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Abstract: Bacteriophage T4 lysozyme (T4L) is a glycosidase that is widely applied as a natural
antimicrobial agent in the food industry. Due to its wide applications and small size, T4L has been
regarded as a model system for understanding protein dynamics and for large-scale protein engi-
neering. Through structural insights from the single conformation of T4L, a series of mutations
(L99A,G113A,R119P) have been introduced, which have successfully raised the fractional population
of its only hydrolysis-competent excited state to 96%. However, the actual impact of these substitu-
tions on its dynamics remains unclear, largely due to the lack of highly efficient sampling algorithms.
Here, using our recently developed travelling-salesman-based automated path searching (TAPS), we
located the minimum-free-energy path (MFEP) for the transition of three T4L mutants from their
ground states to their excited states. All three mutants share a three-step transition: the flipping of
F114, the rearrangement of α0/α1 helices, and final refinement. Remarkably, the MFEP revealed that
the effects of the mutations are drastically beyond the expectations of their original design: (a) the
G113A substitution not only enhances helicity but also fills the hydrophobic Cavity I and reduces the
free energy barrier for flipping F114; (b) R119P barely changes the stability of the ground state but
stabilizes the excited state through rarely reported polar contacts S117OG:N132ND2, E11OE1:R145NH1,
and E11OE2:Q105NE2; (c) the residue W138 flips into Cavity I and further stabilizes the excited state
for the triple mutant L99A,G113A,R119P. These novel insights that were unexpected in the original
mutant design indicated the necessity of incorporating path searching into the workflow of rational
protein engineering.

Keywords: bacteriophage T4 lysozyme; path searching; rational protein engineering

1. Introduction

Bacteriophage T4 lysozyme (T4L) is a glycosidase that can attack and hydrolyze the
peptidoglycans in the cell walls of bacteria [1–4]. T4L has been widely applied as a natural
antimicrobial agent in the food industry [5] and the fusion of proteins to facilitate the
crystallization of G-protein-coupled receptors [6–9], sterol-binding proteins [10,11] and
type II phosphatidylinositol 4-kinases [12].

As a 164-residue polypeptide, T4L folds into a helix-rich bilobed structure [13]. It con-
tains two important hydrophobic cavities that directly influence its activation: hydrophobic
Cavity I, which is composed of M102/M106/L133/W138 (cyan in Figure 1A), and hydropho-
bic Cavity II, which is composed of L84/V87/A99/V103 (green in Figure 1A) [14,15]. These
two hydrophobic cavities are separated by two alpha helices: α0 and α1 (see Figure 1A).

Due to its wide applications and relatively small size, T4L has been regarded as a rep-
resentative model system for understanding the relationships among a protein’s structure,
dynamics, and functions [16–19], which has triggered a large body of protein-engineering
studies [4,15,20–24]. Most of such engineering attempts aimed to find a T4L variant with a
sufficiently populated excited state (E state, Figure 1A). As the bare conformational state
with hydrolysis capability, the E state of wild-type T4L is only transiently formed and
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marginally populated and, therefore, unable to be individually characterized by most
biophysical tools [14,15].

Figure 1. (A) The overall structures of the ground state (G state) [14] and the excited state
(E state) [15] for T4 lysozyme, with the two hydrophobic cavities shown: Cavity I (formed by
M102/M106/L133/W138, cyan) and Cavity II (formed by L84/V87/A99/V103, green). The G/E
interconversion mainly involves the flipping of F114 (yellow) and the rearrangement of helices α0
(red, G state: residues 114 to 122; E state: residues 119 to 122) and α1 (blue, G state: residues 107 to
113; E state: residues 107 to 118). (B) The relative fractional population between the G state (red) and
the E state (blue) was modulated by different mutants [15].

