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Abstract: For immobile plants, the main means of protection against adverse environmental factors
is the biosynthesis of various secondary (specialized) metabolites. The extreme diversity and high
biological activity of these metabolites determine the researchers’ interest in plants as a source of
therapeutic agents. Oxylipins, oxygenated derivatives of fatty acids, are particularly promising
in this regard. Plant oxylipins, which are characterized by a diversity of chemical structures, can
exert protective and therapeutic properties in animal cells. While the therapeutic potential of some
classes of plant oxylipins, such as jasmonates and acetylenic oxylipins, has been analyzed thoroughly,
other oxylipins are barely studied in this regard. Here, we present a comprehensive overview of the
therapeutic potential of all major classes of plant oxylipins, including derivatives of acetylenic fatty
acids, jasmonates, six- and nine-carbon aldehydes, oxy-, epoxy-, and hydroxy-derivatives of fatty
acids, as well as spontaneously formed phytoprostanes and phytofurans. The presented analysis will
provide an impetus for further research investigating the beneficial properties of these secondary
metabolites and bringing them closer to practical applications.

Keywords: plant oxylipins; acetylenic oxylipins; jasmonates; traumatic acid; phytoprostanes and
phytofurans; oxy-, hydroxy-, and epoxy-derivatives of fatty acids

1. Introduction

The list of drugs generated from plant metabolites or their synthetic analogs includes
antibacterial, antifungal, antiviral, antiparasitic, anticancer, antidiabetic, anti-inflammatory,
and other agents [1–4]. Notable examples are apomorphine (Apokyn®) used to treat
Parkinson’s disease, nitisinone (Orphadin®) used as a treatment for hereditary tyrosinemia,
and miglustat (Zavesca®) prescribed for the treatment of Gaucher disease [5]. Two of the
most important anti-cancer drugs—taxol (isolated from Taxus brevifolia L.) and camptothecin
(from Camptotheca acuminate)—were selected in the so-called “random screening” of plant
metabolites [6]. Currently, a significant part of the pharmaceutical industry’s income
depends on plant metabolites. The use of plant material as a source of valuable metabolites
has great economic importance since the global biomedical materials market is projected to
reach US$232,280 million by 2028, up from US$110,240 million in 2021 [1,7].

The ability of immobile plants to produce various secondary (specialized) metabolites
with high biological activity is associated with the need to adapt to a constantly changing
environment. An important class of secondary metabolites used by plants for protec-
tion against adverse environmental factors is represented by oxylipins. It is known that
plant lipids and free fatty acids, the substrates for oxylipin biosynthesis, can modulate
the physiological processes in the animal cell, for example, by exhibiting immunomod-
ulatory properties [8], inducing apoptosis in cancer cells [9], or inhibiting expression of
pro-inflammatory cytokines [10]. The significant diversity and functional activity of oxylip-
ins make their therapeutic and pharmaceutical potential even greater than that of fatty
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acids and lipids. The ability of plant oxylipins to influence processes in a non-plant cell
can also be explained by the fact that the oxylipin biosynthesis and signaling pathways
have significant similarities in evolutionarily distant species. There are similarities between
plants and animals in the biochemical nature of the oxylipin biosynthesis enzymes and the
chemical structure of some oxylipins. The functional similarity is also obvious since these
metabolites are involved in stress responses in both plants and animals [11]. In animal
cells, biologically active eicosanoids, such as prostaglandins, prostacyclins, thromboxanes,
leukotrienes, lipoxins, and others, are formed from 20-carbon arachidonic acid [12,13].
These oxylipins perform important regulatory functions in all tissues and systems of the
animal body and are involved in various immunopathological processes, including inflam-
mation, autoimmune responses, and cancer [13–15]. Plant oxylipins are involved in defense
responses under abiotic (sub-optimal temperatures, drought, UV radiation, etc.) and bi-
otic (bacterial and fungal infections, viruses, attacks by herbivorous insects and animals)
stresses [16–18]. Fatty acids and oxylipins are also involved in inter-organismal signaling
functions. Thus, eicosapolyenoic fatty acids, which enter plant tissues upon infection with
oomycete pathogens, can modify plant defense responses [19], and Arabidopsis transgenic
plants, accumulate 20-carbon fatty acids unusual for plant vegetative tissues, exhibit altered
responses to environmental stimuli [11]. Some volatile oxylipins act as mobile signals in
plant-plant and plant-insect interactions [20,21].

Although the beneficial properties of the representatives of individual classes of plant
oxylipins have been uncovered, the therapeutic potential of this big group of secondary
metabolites is far from being revealed. Here we present an analysis of available data
on the therapeutic potential of all major classes of plant oxylipins, including derivatives
of acetylenic fatty acids, jasmonates, hydroperoxide lyase branch-produced oxylipins,
oxy-, epoxy-, and hydroxy-derivatives of fatty acids, as well as spontaneously formed
phytoprostanes and phytofurans.

