs observed in many models of disease, such as 

myocardial infarction, stroke, chronic kidney disease (CKD), or liver injury, is typically 

accompanied by a suppression of pro-inflammatory cytokines, with an increase in anti-

inflammatory molecules. In physiological aging, the treatment with EVs has been shown 

to decrease inflammatory cytokines that are associated with aging, such as IL-6, IL-1β, or 

TNF-α [24,26,57,58]. As we have described, EVs are important factors of the SASP that 

lead to paracrine senescence and contribute to the chronic inflammation observed during 

aging [20]. One of the proposed mechanisms through which EVs from healthy cells could 

decrease inflammation and senescence is the inhibition of the SASP, acting as 

“senomorphics”, linking their effect both in cellular senescence and inflammation [24,26]. 

2.6. Metabolism 

One of the most conserved mechanisms in evolution that controls aging and 

longevity is metabolism, mainly through several pathways related to nutrient sensing and 

growth, such as insulin/IGF-1, mTOR, AMPK, or sirtuins [59,60,61,62]. In this sense, 

manipulations that target these pathways have been demonstrated to have a wide effect 

on longevity and health span (i.e., caloric restriction or mTOR inhibitors) [63,64,65]. EVs 

have been shown to induce profound metabolic changes in recipient cells; for example, 
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EVs from obese mice can increase insulin resistance and dyslipidemia in healthy mice 

through the transfer of miRNAs [66,67]. Moreover, miRNAs that suffer age-associated 

changes in plasmatic EVs are important regulators of these metabolic pathways [68]. As 

aging progresses, the content of nicotinamide phosphoribosyltransferase (NAMPT) in 

circulating EVs decay, and the restoration of circulating levels of NAMPT have shown to 

improve health span and extend lifespan in mice, mainly through the increase in NAD+ 

biosynthesis in old tissues [25]. In another study, authors observed that plasmatic EVs 

from young mice induce a decrease in mTOR and IGF1R in the liver and lungs of old mice 

[58]. All these data suggest that EVs play a role in metabolic regulation, with important 

effects on age-related pathways. 

3. Pro-Regenerative Effects of EVs 

Aging is characterized by decreased tissue repair and regeneration; thus, we propose 

that EVs may be useful for treating diseases associated with anomalous repair after 

damage. EVs from different sources have been applied in preclinical models of tissue 

damage. The most used source in these studies is MSCs, probably due to their simpler 

isolation and culture techniques. The site of EV injection varies between studies, with the 

majority injecting them intravenously or at the site of the damage whenever possible. Here 

we will briefly describe the effects on several damaged tissue models of various types of 

EVs. A summary of the pathways involved in the beneficial effects of EVs in tissue 

regeneration is shown in Table 1. 

Table 1. Outline of the pathways involved in the pro-regenerative effects of EVs in different tissues. 

PI3K: phosphatidylinositol-3-kinase; AKT: protein kinase B; WNT: wingless-related integration site; 

JNK: c-Jun N-terminal kinase; ATM: ATM serine/threonine kinase; IGF: insulin-related growth 

factor; HGF: hepatic growth factor; FGF: fibroblast growth factor; mTOR: mammalian target of 

rapamycin; RPTOR: regulatory-associated protein of mTOR; TGF-β: transforming growth factor β; 

CCL2: chemokine (C-C motif) ligand 2. 

References Tissue Effect Pathway Involved 

[69] Brain 
Neuroprotective effect in ischemia and 

traumatic brain injury 

Activation of PI3K/AKT 

pathway and calcium 

oscillations 

[70] Brain 
Decrease in neuronal apoptosis and motor 

recovery 

Activation of Wnt/β-catenin 

signaling 

[71] Heart 
Enhanced myocardial viability in 

ischemia/reperfusion 

Activation of PI3K/AKT 

pathway and reduced 

phosphorylated-c-JNK 

[10,72,73] Endothelial cells Improved angiogenesis 

Activation of VEGF signaling 

and PI3K/AKT, repression of 

ATM 

[74] Muscle 
Prevention of muscle damage in hind limb 

ischemia 
Activation of Neuregulin-1 

[74] Muscle Improved myogenesis 
Increased IGFs, HGFs and 

FGFs 

[75] Muscle Improved muscle regeneration in aging Activation of Klotho pathway 

[76] Bone Decrease in radiation-induced bone loss 
Activation of Wnt/β-catenin 

signaling 

[77] Bone Improved bone regeneration 
Activation of AKT/mTOR 

pathway 

[78] Lung Amelioration of acute lung injury 
Induction of RPTOR/mTOR 

pathway 
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[79] Lung 
Antifibrotic effect in a model of pulmonary 