To enhance the efficiency of T4L hydrolysis, three variants were designed. The L99A
mutant (T4L-L99A), first made to strengthen the hydrophobicity of T4L [20], significantly
broadened the peaks of solution NMR relative to the wide-type (WT) and raised the frac-
tional population of the E state to 3% (97% for its ground state, or G state) [15]. Subsequently,
as Rosetta modeling predicted that substituting G113 by alanine might enhances the helicity
of α1, the G113A mutation was introduced to T4L-L99A, resulting in an additional increase
in the E state population to 34% [15]. In the course of destabilizing the G state, the R119P
substitution was further designed to introduce a steric clash between the P119 residue and
the C’ atom of T115 [15]. Remarkably, this triple mutant (T4L-L99A,G113A,R119P) inverted
the population of the E and G states to 96%:4%.

Notwithstanding the success of these mutants and a number of kinetic and compu-
tational investigations into T4L [14,15,25–27], the actual mechanism of the G/E transition
and how the three mutations modify the transition remain unclear [15]. This is mainly
due to the high dimensionality of the transition itself and the lack of an automated and
efficient algorithm that could dissect this G/E interconversion within affordable times and
computational costs. The framework of the Markov state model (MSM) is a state-of-the-art
approach to elucidate the kinetic mechanisms of complex biomolecular conformational
dynamics [28–46]. MSMs can be constructed on a large set of short MD trajectories whose
overall computational cost is lower than brute-force long simulations. The efficiency of
the MSM approach could be further raised through adaptive sampling. Such speedup
by adaptive sampling has been validated for small proteins with tens of residues [47,48].
However, the rational engineering of larger proteins with hundreds of residues, such as
T4L, requires systematic studies of all designed mutants. Constructing MSMs for all these
mutants seems far from cost-effective.
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Recently, we developed an efficient path-searching method—the travelling-salesman-
based automated path-searching (TAPS) method—which aims to efficiently locate high-
dimensional minimum-free-energy paths (MFEPs) between two stable states of a biomolec-
ular system at affordable cost [49]. The robustness and efficiency of this method have been
demonstrated in a variety of complex systems, with sizes ranging from tens to hundreds of
residues [50,51]. Though not directly providing kinetic mechanisms, the high-dimensional
MFEP found by TAPS is sufficient in offering atomistic insights into the effect of a mutation
on the dynamics of the protein. Its low cost also enables large-scale usage for systematic
studies of all mutants involved in protein engineering.

Here, we first used TAPS to locate the MFEPs for the G/E transition of all three T4L
variants. Subsequent free-energy calculations along the found MFEPs successfully revealed
transition states and intermediate states that were never reported for any of the three
variants. We found that, for all three mutants, the G/E transition is a three-step process
composed of the flipping of the residue F114, the rearrangement of α0/α1 helices, and the
final refinement of the hydrophobic cavities.

Interestingly, we found that in addition to enhancing the stability of α1, as envisioned
in the original design of the double mutant, the G113A substitution also fills the hydropho-
bic Cavity I through the CH3 group of A113 and, therefore, reduces the free-energy barrier
for flipping the residue F114. In addition, the change in the stability of the G state by the
R119P mutation is minimal. Instead, the major effect of this substitution is to stabilize the E
state by two sorts of new interactions: the polar contact between S117OG and N132ND2, the
salt bridge of E11OE1:R145NH1, and the polar contact between E11OE2 and Q105NE2. Mean-
while, the ring of W138 is completely flipped into the hydrophobic Cavity I, which further
enhances the stability of the E state for the triple mutant. These novel insights, which
were unexpected in the original mutant design, indicate the necessity of incorporating path
searching into the workflow of rational protein engineering.