2. Variety of Plant Oxylipins

Oxylipins are formed enzymatically or spontaneously from fatty acids in all aerobic
organisms, from bacteria to humans [22]. In higher plants, 16- and 18-carbon unsaturated
fatty acids are the main substrates for oxylipin biosynthesis [11,23]. Plant oxylipins are
comprised of fatty acid hydroperoxides, cyclopentenone compounds, aldehydes, ketoacids,
divinyl ethers, epoxides, epoxy alcohols, and others [16,24–29] (Figure 1). A significant con-
tribution to the functional diversity is also made by the presence of oxylipins in plant tissue,
in free form and as conjugates with amino acids, carbohydrates, glutathione, ethanolamine,
lipids, and other compounds [30]. The enzymatic formation of oxylipins in plants is mainly
associated with the activity of the lipoxygenase (LOX) pathway, which begins with the
regio- and stereospecific dioxygenation of polyunsaturated fatty acids by 9- and 13-specific
lipoxygenases, non-heme iron-containing dioxygenases [31,32]. In lower photosynthetic or-
ganisms, hydroperoxides of twenty-carbon fatty acids can also be formed [33]. Interestingly,
lipoxygenases can oxidize both free and lipid-bound fatty acids [32,34,35].
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dodecenoic acid, referred to as traumatin or wound hormone. Oxidation of the aldehyde 
group of traumatin leads to the formation of 2(E)-dodecene-1,12-dicarboxylic acid (trau-
matic acid) (6) [61,62]. Several isomers of traumatin and traumatic acid are present in plant 
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9-carbon compounds, the volatile products nonenal (9) and nonadienal (8), respectively, 
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Figure 1. Chemical structures of several jasmonates: JA, (3-oxo-2-(2-pentenyl) cyclopentaneacetic
acid (1); 12-oxo-phytodienoic acid (2); MeJA (3); (3-hydroxy-2-pentylcyclopentyl)-acetic acid (4); and
jasmonoyl-L-isoleucine (5).

In addition to LOX-dependent oxylipin biosynthesis pathways, there is an alternative
α-dioxygenase (α-DOG) pathway of fatty acid oxidation. α-DOGs are heme-containing
proteins in which the prosthetic group can be linked both covalently and non-covalently to
the polypeptide. α-Oxygenation catalyzed by α-DOG, as in the case of LOX, leads to the
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formation of hydroperoxy-derivatives of fatty acids, but this reaction occurs exclusively on the
α-carbon of the carbon chain. The unstable hydroperoxy derivative can be further converted
to the corresponding hydroxy derivative or truncated (17-carbon) aldehyde or acid [36].

The 9- and 13-hydroperoxides of fatty acids formed by lipoxygenases can be further
modified in several branches of the oxylipin biosynthesis pathway, initiated by one of the
following enzymes: allene oxide synthase (AOS), hydroperoxide lyase (HPL), divinyl ether
synthase (DES), peroxygenase, epoxy alcohol synthase (EAS), and reductase [16,26,37–39].
Lipoxygenases can also implement the secondary oxidation of hydroperoxides to form keto
derivatives [40]. Three of these enzymes (AOS, HPL, and DES) belong to the CYP74 family of
the cytochrome P450-dependent monooxygenase superfamily. Unlike other cytochrome
P450 superfamily members, CYP74 enzymes do not require NADPH for enzymatic ac-
tivity and use fatty acid hydroperoxides simultaneously as a substrate and as an oxygen
donor [18,22,41,42]. Known epoxy alcohol synthases mostly belong to the CYP74 clan (share
less than 40% sequence identity with other CYP74) and, in rare cases, to the CYP74 fam-
ily [43,44]. Peroxygenases (lipid peroxygenases) are calcium-binding proteins and heme-
containing oxygenases, which catalyze the oxidation of hydroperoxides of unsaturated fatty
acids with the formation of epoxy-, hydroxy-, and epoxyhydroxy derivatives. Peroxygenases
are not related to peroxidases. They also do not belong to the CYP74 family but belong to a
small protein family called caleosin [45–47].

The allene oxide synthase and hydroperoxide lyase branches are the dominant en-
zymatic pathways for the biosynthesis of oxylipins in most higher plants. In the allene
oxide synthase branch, so-called jasmonates are formed, which structurally resemble an-
imal eicosanoids (Figure 1). Jasmonates, present in all land plants, are the most studied
group of oxylipins. These oxylipins perform the functions of phytohormones that reg-
ulate plant growth, development, and defense responses. The main metabolites of this
branch are jasmonic acid (JA, 3-oxo-2-(2-Z)-2-pentenylcyclopentaneacetic acid) (1), its
methyl derivative—methyl jasmonate (MeJA) (3) [48], its biosynthetic precursors of jas-
monic acid—12-oxo-phytodienoic acid (12-OPDA) (2), and dinor-12-oxophytodienoic acid
(dn-OPDA) [49,50], as well as conjugates of jasmonates with amino acids, primarily with
isoleucine (5) [51–53]. In plant tissues, glucosylated, carboxylated, hydroxylated, and other
jasmonate derivatives are present, however, the formation of most of these compounds
is a mechanism for removing active jasmonates from cells [54–57]. In the plant cell, there
is a sophisticated signaling system based on jasmonates that carries out highly specific
regulation of hundreds of jasmonate-dependent genes. The main signaling molecule in this
system is the conjugate of jasmonic acid with isoleucine (jasmonoyl-L-isoleucine) (5) [58,59].