fibrosis 

Inhibition of TGF-β-Wnt 

crosstalk 

[80] Kidney 
Decreased kidney injury in 

ischemia/reperfusion 
Inhibition of CCL2 pathway 

[81] Liver 
Amelioration of hepatic ischemia/reperfusion 

injury 

Inhibition of MEK/ERK 

pathway 

3.1. Effects of EVs on the Nervous Tissue 

Nervous tissue has a limited regenerative capacity upon several types of damage, 

both in peripheral nervous tissue and in the central nervous system [82]. Stem cell-derived 

EVs have been shown to improve regeneration of the nervous tissue after some types of 

damage in several animal models, such as peripheral nerve denervation [83,84], trauma 

[85], and stroke [86,87], with a neuroprotective effect on models of hypoxic-ischemic 

encephalopathy [88,69]. These EVs seem to exert this role through different processes and 

pathways associated with nerve regeneration. For example, in a recent study, Turovsky 

et al. demonstrated that EVs from MSCs exert a neuroprotective effect in a mouse model 

of ischemia through the modulation of phosphatidylinositol 3-Kinase/AKT signaling and 

calcium oscillations [69]. Moreover, EVs from different sources can induce changes in the 

glial cells, increasing the percentage of proliferating Schwann cells by 20% and increasing 

the myelinating potential of oligodendrocytes [89]. EVs also induce protective effects on 

the neurons themselves, improving neurogenesis and angiogenesis [87], doubling neurite 

length and increasing branch number by 75% [86], and reducing neuron apoptosis and 

neuroinflammation [70]. 

3.2. Effects of EVs on the Cardiovascular System 

The models used to test the regenerative effects of EVs from different types of stem 

cells have been mainly models of myocardial infarction and ischemia-reperfusion injury. 

In these studies, EVs have been demonstrated to improve cardiac tissue repair, inhibiting 

the adverse remodeling that typically occurs after myocardial ischemia [71,90]. 

Cardiomyocytes are post-mitotic cells that do not regenerate after damage; the presence 

of resident cardiac stem cells in heart tissue is still debated [91]. EVs promote the 

regeneration of tissue through different pathways. It has been described that these EVs 

improve cardiomyocyte viability, reduce infarct size by 50% [71], decrease the apoptosis 

of these cells [92], and increase the capacity to revascularize the damaged tissue through 

improved angiogenesis [72]. EVs encapsulated in hydrogels have been demonstrated to 

decrease the excessive fibrosis and upregulation of pro-inflammatory factors, which are 

linked to a defective repair of cardiac tissue [93]. 

Endothelial cells are involved in the vascularization of every organ, and adequate 

angiogenesis is crucial to the regenerative process [94]. In this regard, EVs from stem cells 

and other cell types have been linked to improved angiogenesis in many tissue damage 

models, thus increasing the tissue regeneration potential of the tissue [73]. 

3.3. Effects of EVs on the Musculoskeletal System 

EVs from several types of stem cells have been demonstrated to improve the 

regeneration of different tissues of the musculoskeletal system. EVs from muscle 

progenitor cells improve myogenesis both in vitro and in vivo [95]. In muscle damage 

models, such as ischemia [96], torn rotator cuffs [97], or muscle laceration [74], EVs can 

improve regeneration through increased angiogenesis, satellite cell activation [74], and 

decreased inflammation and fibrosis [95]. In the field of aging, EVs from the serum of 

young mice have shown an effect on improving muscle regenerative capacity in a model 

of cardiotoxin damage in old mice [75]. EVs from MSCs can improve and accelerate bone 

healing in models of fracture [98] or radiation-induced bone damage [76], inducing 

osteogenic cell proliferation and bone angiogenesis, leading to an increase in new bone 



Int. J. Mol. Sci. 2022, 23, 14632 7 of 19 
 

 

area formation of 40% [77,99]. Similar effects have been observed in models of cartilage 

damage, where EVs from MSCs improve cartilage regeneration when injected 

intraarticularly [100]. 