2. Methods
2.1. Initial Structures and Transition Paths for Three Variants of T4L

All of the molecular dynamics simulations were performed with GROMACS-2019.4 [52]. For
T4L-L99A, the G state (PDB ID: 3DMV) [14] and the E state (PDB ID: 2LCB) [15] structures were
resolved. For the double mutant T4L-L99A,G113A and triple mutant (T4L-L99A,G113A,R119P),
their initial G/E structures were homology models based on the corresponding T4L-L99A struc-
tures as templates [53], except the E state of the triple mutant that was resolved (PDB ID: 2LC9).
Then, the G state structures of the three variants were respectively solvated in a dodecahedron
box with 10,331, 10,339, 10,332 TIP3P waters and 10 Na+/18 Cl−, 10 Na+/18 Cl−, and 10 Na+/17
Cl− ions [54] (details are provided in Table S1). The interaction within the system was described
by a CHARMM36 force field [55]. After 50,000 steps of energy minimization, a 100 ps NVT
simulation was performed at 300 K, followed by a 2 ns NPT equilibration to 1 atm using the
Berendsen barostat [56]. For all the MD simulations, the long-range electrostatic interactions
were treated by the particle-mesh Ewald method [57,58]; and the cutoff of 10 Å was used for
the short-range electrostatic and van der Waals interactions. All bonds were constrained by the
LINCS algorithm [59] (details are provided in Table S1).

After that, the initial paths of the three variants for the G/E transition were generated
by targeted MD (tMD) [60], with the E states as the target structures. For tMD, a total
400 ps simulation was performed for each of the three variants, and the same atom-sets for
structural alignment and RMSD computation were used, with frames recorded every 0.2 ps
(details are provided in Table S1).

2.2. Path Optimization by TAPS
2.2.1. Flowchart of TAPS Optimization

As a recently matured method, the travelling-salesman-based automated path-searching
(TAPS) method can efficiently locate the minimum free-energy path (MFEP) for complex
biomolecular systems [49,50]. Before performing the TAPS optimization, one needs to define the
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path collective variable (PCV) in a high-dimensional path [61] (see Equation (1)). The distance
between any high dimensional conformation x and the i-th node of the path (N nodes in total),
dx,i, was defined with root-mean-square deviation (RMSD), which used the same atom-sets
in tMD. λ is a constant computed by λ = 2.3 (N − 1)/∑N−1

i=1 d2
i,i+1, where di,i+1 is the distance

between i-th node and its neighbor node i + 1.

s = ∑N
i=1 ie−λd2

x,i

∑N
i=1 e−λd2

x,i
, z =− 1

λ
ln
(
∑ N

i=0e−λd2
x,i
)

(1)

Here, two components were defined with PCV [62,63], where PCV-s and PCV-z repre-
sented the position for the projection of conformation x on the path and the hyperplane
perpendicular to the path, respectively. Because the paths other than MFEP are unstable in
directions orthogonal to themselves, the node-sampling in TAPS was performed within
the hyperplane perpendicular to the path through a restraint potential added on PCV-s
via PLUMED [64]. After that, the candidate nodes for the new path were reordered via a
travelling-salesman scheme (solved by the Concorde package) [65] and adjusted by the
insertion and deletion of path nodes to maintain the geometric resolution of the path (more
details are provided in Figure S1 and Refs. [49,50]).

2.2.2. Path Optimization Convergence Check

As described in our previous studies [50,51], the convergence of TAPS optimization
can be conveniently checked in two ways:

(a) the distance between the path in its current iteration and the initial path, as measured
by
√

z [50,51,63]. See the details provided in Equation (2):

√
z =

√
1
N ∑ N

i=1zi,ref. path, (2)

where zi,ref. path denotes the PCV-z of node i of path α with respect to reference path;

(b) the visualization of the optimization process via the projection of all paths on a low-
dimensional space generated by multidimensional scaling (MDS) [66] (more details
are provided in the Supplementary Materials and Ref. [34]).

2.3. Free-Energy Calculation

After convergence, we used umbrella sampling to evaluate the free-energy surface
along the PCV-s of the found MFEP and conducted analysis by the weighted histogram
analysis method (WHAM) [67–69]. According to the free-energy surface along the found
MFEP, the transition states and intermediate states were then further identified.