HPL is present in many, but not all plants, where plants may contain one or more
enzymes that differ in substrate specificity and intracellular localization [60]. With the
participation of 13-HPL, 6-carbon aldehydes and 12-carbon aldoacids are formed from
13-hydroperoxides of 18-carbon fatty acids (Figure 2). The unstable 12-carbon compound
of the HPL branch, 12-oxo-9(Z)-dodecenoic acid, isomerizes to the more stable 12-oxo-
10(E)-dodecenoic acid, referred to as traumatin or wound hormone. Oxidation of the
aldehyde group of traumatin leads to the formation of 2(E)-dodecene-1,12-dicarboxylic acid
(traumatic acid) (6) [61,62]. Several isomers of traumatin and traumatic acid are present in
plant tissues. 9-Specific HPLs use 9-hydroperoxides of linoleic and linolenic acids to form
two 9-carbon compounds, the volatile products nonenal (9) and nonadienal (8), respectively,
and the less volatile 9-oxonanoic acid. The product formation in an HPL-catalyzed reaction
occurs through the formation of an unstable hemiacetal intermediate [63,64]. Subsequently,
aldehydes can isomerize and turn into alcohols, hydroxy, and aceto derivatives. These
volatile aldehydes and their derivatives, collectively known as Green Leaf Volatiles, are the
main component of the aroma of green leaves and fruits; they protect plants from insects
and pathogens and mediate interactions with other organisms [65].

Divinyl ether synthases, which are less common in plants, use 9- or 13-hydroperoxides
of fatty acids, primarily linoleic and α-linolenic acids, to form divinyl ether fatty acids
(Figure 3), such as colnelic, colneleic (13), etheroleic (14), and etherolenic acids, as well
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as their numerous isomers [26,66]. Known divinyl ether synthases differ in substrate
specificity: DES from tomato, tobacco, and potato primarily use 9-hydroperoxide of fatty
acids [29,67], whereas DES from garlic use 13-hydroperoxide of fatty acids [68].
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The existence of CYP74 enzymes with dual activity, such as those with simultaneous
hydroperoxide lyase and epoxyalcohol synthase activity (9/13-HPL/EAS), is extremely
intriguing [69]. This dual product specificity, also observed in several AOSs and DESs,
seems to expand the biological functions of oxylipin biosynthesis enzymes [69–71]. Such
enzymatic plasticity is also a valuable property for biotechnological applications.

EAS converts fatty acid hydroperoxides to epoxy alcohols, which can be further
converted to epoxyhydroxy and hydroxy derivatives (Figure 4) [72,73]. The epoxy alcohols
can also be formed by peroxygenases [74,75], as well as in non-enzymatic and pseudo-
enzymatic reactions in the presence of transition metals and hemoproteins [73,76].
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Figure 4. Chemical structures of plant oxylipins, oxy-, hydroxy-, and epoxy-derivatives of fatty
acids: 9,10,13-trihydroxy-11-octadecenoic (15); 9,12,13-trihydroxy-l0-octadecenoic acid (16); 9,12,13-
trihydroxy-15-octadecadienoic (17); 12,15,16-trihydroxy-9,13-octadecadienoic (18); 9,10,13-trihydroxy-
11,15-octadecadienoic (19); 12,13,16-trihydroxy-9,14-octadecadienoic acid (20); 10,17-dihydroxy-
docosahexa-4,7,11,13,15,19-enoic acid (21); 9,16-dihydroxy-10,12,14-octadecatrienoic acid, isomers
(22); 9-oxo-10,12-octadecadienoic acid (23); 13-hydroxy-10-oxo-11-octadecenoic acid (24); 10-oxo-
11-octadecen-13-olide, en-antiomers (25); 9-hydroxy-10,12-octadecadienoic acid (26); 13-hydroxy-
9,11-octadecadienoic acid (27); 13-hydroxyoctadeca-9,11,15-trienoic acid (28); 15-hydroxyeicosa-
5,8,11,13,17-pentaenoic acid (29); and nonyl 8-acetoxy-6-methyloctanoate (30).

Peroxygenases (caleosin/peroxygenase proteins) associate with lipid membranes or
lipid inclusions and form several products, including epoxy, epoxyhydroxy, and hydroxy



Int. J. Mol. Sci. 2022, 23, 14627 5 of 31

derivatives (Figure 4) [77]. Unlike epoxygenases, which can also form epoxides, peroxyge-
nases do not require NADPH for the enzymatic reaction. The products of the peroxygenase
reaction are similar to the products of the epoxyalcohol synthase reaction [78]. Subse-
quent transformation of epoxy derivatives by epoxide hydrolases leads to the formation of
trihydroxy acids [45,46,79].