3.4. Effects of EVs on Damaged Lungs 

Some models of acute lung injury, such as hyperoxia [101], severe pneumonia [102], 

or endotoxin [103], have been developed to test the effect that EVs from stem cells have 

on lung tissue regeneration and repair. In these studies, EVs from different sources have 

been demonstrated to improve tissue function, reducing inflammation and edema [104], 

oxidative stress, senescence, and fibrosis [78,79]. More specifically, EVs attenuated 

pulmonary fibrosis by 33% in a model of bleomycin-induced fibrosis, ameliorating 

myofibroblast division and collagen accumulation and inducing structural changes in the 

alveolar structure [79]. 

3.5. Effects of EVs on Damaged Kidney 

The functional unit of kidneys, the nephron, is not able to fully regenerate after 

damage in adult kidneys, as they cannot form new glomeruli [105]. However, tubular 

epithelial cells can repopulate the damaged tissue after damage [106]. EVs from stem cells 

have been shown to improve kidney regeneration and function in some models of acute 

kidney injury (AKI), such as ischemia-reperfusion injury [107,108] or nephrectomy [109]. 

An increase in epithelial tubular cell proliferation and viability has been described 

[80,110], as well as a decrease in apoptosis, oxidative stress, and inflammation [80]. All 

these factors improved the recovery of renal function in these models. Other groups have 

studied the effect not only in AKI but also in chronic kidney damage. Stem cell-derived 

EVs have been shown to preserve renal functioning, improving cell survival through 

inhibition of profibrotic genes and apoptosis, showing a 30% decrease in BUN (blood urea 

nitrogen) in a mouse model of cyclosporin damage [111]. 

3.6. Effects of EVs on Damaged Liver 

The adult liver is one of the tissues that are typically able to restore organ function 

after damage. Hepatocytes are active proliferating cells that can repopulate the tissue 

completely. However, hepatic failure can occur if the regenerative process is not adequate. 

EVs from different cells have been shown to have protective effects on liver damage, 

showing a decrease of around 40% in serum transaminases levels. EVs promote 

hepatocyte proliferation in drug-induced damage [112] and ischemia-reperfusion 

[113,81], decreasing apoptosis, oxidative stress, and excessive inflammation [114]. 

Similarly to other tissues, EVs decrease fibrosis progression in models of hepatic fibrosis 

[115]. 

4. Therapeutic Potential of EVs in Age-Related Diseases 

As we have explained, EVs from different sources have an important role in several 

cellular and molecular processes associated with aging, even reversing some of these 

markers both in vivo and in vitro. Hence, it is fair to propose that EVs may have a 

therapeutic role in age-related diseases. The role of EVs in the pathophysiology of these 

diseases, along with their potential use as biomarkers for these, has been reviewed before 

[116,117,118]. Here, we will focus on some of the most relevant studies using EVs as a 

therapeutic tool in age-related conditions. A summary of the results described is shown 

in Figure 2. 
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Figure 2. Recapitulation of the effects of treatment with EVs in preclinical models of age-associated 

diseases. For each condition, observed effects of EVs on different biological processes are shown, 

with an arrow indicating the increase or decrease in a concrete process. BMSCs: bone marrow-

derived stem cells; SASP: senescence-associated secretory phenotype. 

4.1. Alzheimer’s Disease 

EVs from healthy cells, mainly stem cells, are now being studied as potential 

therapeutics in AD. Using transgenic mice that develop Alzheimer’s, multiple studies 

have shown that EVs from neural and mesenchymal stem cells can rescue cognitive 
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decline associated with AD [119,120]. EVs reduce several markers of the disease, such as 

amyloid-β accumulation [120], oxidative damage [121], neuroinflammation, and 

microglia activation [122], along with an increase in dendritic spines. These studies have 

offered some candidate factors included in EVs that could be responsible for the effect, 

mainly miRNAs that are upregulated in EVs from stem cells [123]. 

4.2. Atherosclerosis 

Atherosclerosis development in different parts of the vasculature is a common 

feature of aging, and it has a major effect on the decline of tissue function associated with 

aging, being one of the most important contributors to cardiovascular disease [124]. Many 

drugs target the accumulation of lipids and slow the progression of the disease; however, 

we lack a disease-modifying treatment for atherosclerosis [125]. EVs from different cell 

types, such as MSCs [126] or platelets [127], have shown promising effects on the 

treatment of atherosclerosis and plaque development. These EVs have been shown to 

influence the behavior of cells associated with atherosclerosis; for example, MSCs-derived 

EVs can reduce macrophage infiltration through miRNA delivery [128], with anti-

inflammatory effects on eosinophils and endothelial cells (ECs) [129,130]. In another 

study, the authors demonstrated that EVs and associated miRNAs from endothelial 

progenitor cells can target ECs in atherosclerotic plaques, reducing oxidative stress, 

inflammation, and endothelial contractile dysfunction [131]. 