3. Results
3.1. The Main Activation Mechanism for the Three T4L Variants

First, the initial paths for the G/E state interconversion were generated by tMD [60],
as described in Section 2.1. We then employed TAPS to optimize the initial paths for the
three variant systems. We chose all of the Cα atoms of the residues from α-helices and
β-sheets for structural alignment (excluding residues 92–140, where the major conforma-
tion change occurs), and selected all of the heavy atoms of residues 92–140 for RMSD
calculations (details of the parameters are provided in Table S2). Such choices of atom-sets
for structural alignment and RMSD calculations introduced few a priori assumptions about
the transition mechanism.

According to the convergence analysis of TAPS by MDS [66] and
√

z [50,51,63], all
three T4L variant systems reached convergence to their final MFEPs (orange) within 40 to
60 iterations (Figure S2A–C). Such convergence rates corresponded to the accumulated sam-
pling of ~102.46 ns, ~165.48 ns, and ~72.49 ns, respectively, for T4L-L99A, T4L-L99A,G113A,
and T4L-L99A,G113A,R119P (Figure S2D–F).
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Based on the MFEP located by TAPS, the free-energy landscape along PCV-s of the
found MFEP was obtained by umbrella sampling [67–69]. To ensure sufficient overlap
between neighbor umbrellas, extra umbrella simulations were added, with an average gap
of 0.5 on PCV-s. For all three mutant systems, 2 ns of restrained sampling was performed for
each umbrella (results in Figure S3). Finally, through WHAM analysis [68,69], we obtained
the free-energy landscapes with the important transition states (TS) and intermediate states
(IS), as shown in Figure 2A–C.

Figure 2. (A–C) The free energy landscapes revealed by umbrella sampling method [67–69] along the
found MFEP for (A) T4L-L99A, (B) T4L-L99A,G113A, and (C) T4L-L99A,G113A,R119P. The important
transition state (TS) and intermediate state (IS) are identified from the free energy landscape. The three
main steps of the G/E interconversion are highlighted: F114 flipping (yellow), α0/α1 rearrangement
(blue), and final refinement (green). (D) The free-energy differences between G state and E state
(∆GG→E) for T4L-L99A (red), T4L-L99A,G113A (blue), and T4L-L99A,G113A,R119P (green). The
squares and circles are used to label ∆GG→E from the TAPS and the experiment, respectively [20].
(E) Illustration of flipping of F114. (F) Illustration of the α0(blue)/α1(red) rearrangement. All the
structures are displayed by visual molecular dynamics (VMD) [70].

According to the free-energy landscapes, the free-energy differences between the
G and E states from our simulations are very consistent with the experimental mea-
surements: −2.80 kBTTAPS vs. −3.51 kBTExp for the T4L-L99A (red), −1.38 kBTTAPS vs.
−1.94 kBTExp for the T4L-L99A,G113A (blue), and 2.15 kBTTAPS vs. 3.17 kBTExp for the
T4L-L99A,G113A,R119P (green), as shown in Figure 2D [15].

Our MFEPs also revealed that all three T4L variant systems share three major steps
for their G/E transition (see Figure 2A–C). The first step was the F114 flipping (yellow)
from Cavity I to Cavity II and the opening of the flipping channel between M102 and
M106, as illustrated in Figure 2E. Subsequently, the rearrangement of the two α-helices
(α0/α1) occurred: part of the α1 helix (residues 115 to 118) was released from α1 and
merged into the α0 (Figure 2F). Finally, the hydrophobic Cvity I was refined, with F114
re-positioned. The complete set of structures for these conformational changes are shown in
the Supplementary Materials (T4L-L99A in Figure S4, the double mutant T4L-L99A,G113A
in Figure S5, and the triple mutant T4L-L99A, G113A, R119P in Figure S6).
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3.2. Enhancing the Hydrolysis of T4L through Three Substitutions

As stated in Section 3.1, the fractional populations of the G and E states for the T4L-
L99A can be manipulated by introducing additional mutations [15]. However, the detailed
mechanism underlying the population shift remains elusive, largely due to the lack of
reliable structures corresponding to the G and E states for the T4L variants. Based on
our TAPS method, the stable structures of the G and E states were identified from the
free-energy landscape along the converged path optimized by TAPS (especially the G state
structure of the T4L-L99A,G113A variant, as shown in Figure S7). This enables a detailed
investigation into the structural differences between the G and E states for all three T4L
variants (Figure 3A,B).