An interesting class of oxylipins is represented by the derivatives of fatty acids contain-
ing triple bonds (Figure 5). Fatty acids containing one triple bond (acetylenic fatty acids)
or several triple bonds (polyacetylenic fatty acids) are quite widespread and are found in
algae, mosses, lichens, and higher plants, although in small amounts in most cases [80,81].
The triple bonds present in the molecules determine the high chemical activity of these
oxylipins and, as a result, their high biological activity. That is why the derivatives of
acetylenic fatty acids are studied more than other plant oxylipins in terms of their effect on
the animal cell, which is reflected in several review articles [80–84]. These compounds act
as alkylating agents, capable of modifying various molecules, including proteins, so high
concentrations of acetylenic fatty acid derivatives are toxic [85]. The high lipophilicity of
these oxylipins increases their ability to permeate the cell membranes.
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Spontaneous oxidation of fatty acids leads to the formation of phytoprostanes
(Figure 6), compounds with structural similarity to isoprostanes and prostanoids—the power-
ful regulators of physiological responses in animal cells formed from arachidonic acid [86–90].
Phytoprostanes (PhytoPs) are formed from polyunsaturated fatty acids in both photosynthetic
and non-photosynthetic plant tissues, although their total content in photosynthetic tissues
is ten times higher [91]. Phytoprostanes, similarly to animal isoprostanes, can be formed
from free fatty acids and fatty acids bound to lipids and later released by lipases [92]. The
spontaneous oxidation of fatty acids initially leads to the formation of hydroperoxides and
cyclic peroxides. Depending on the number of carbon atoms in the fatty acid chain (C-14 or
C-11), which loses hydrogen and then adds oxygen, two types of phytoprostanes G1 (PPG1-
phytoprostanes G1), type 1 and type 2, respectively, are formed, where each type includes
16 isomers. PPG1s are spontaneously reorganized or reduced to form cyclic compounds
PPD1, PPE1, and PPF1, and finally, dehydration and isomerization of PPD1 and PPE1 result
in the formation of PPJ1, deoxy-PPJ1 (41), PPA1, and PPB1 [86,88]. The presence of racemic
regioisomers increases the diversity of phytoprostanes in the plant cell. The most commonly
encountered phytoprostanes are PPE1 and PPF1. At high concentrations, oxygen reacts with
the endoperoxide carbon radical to generate tetrahydrofuran ring-containing compounds.
Thus, phytoprostanes are converted into phytofurans [93]. The biological activity of many
phytoprostanes and phytofurans is very high. They have some, although not all, properties of
the plant hormone jasmonates, including the ability to activate the biosynthesis of secondary
metabolites and induce the expression of genes involved in detoxification processes, and at
the same time perform functions that are not typical for jasmonates [87,94,95].
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Some oxylipins, such as phytoprostanes, 12-OPDA (2), acrolein, 2-hexenal (7), and
others, are classified as so-called reactive electrophile species (RES), which are characterized
by the presence of α,β-unsaturated carbonyl group. In these compounds, the proximity
of the double bond increases the electrophilicity of the carbonyl group and enables the
interaction with the nucleophilic regions of various organic molecules, such as glutathione,
proteins, and nucleic acids [96]. This binding changes the properties of the target molecules.

Thus, the significant structural diversity of plant oxylipins in combination with their
high reactivity points to the significant potential of these compounds for a practical appli-
cation not only as biocontrol agents in agriculture [97] but also in medicine.

3. Potential Cellular Targets for Inflammation, Allergy, and Cancer Treatment

With all the variety of intracellular processes responsible for the development of
various diseases, a significant portion of pathological reactions are associated with inflam-
mation, allergy, and malignant cellular transformations. In this chapter, we present a brief
description of the molecular processes involved in inflammation, allergy, or cancer, which
may serve as targets for plant oxylipins according to the available modern literature data.

Inflammation is the normal biological response of the body to physical, chemical, or
biological stimuli [98]. In some pathological conditions, chronic inflammation can lead to
the development of various diseases, such as rheumatoid arthritis, asthma, and type 2 dia-
betes. Sometimes chronic inflammation stimulates cancer progression. Pro-inflammatory
cytokines (interleukins IL-1, IL-6, IL-8, and tumor necrosis factor TNF-α), NO, platelet-
activating factor, histamine, and other inflammatory mediators can significantly contribute
to the development of inflammation [99]. The secretion of inflammatory mediators causes
an increase in vascular permeability and a deceleration of blood flow, which leads to the
recruitment of leukocytes. Leukocytes secrete cytokines that promote the secretion of
other inflammatory mediators and attract macrophages to the site of inflammation, thereby
enhancing the inflammatory process [100].