4.3. Type 2 Diabetes 

Another relevant disease associated with aging and a contributor to the development 

of many age-related conditions is type 2 diabetes (T2DM) [132]. Altered glucose and other 

macromolecule metabolism is key in the pathogenesis of diabetes, something that is also 

altered with aging [62]. Researchers have studied the effect of EV treatment on some 

preclinical models of the disease. EVs from different sources, mainly MSCs, have shown 

therapeutic potential in T2DM [133]. The main effects are improved glucose and lipid 

metabolism, induction of autophagy [134], and inhibition of inflammatory response [135], 

all leading to improved insulin sensitivity. EVs from other sources, such as endothelial 

progenitor cells [136] or pancreatic β cells [137], have been shown to induce angiogenesis 

in pancreatic islets, promoting the survival of β cells and their function. 

4.4. Osteoporosis 

Osteoporosis incidence rises as we age and is particularly abundant in the post-

menopausal female population [138]. The main model used in mice to study osteoporosis 

is the induction of post-menopausal osteoporosis through ovariectomy in female mice. 

This model has been used to test the effect of EVs from different sources in the 

development of osteoporosis. Due to its close association with the bone, bone marrow-

derived stem cells (BMSCs) are the most studied source of EVs for osteoporosis treatment; 

other interesting sources are serum and milk. EVs from these sources have shown a 

beneficial effect on the progression of osteoporosis [139,140]. The proposed mechanisms 

are the inhibition of osteoclasts resorption activity [141], an induction of osteogenesis 

through increased osteoblasts proliferation and activity [139,142,143], promotion of the 

osteogenic differentiation of BMSCs [143], and an increase in vascularization via 

angiogenesis [144]. Some proteins that regulate osteogenesis, such as CLEC11A or 

MALAT1, are present in EVs and have been proposed as potential factors implicated in 

the beneficial effect [140,145]. Other proposed factors are miRNAs included in EVs that 

can modulate different pathways associated with osteoporosis development [142,144]. 

4.5. Osteoarthritis 

One of the most common causes of disability in developed countries is osteoarthritis 

(OA). Nearly every person develops some degree of OA throughout their lives, with few 
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therapeutic options apart from orthopedic treatment and pain management [146,147]. The 

main risk factor for OA is aging, so targeting this process is now an approach to modifying 

the natural history of OA [146]. SCs are the main source of EVs studied for the treatment 

of OA, as intra-articular and systemic injections of different SCs populations have been an 

attractive field in regenerative medicine due to their immunomodulatory properties that 

reduce excessive inflammation in OA [148]. EVs from MSCs have demonstrated their 

potential as therapeutics in preclinical models of the disease, mainly surgical models and 

intra-articular injection of different toxins [149]. They have shown beneficial effects on 

extracellular matrix regeneration [150], promotion of chondrocyte survival [149], as well 

as immunomodulatory effects [151]. Some proteins [152], miRNAs [153,154], and even 

glycans [155] that are present in MSCs-derived EVs are proposed molecules with 

therapeutic effects by themselves and are now being studied as therapeutics for OA. 

4.6. Chronic Kidney Disease 

Aging is usually accompanied by a progressive decline in renal function, and the 

incidence of CKD and renal failure rises as people age [156]. As we have stated before, 

EVs have been widely studied in kidney regeneration, especially those coming from 

MSCs. There are preclinical models of CKD in which EVs have been studied, mainly toxic 

induction of CKD [157], remnant kidney model [109], unilateral ureter obstruction 

[158,159], and diabetes [160]. EVs from MSCs have exhibited effects on a large number of 

processes associated with the development of CKD, with an effect not only on these 

processes but in renal function determined by serum urea and creatinine. These effects 

are inhibition of fibrosis [157], decrease in lymphocyte infiltration and inflammatory 

markers [109], induction of autophagy [47], and angiogenesis [161]. 