Figure 3. (A,B) The detailed structures of the G states (A) and the E states (B) for the T4L-L99A, the
T4L-L99A,G113A, and the T4L-L99A,G113A,R119P variants, with the newly found salt bridges and
H-bonds highlighted. (C) The average RMSDs of the heavy atoms of residues 90–140 for T4L-L99A
(red square), T4L-L99A,G113A (blue square), and T4L-L99A,G113A,R119P (green square) in the 1 µs
conventional MD simulations of the E states. (D,E) The probability distributions of the distances
between the groups of the residues that form the polar contact S117OG:N132ND2 (D), the salt bridge
E11OE1:R145NH1 and the polar contact E11OE2:Q105NE2 (E).

Although the mutants G113A and R119P were designed to change the structure and,
therefore, the population of the G state, only minor differences were found for the three
T4L variants (Figure 3A and Figure S8). For the T4L-L99A mutant, the hydrophobic
Cavity I was fulfilled by F114 and hydrophobic residues M102/M106. In addition, a polar
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contact between Q105 and W138 was formed to maintain the stability of Cavity I. For
the double mutant T4L-L99A,G113A, F114 retained its position, as did the residues M102
and M106. The G state structure of the double mutant T4L-L99A,G113A was very similar
to that of the T4L-L99A mutant, except that the methyl group A113CH3 flipped into the
hydrophobic Cavity I and the polar contact between Q105 and W138 was broken. The
position and the orientation of W138 remained as in T4L-L99A. For the triple mutant
T4L-L99A,G113A,R119P, the positions of F114, M102, and M106 remained the same, while
the A113CH3 slightly moved away from Cavity I with the Q105-W138 contact reformed.

Nevertheless, for the E states, we have found drastic differences induced by the
mutants of G113A and R119P, as shown in Figure 3B and Figure S9. For T4L-L99A, the
hydrophobic Cavity I was only fulfilled with M102 when F114 flipped into Cavity II. In
contrast, for T4L-L99A,G113A, the methyl group A113CH3 participated into the formation
of the hydrophobic Cavity I, enhancing the stability of the E state. Moreover, one salt bridge
(E11OE1:R145NH1) and one polar contact (E11OE2:Q105NE2) were formed with the additional
R119P substitution. An additional polar contact between S117OG and N132ND2 was found
to further stabilize the hydrophobic Cavity I. Notably, the ring of W138 was completely
inserted into the hydrophobic Cavity I for T4L-L99A,G113A,R119P, which is a distinct
feature not observed for T4L-L99A or the double mutant T4L-L99A,G113A. Therefore, we
hypothesized that these rarely reported salt bridges/polar contacts and the position of the
ring of W138 are critical for the shift of the fractional population of the E state from 3%
(T4L-L99A) to 96% (T4L-L99A,G113A,R119P).

To validate this hypothesis, we performed 1 µs conventional MD simulation for
the G state and the E state of each T4L variant. We measured the stability of the two
hydrophobic cavities (residues 92–140) by calculating their average RMSD values and the
standard deviations of the RMSD, as shown in Figure 3C and Figure S10. All the RMSD
values were around 2.2 Å, with a small deviation of 0.3 Å, demonstrating the stability
of the G and E states. We also analyzed the percentage of the formation of the polar
contact between S117OG and N132ND2, and validated its high stability (more than 94.2%,
as shown in Figure S11A). In addition, the formation of the salt bridge of E11OE1:R145NH1
and the polar contact between E11OE2:Q105NE2 were also calculated. The corresponding
percentages of the formation of these contacts were 83.6% and 30.8%, consistent with
previous experimental results [15]. An additional 1 µs conventional MD simulation for
the E state of T4L-L99A,G113A,R119P with three extra mutations (Q105L, S117A, and
R145L) suggested that without these newly identified salt bridge/polar contacts, the
two hydrophobic cavities (residues 92–140) become unstable, with a notably broader
distribution of the RMSD value than that in the original E state of T4L-L99A,G113A,R119P
(as shown in Figure S12).