The biological effects of various classes of oxylipins are based on their ability to modu-
late the inflammation-associated intracellular signaling pathways in animal cells, thereby
regulating the expression of pro-inflammatory mediators. The spectrum of intracellular
signaling pathways regulated by oxylipins is broad: from protein kinase c-beta (PKC-β) to
nuclear factor NF-κB and peroxisome proliferation activator receptor (PPAR) (Figure 7).
Due to a significant number of regulated signaling pathways, plant oxylipins show a wide
range of biological activities, from suppression of the inflammatory response to regulation
of the cell cycle and apoptosis, however, the listed intracellular pathways are the most
frequent targets for plant oxylipins [101].

3.1. Nuclear Factor NF-κB

Transcription factor NF-κB regulates many aspects of innate and adaptive immunity
and serves as a major mediator of inflammatory responses. The NF-κB family includes NF-
κB1 (p50/p105), NF-κB2 (p52/p100), p65 (RelA), RelB, and c-Rel [102]. NF-κB induces the
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expression of various pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) and is involved
in the regulation of inflammation. In addition, NF-κB plays a critical role in regulating the
survival, activation, and differentiation of innate immune cells [103]. Uncontrolled NF-κB
activation leads to the pathogenic processes of various inflammatory diseases. NF-κB
is normally present in an inactive form in the cytoplasm in association with inhibitory
IκB proteins [104]. Upon activation of the signaling pathway, inhibitory proteins get
phosphorylated and release NF-κB.
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Since uncontrolled NF-κB activation is associated with various inflammatory dis-
eases, targeting the NF-κB signaling pathway represents a promising approach for anti-
inflammatory therapy. However, despite significant progress in developing approaches
to inhibit NF-κB, there are challenges in developing clinically available drugs. The major
concern is the balance between inhibition efficiency and safety since the activity of this
transcription factor is also required for the maintenance of a normal immune response and
cell survival. Accumulated research data show that complete inhibition of NF-κB signaling
can cause serious side effects [105]. Several oxylipins, phytoprostanes, acetylenic oxylipins,
methyl jasmonate, and others can affect this nuclear factor.

3.2. Peroxisome Proliferator-Activated Receptor (PPAR)

The key regulators of lipid metabolism are peroxisome proliferator-activated receptors
(PPARs). These receptors exist in three different isoforms: PPARα (NR1C1), PPARβ/δ
(NR1C2), and PPARγ (NR1C3). They are synthesized mainly in adipose tissue, activated
by fatty acids and their derivatives, and serve as the so-called lipid sensors of the body,
regulating the metabolism of carbohydrates and lipids. PPARs belong to a group of
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nuclear receptors. They heterodimerize with retinoic X receptors (RXR) and, upon lig-
and binding, act primarily as transcriptional regulators of specific target genes. Depend-
ing on tissue, cofactors, and ligand availability, PPARs perform multiple functions [106].
PPARγ is a type II nuclear receptor that functions as a transcription factor [107]. Many
naturally occurring agents bind directly to PPARγ and activate it. These include the 15-
hydroxyeicosatetraenoic acid [108], the phytocannabinoid—tetrahydrocannabinol [109],
and its synthetic analog [110]. PPAR activity is also affected by phytoprostanes and 13-
hydroxyoctadecadienoic acid (27). Activation of PPARγ by these and other ligands may be
responsible for the growth inhibition of cultured breast, gastric, lung, prostate, and other
cancer cell lines. PPARγ is implicated in the pathology of many diseases, including obesity,
diabetes, atherosclerosis, and cancer [111].

3.3. Other Cellular Targets

In addition to PPAR and NF-κB, oxylipins can influence PKCβ (protein kinase C-β), a
protein involved in many cellular signaling pathways and regulating various cellular func-
tions such as B cell activation, apoptosis induction, and endothelial cell proliferation [112].

Acetylenic oxylipins may interfere with the Keap1-Nrf2 pathway involved in the
detoxification of carcinogenic agents [80]. In addition, they have an inhibitory effect on 5-,
12-, and 15-lipoxygenases and cyclooxygenases, which are involved in tumorigenesis [113].

The system, including kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor
associated with erythroid factor 2 (NRF2), is one of the most important cellular defense
systems and survival pathways in vivo. NRF2 is anchored in the cytoplasm by KEAP1 at
rest and translocated to the nucleus to activate the antioxidant response element (ARE)
under conditions of oxidative stress, which in turn leads to the increased expression of
antioxidant proteins. However, it has been reported that NRF2 protects not only normal
cells but also tumor cells from oxidative damage [114].

Lipoxygenase and cyclooxygenase pathways are associated with oxylipin synthesis,
including prostanoids and leukotrienes [115]. Prostanoids control a wide range of biological
processes, from blood pressure homeostasis and inflammation to cell survival. Disruption
of normal prostanoid signaling is associated with numerous diseases. Prostanoids also
modulate neuronal activity by inhibiting or stimulating the release of neurotransmitters,
sensitizing sensory nerve fibers to harmful stimuli, or inducing fever or sleep. They are
involved in apoptosis, cell differentiation, and oncogenesis [116]. Leukotrienes are lipid-
derived mediators that play a key role in acute and chronic inflammation and various
allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma),
allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis [117].