4.7. Frailty 

Per definition, frailty is the physiological state characterized by an increase in the 

vulnerability to external aggressions because of a decrease in the physiological reserves 

of several systems [162]. Frailty prevalence increases dramatically with age and is one of 

the most accurate predictors of dependence and mortality in old people [163]. The search 

for therapies to improve the decline in physical performance and to prevent sarcopenia is 

particularly attractive in the aging field. In the last year, we and others have demonstrated 

an effect of EVs from different sources in the muscle of old mice. Sahu et al. showed that 

circulating EVs in the plasma of young mice were able to rejuvenate old muscle cells and 

improve the muscle regenerative capacity of old mice [75], leading to an increase in fiber 

size, muscle force, and mitochondriogenesis, with a decrease in fibrosis. They proposed 

that Klotho transcripts (which decline with age) present in young EVs were the main 

factors responsible for the effects observed. More recently, we have evidenced a beneficial 

effect of EVs from young adipose-derived MSCs in the physical performance of old mice, 

as well as a decrease in frailty, these effects were accompanied by an increase in fiber size 

and muscle protein content, with a decrease in muscle senescence and SASP factors, 

oxidative stress and lipid deposition [24]. 

5. Overview 

Aging is the most important factor for the development of many diseases that affect 

us, which are the main cause of disability and mortality in almost every country [164]. The 

use of therapeutics that target the causes of aging at a cellular and molecular level is one 

of the most promising fields of study in medicine [13,165]. We will probably need to target 

several of these processes to treat age-related diseases. In this sense, EVs have been 

demonstrated to regulate a wide range of cellular processes due to their capacity to 

mediate intercellular communication [8,166]. 

As we have exposed in this work, EVs from different sources, particularly those 

released by stem cells, due to their pro-regenerative and immunomodulatory properties, 



Int. J. Mol. Sci. 2022, 23, 14632 11 of 19 
 

 

are presented as a cell-free therapy that has demonstrated substantial effects in preclinical 

models of several age-related diseases and tissue regeneration. EVs not only have 

beneficial effects on diseases, but they have also been shown to regulate many processes 

associated with aging, with remarkable effects on the regenerative capacity of the tissues. 

In fact, in the last years, EVs from young mice and healthy cells have proven to 

recapitulate some of the effects of already proven interventions in aging, such as 

parabiosis, dietary restriction, mTOR inhibition, or senolytics [23,24,25]. Although these 

processes seem to be partly regulated by EVs, the different sources of EVs are also 

subjected to the aging process. As we have shown, the age of the donor is key to the 

beneficial effect of EVs [24]. The content in EVs differs between young and old cells. As 

cells become old, they start to release factors to the extracellular environment that result 

in deleterious effects such as paracrine senescence [19,20]. Thus, when developing 

therapeutics for age-related conditions, the use of young cells or plasma would probably 

bring better results. Regarding this, we still do not know the optimal source of EVs. Adult 

stem cells (mainly MSCs) seem to be a reasonable source for all the aforementioned 

properties. However, future studies should elucidate if other types of SCs, such as 

embryonic SCs or induced pluripotent SCs, have a greater potential in targeting the aging 

process. 

The use of EVs as therapy by themselves is now being studied in clinics, with some 

clinical trials ongoing [167]. However, we still need to keep studying the basic biology of 

EVs and improving isolation and manufacturing methods to arrive at real patients. It is 

clear that we still need standardization protocols for the production, isolation, and 

manufacturing of EVs, as well as a need to understand the mechanisms of action before 

we can arrive at a feasible use of EVs in clinics [9,168]. There are two more alternatives to 

the use of whole EVs. The first is to use EVs as drug delivery vehicles, adding an 

interesting feature to the beneficial effect of EVs, with some studies showing the 

superiority of EVs loaded with different drugs or factors compared with EVs alone [169]. 

The second avenue of research is to explore EVs content and find different molecules 

or combinations of molecules that can recapitulate the beneficial effects observed with 

EVs treatments. This approach would probably result in a faster and simpler way for the 

clinics. In this regard, a great number of proteins, miRNAs, and lipids have been proposed 

in different studies. In preclinical studies, miRNAs are probably the most studied factors, 

as they can regulate many different pathways; however, some studies suggest that 

miRNAs are minor constituents of EVs with very low capacity to enter target cells 

[170,171]. 

Therefore, there is still a need for studies on the basic biology of EVs and the 

mechanisms that mediate both the release from donor cells and the effects on recipient 

cells. Nevertheless, we believe that both EVs and their content are interesting therapeutic 

tools in aging and age-related diseases, thanks to their ability to regulate many features 

associated with the aging process. 
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