3.3. Transition Mechanism of T4L

As illustrated in Section 3.1, the transition mechanism of the T4L from the G state to the
E state can be mainly divided into three steps: the F114 flipping, the α0/α1 rearrangement,
and the final refinement. To gain direct insights into the influence of the mutations on the
transition mechanism, we have analyzed and discussed the details of the three main steps,
respectively, as shown in Figures 4–6.
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Figure 4. (A–C) Mechanisms of the first step (F114 flipping) of the G→E transition for T4L-L99A
(A), T4L-L99A,G113A (B), and T4L-L99A,G113A,R119P (C). All transition/intermediate states were
identified from the free-energy landscapes in Figure 2A–C, with key residues and structural segments
highlighted: α0 (transparent blue), α1 (transparent red), F114 (yellow), W138 (green), and A113CH3

(dashed black circle).

Figure 5. (A–C) Mechanisms of the second step (α0/α1 rearrangement) of the G→E transition
for the T4L-L99A (A), the T4L-L99A,G113A (B), and the T4L-L99A,G113A,R119P (C). All transi-
tion/intermediate states were identified from the free-energy landscapes in Figure 2A–C, with key
residues and structural segments highlighted: α0 (transparent blue), α1 (transparent red), F114
(yellow), W138 (green), and A113CH3 (dashed black circle).
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Figure 6. (A–C) Transition mechanisms of the third step (final refinement) of the G→E conversion
for the T4L-L99A (A), the T4L-L99A,G113A (B), and the T4L-L99A,G113A,R119P (C). All transi-
tion/intermediate states were identified from the free-energy landscapes in Figure 2A–C, with key
residues and structural segments highlighted: α0 (transparent blue), α1 (transparent red), F114 (yel-
low), W138 (green), and A113CH3 (dashed black circle).

3.3.1. Step One: F114 Flipping

In the first step, the detailed flipping processes of F114 for the T4L-L99A (Figure 4A),
the T4L-L99A,G113A (Figure 4B), and the T4L-L99A,G113A,R119P (Figure 4C) were dis-
played by visual molecular dynamics (VMD). For the T4L-L99A, Cavity I was destabilized
by the breaking of the H-bond between W138NE and Q105OE1. After that, the hydrophobic
contact formed by the side chains of M102 and M106 was broken, simultaneously forming a
flipping channel for F114, as highlighted in TS I. F114 then started to rotate toward Cavity II,
coupled with an adjustment on its benzene plane to a horizontal direction, which reduced
the steric effect for F114 to flip through the channel. In TS II, we also noted that the W138
slightly moved away from the M102 and reformed the H-bond with Q105. Such movement
released more space for flipping F114 into Cavity II (see IS II).

Unlike the situation with T4L-L99A, similar but more feasible transition processes
were found for T4L-L99A,G113A and the T4L-L99A,G113A,R119P (Figure 4B,C). With the
methyl group A113CH3 fulfilling the empty space of Cavity I, the flipping of F114 in the
T4L-L99A,G113A became easier, resulting in a lower energy barrier (~8.75 kBT than ~10.36
kBT in the T4L-L99A). For T4L-L99A,G113A,R119P, the energy barrier was slightly raised,
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possibly due to the stabilization of the H-bond between W138 and Q105. Such an H-bond
might also restrict the rotation of A113CH3 into Cavity I.

3.3.2. Step Two: α0/α1 Rearrangement

Following the flipping of F114, the rearrangement of the helices α0/α1 occurred
(Figure 5). For the T4L-L99A, the α0 helix was rotated toward W138, reducing the size
of hydrophobic Cavity I. Meanwhile, part of α1 (residues 114–117) was merged into α0
(see Figure 5A).