4. Therapeutic Properties of Plant Oxylipins
4.1. Acetylenic Fatty Acid Derivatives

Derivatives of acetylenic fatty acids from various plant species, including representatives
of well-known medicinal plants of the Apiaceae, Araliaceae, and Asteraceae families, and syn-
thetic analogs of these plant metabolites exhibit useful properties, primarily as antimicrobial
and anticancer compounds [80,81]. Thus, falcarindiol (33) and falcarinol (31) have been shown
to have antifungal activity by inhibiting the formation of fungal spores [82,118]. These oxylip-
ins also exhibit antibacterial activity by inhibiting the growth of mycobacteria Mycobacterium
ssp., [119,120], gram-positive bacteria Bacillus subtilis, and staphylococcus Staphylococcus aureus
at safe concentration for human health of 10 µg/mL [121]. Falcarindiol (33) strongly inhibited
the growth of Micrococcus luteus and Bacillus cereus in vitro with a minimal inhibitory concen-
tration of 50 µg/mL [122]. In vitro activity of (3S)-16,17-didehydrofalcarinol (32) isolated from
Tridax procumbens against Leishmania mexicana, a protozoan causing cutaneous leishmaniasis,
has been shown [123]. This oxylipin exerts a direct inhibitory effect on the parasite at the
intracellular stage (amastigote) without any negative effect on the host cells. Presumably, the
observed antiamastigotic activity is not associated with known defense mechanisms based on
the activation of NO-mediated responses in macrophages.
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The anticancer properties of polyacetylenic oxylipins have been extensively studied.
Antitumor activity has been shown for falcarinol (31) and related compounds such as
falcarindiol-8-methyl ether (35), panaxydiol (40), and panaxitriol from plants of the Api-
aceae, Araliaceae, and Asteraceae families [80,124]. These compounds have a pronounced
cytotoxic effect on cancer cell lines, specifically inducing cell cycle arrest and apoptosis
in cancer cells. At the same time, they have a chemoprotective effect on healthy cells
due to their ability to suppress the synthesis of pro-inflammatory proteins and induce
“endoplasmic reticulum stress” [80]. Antiproliferative activity has also been demonstrated
for furanocoumarin ethers of falcarindiol (38) [125]. (3S)-16,17-Didehydrofalcarinol (32)
has been shown to inhibit colon cancer cell proliferation [126]. C17 acetylenic oxylipins
from Eryngium tricuspidatum, including two rare oxylipins, 11-acetoxy-falcarindiol (37)
and 1,2-dihydro-11-acetoxy-falcarindiol (36), inhibited all cancer cell lines tested in vitro at
concentrations ranging from 0.3–29 µM [127]. Morphological assessment of these oxylipins’
effect on SKMEL-28 melanoma cells using video-enhanced phase-contrast microscopy
suggested a similar mechanism of apoptosis induction to that observed upon falcarindiol
(33) treatment of colon cancer [127].

The high anticancer activity of acetylenic oxylipins is stipulated by several characteris-
tic features of their chemical structure. Besides the chemical activity associated with the
presence of triple bonds, the acetyl group of these oxylipins interacts with the thiol group
of cysteine, which in turn affects the Keap1-Nrf2 pathway involved in the detoxification of
carcinogenic agents and the formation of anti-inflammatory cytokines. Moreover, acetylenic
oxylipins, in particular oxylipins from plants of the Apiaceae, Araliaceae, and Asteraceae
families, can be a ligand for the nuclear receptor PPARγ, which performs important func-
tions in the regulation of cancer cell growth, proliferation, differentiation, apoptosis, and
also the metabolism of fatty acids and carbohydrates [80]. Falcarindiol (33) and compound
11(S),16(R)-dihydroxy-octadeca-9Z,17-dien-12,14-diyn-1-yl acetate (39) from Apiaceae and
Araliaceae exert an inhibitory effect on 5-, 12-, and 15-lipoxygenases and cyclooxygenases,
which are involved in tumorigenesis, at fairly low concentrations (IC50 values of 73 µM
and 24 µM, respectively) [83,113,128–130].

Acetylenic oxylipins can affect inflammation. Falcarinol (31), falcarindiol (33), and
falcarindiol-3-acetate (34) are responsible for the anti-inflammatory properties of purple car-
rots [131]. These acetylenic oxylipins inhibit the NF-κB pathway, a key pathway regulating
the expression of genes involved in pro-inflammatory processes.

The antiplatelet effect of falcarinol and falcarindiol is most likely also related to their anti-
inflammatory activity and their ability to regulate lipoxygenases responsible for the formation
of thromboxanes, in particular thromboxanes B2 [113,132]. The antiplatelet properties of
falcarinol and panaxynol may also be associated with the ability to inhibit the enzyme 15-
hydroxyprostaglandin dehydrogenase, responsible for the catabolism of prostaglandins [133].
The ability of falcarinol and falcarindiol to prevent the development of atherosclerosis is
also associated with the inhibition of 5-, 12-, and 15-lipoxygenases [129,130]. Thus, the anti-
inflammatory, anticoagulant, and partly anticancer properties of oxidized derivatives of
acetylenic fatty acids can also be associated with their alkylating abilities, as well as with their
ability to inhibit the lipoxygenase, cyclooxygenase, and NF-κB pathways.

In addition to the described activities, falcarinol has been shown to have neuroprotec-
tive properties, which can be used in the treatment of neurodegenerative diseases such as
Alzheimer’s disease [134,135]. The neuroprotective properties of falkarinol were shown to
be associated with the ability to affect paraneurons, the cells of epithelial origin that are
not nervous but can generate an action potential, secrete neurotransmitters, and stimu-
late neuritogenesis (neurite formation). The stimulation of neuritogenesis is most likely
also responsible for the positive effect of falcarinol on memory in mice after exposure to
scopolamine, inducing significant memory impairment in rodents [134].

The compounds 11(S),16(R)-dihydroxy-octadeca-9Z,17-dien-12,14-diyn-1-yl acetate (39),
and (3R,8S)-falcarindiol (33) are thought to be responsible for the medicinal properties of the
ginseng plant Angelica sinensis (Oliv.) Diels (Apiaceae), which is known for its beneficial effect
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on women’s health, and emotional state during the premenstrual period and menopause. The
ability of these compounds to bind to the serotonin receptor 5-HT7 has been confirmed [136].
Serotonin is often called the “good mood hormone” and “happiness hormone”. Therefore
recently, this neurotransmitter has been considered a target for the development of new drugs
for the treatment of various diseases, in particular, antidepressants.

Several medical drugs inhibiting calcium signal transduction pathways used in the
treatment of dementia, allergies, cancer, angina pectoris, and diabetes have been created
based on acetylenic oxylipins [137]. A drug containing falcarinol is used in the treatment
of cardiovascular, inflammatory, neurodegenerative, and viral diseases, as well as cancer
and liver diseases [138]. The anti-inflammatory and bactericidal activities of polyacety-
lene oxylipins and their ability to inhibit cyclooxygenase and lipoxygenase enzymes are
described in several patents [139–141].

4.2. Jasmonates

Jasmonates are widespread in the plant kingdom. These hormones regulate plant growth,
development, and the formation of defense mechanisms in adverse environmental condi-
tions [39]. The ability of these active compounds to influence the biochemical processes in the
animal cell has been demonstrated in many studies. Jasmonates and their derivatives have
both indirect and direct effects on human health. The indirect effect is associated with the
stimulation of the synthesis of compounds with health-beneficial properties [39,142]. One of
many examples is the application of methyl jasmonate (MeJA) on fruit crops (strawberries,
raspberries, blackberries, grapes, and apples) to increase the content of antioxidant com-
pounds and various phenolic metabolites, including anthocyanins. Anthocyanins, flavonoids,
and phenolic acid derivatives are highly effective in inhibiting the oxidation of low-density
lipoproteins in humans. Epidemiological studies show that a human diet rich in natural
plant-derived polyphenols can reduce the risk of chronic and degenerative diseases, including
cancer [143,144]. In addition to the anti-carcinogenic effect, anthocyanins can be used as
radiation-protective and chemoprotective agents [145], for the treatment of diabetic retinopa-
thy, fibrocystic disease, and visual impairment [146]. Anthocyanin consumption also reduces
capillary fragility and inhibits platelet aggregation [147]. Jasmonates also regulate the accumu-
lation of glucosinolates in some cruciferous species [148]. It has been shown that the regular
consumption of cruciferous plants reduces the risk of developing cancer of the stomach, lungs,
and intestines [149–151], and the anticarcinogenic activity of these products is associated with
the presence of glucosinolates [152].

In many experimental works, the direct protective and therapeutic effects of jasmonates
on humans and animals have been demonstrated. Since the results of these studies are
represented in several review articles and/or are patented [153–155], here we only briefly
describe the most important results. One of the most studied properties of jasmonates
is their therapeutic potential in cancer treatment [156–159]. Jasmonates inhibit cell prolif-
eration and induce apoptosis or necrosis in various mouse and human cancer cell lines,
including breast, prostate, melanoma, lymphoblastic leukemia, and lymphomas [157,160].
Moreover, jasmonates exhibit selective cytotoxicity against cancer cells even in mixed popu-
lations of normal and leukemic cells. Methyl jasmonate proved to be a very effective com-
pound, which not only exhibits activity in vitro but also increases the lifespan of mice with
lymphoma [157,158,161]. The administration of methyl jasmonate, (Z)-jasmone, and jasmonic
acid to the cultured neuroblastoma cell line SH-SY5Y, one of the most common solid tumors in
children, leads to a decrease in cell proliferation in a dose- and time-dependent manner, with
cancer cells arrested at the G2/M phase [162]. At the same time, the growth of the human
embryonic kidney cell line was not affected by jasmonates.