For the double and triple mutants, the rearrangement was completed by two steps
(Figure 5B,C). At first, the 114–117 segment became partially isolated from α1 without
merging with α0. Subsequently, the rotation of the α0 helix became difficult, as the hy-
drophobic group A113CH3 fulfilled the hydrophobic Cavity I. For the T4L-L99A,G113A, α0
rotated to W138 and merged with this 114–117 segment.

Unlike the situation with the single and double mutants, in the triple mutant a new
stable polar contact was formed between S117OG and N132ND2. This contact was very
stable, as shown in Figure 5C. With arginine at position 119 mutated to proline, the exclusion
between R119 and K83 was eliminated, resulting in a shorter distance between α1 and
the helix of residues 82 to 90, as shown in Figure S13. Due to this polar contact, the
rotation of α0 had to cross a higher energy barrier (~8.54 kBT). In addition, a salt bridge
(E11OE1:R145NH1) and a polar contact (E11OE2:Q105NE2), never observed in the single or
double mutant, were formed. These two interactions seemed to enhance the stability of the
E state for T4L-L99A,G113A,R119P.

After the F114 flipping and the α0/α1 rearrangement, the shape of the hydrophobic
Cavity I remained unstable and, therefore, required further conformational refinement.

3.3.3. Step Three: Final Refinement

For the T4L-L99A, the final refinement contained a high free-energy barrier (~12.28 kBT),
mainly involving the adjustment of the connection between α0 and α1, and the shrinkage of
the hydrophobic Cavity I. Meanwhile, the ring of W138 also flipped toward solution. For the
double mutant, the final refinement was merely local adjustment on the position of A113CH3
and the side chain of M106. The slight change of the hydrophobic Cavity I here corresponded to
a lower energy barrier (~8.63 kBT), as shown in Figure 6B.

As shown in Figure 6C, the final refinement of the triple mutant was considerably
different from that of the double mutant. With the constraint induced by the salt bridge
(E11OE1:R145NH1), the polar contact (E11OE2:Q105NE2), and the highly stable polar contact
between S117OG and N132ND2, the ring of the W138 flipped inside the hydrophobic Cavity
I, while the A113CH3 group, the M102, and the M106 almost retained their positions and
orientations.

4. Discussion

The present case study of T4 lysozyme showed that it could be insufficient to de-
sign protein mutants based on information about a single conformational state, typically
obtained via structural biology techniques. Our TAPS approach revealed not only the
three-step G/E transition process of T4L (the flipping of F114, α0/α1 rearrangement, and
final refinement), but also the actual interactions underlying the dominance of the E state
over other states in the triple mutant, which are beyond the scope of the original design of
this mutant [15].

First, the A113CH3 group, introduced in the double mutant T4L-L99A,G113A, reduced
the energy barrier for the F114 flipping and increased the stability of the hydrophobic Cavity
I in the E state, resulting in the conversion of the G:E fractional populations from 97%:3%
(T4L-L99A) to 66%:34% (T4L-L99A,G113A). Second, the R119P mutation further raised
the population of the E state to 96%, not through destabilizing the G state as originally
believed, but by stabilizing the E state via a newly formed salt bridge (E11OE1:R145NH1)
and two polar contacts (E11OE2:Q105NE2 and S117OG:N132ND2).
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These results demonstrate TAPS as a promising approach in boosting rational in silico
protein engineering. The overall high efficiency of automated path searching enables a
rapid check of the effect of a large number of mutations on the functional dynamics of the
protein, simultaneously presenting the design result and the mechanism therein.

We also noticed that previous studies indicated the existence of multiple pathways
for the G/E transition of T4L. This general phenomenon in the functional dynamics of
many biomolecular systems is actually calling for a sampling scheme that is capable
of systematically obtaining multiple parallel MFEPs at affordable costs. Here, we used
targeted MD that generated a single initial G/E path for each mutant, without searching for
alternative paths. However, work in our lab continues toward a more complete sampling.
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