Biological activity has been demonstrated for the biosynthetic precursor of jasmonic
acid, 12-OPDA [163]. 12-OPDA can reduce the concentration of free nuclear β-catenin in
breast cancer cells [163]. β-catenin plays a key role in the signaling pathway regulated by
the growth factor Wnt, which is involved in differentiation, apoptosis, proliferation, and the
maintenance of the stem cell pool. Upon the Wnt binding to the cell membrane receptors,
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β-catenin is transferred from the cytoplasm to the nucleus, where it binds to transcription
factors and regulates the genes responsible for cell proliferation. It is also responsible for
the degradation of cyclin D1 (overexpression of which leads to the formation of cancerous
tumors), leading to cell cycle arrest at the G1 stage [164]. The toxicity of 12-OPDA for
humans has not yet been determined.

Several mechanisms of the anti-cancer effects of MeJA have been identified [153].
In one study, it was shown that MeJA treatment leads to the depletion of ATP in cancer
cells [165]. Another mechanism is associated with jasmonate-induced de-differentiation
of cells through stimulation of the activity of MAPK kinase cascade. This mechanism
has been observed in human myeloid leukemia cells, where MeJA and a jasmonic acid
derivative, 4,5-didehydrojasmonate, induced the differentiation of leukemia cells and lead
to apoptosis [166,167]. In several cell lines, including lung carcinoma cells, jasmonates
induce the formation of reactive oxygen species, leading to apoptosis [167]. Jasmonates
cause non-apoptotic death in mutant B-lymphoma cells that are highly resistant to radiation
and chemotherapeutic drugs [168].

Besides the fact that jasmonates themselves can be used for the treatment of cancer,
these oxylipins can be combined with other antitumor agents to achieve a synergistic effect.
Many modern chemotherapy treatments use multi-component drugs, which allow the
administration of lower doses of substances, reduce undesirable side effects, and even
overcome drug resistance [153,160,169].

Metabolites of the jasmonate pathway share structural similarity with animal anti-
inflammatory molecules—prostaglandins [156]. This similarity has sparked interest in
jasmonates as anti-inflammatory agents. Several studies have confirmed the ability of
jasmonates to exert typical prostaglandin anti-inflammatory effects associated with in-
hibition of the release of inflammatory mediators and alterations in the level of antioxi-
dants [101,170,171]. The anti-inflammatory properties of MeJA, were manifested in mouse
macrophages by a decrease in the expression of pro-inflammatory cytokine genes (IL-1β,
IL-6, and TNF-α), the suppression of nitric oxide (NO) formation, and inhibition of the
NF-κB signaling pathway [170,172]. Methyl jasmonate is considered a promising agent for
the treatment of inflammatory bowel diseases—the pathologies characterized by chronic
inflammation of the intestines, such as Crohn’s disease and ulcerative colitis [173]. In these
diseases, the use of jasmonate leads to a decrease in the expression of tumor necrosis factor
and an alteration in the rate of reactive oxygen species formation, which, in turn, leads to a
change in the expression of caspase-type protease genes involved in apoptosis. Importantly,
this occurs exclusively in disease-carrying cells, not in healthy cells.

By reducing the production of reactive oxygen species in the liver and slowing down
systemic inflammation, methyl jasmonate attenuates induced arthritis in Holtzman-source
albino rats [174,175], which is characterized by an increased content of reactive oxygen
species and a predisposition to the development of an inflammatory reaction [176].

Recently, the anti-inflammatory and antioxidant effects of MeJA on microglial cells,
resident macrophages of the central nervous system, have been shown, pointing out
the possibility of using jasmonates in the development of new therapeutic approaches
for the treatment of Alzheimer’s disease [177]. The anti-neuroinflammatory activity of
MeJA was convincingly demonstrated in the lipopolysaccharide-induced inflammation
of the mouse brain since MeJA treatment led to a decrease in the level of inflammatory
markers—prostaglandin E2, inflammatory cytokines (TNF-α and IL-1β), cyclooxygenase
COX2, inducible nitric oxide synthase (iNOS), and NF-κB [178]. Moreover, intraperitoneal
administration of MeJA (5–20 mg/kg) helps to reduce brain TNF-α levels in mice exposed
to unpredictable chronic mild stress [179].

The ability of the jasmonic acid precursor, 12-OPDA, to regulate inflammatory re-
sponses is not surprising, since the chemical structure of OPDA is particularly similar to
that of prostaglandins. The influence of OPDA on the course of inflammatory processes
was shown, in particular, on microglial cells [180].
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Not only natural jasmonates but also synthetic analogs and derivatives, such as methyl
dihydrojasmonate or halogenated derivatives, show high biological activity [181,182]. Methyl
dihydrojasmonate has been shown to bind to the targets of miR-155 and NF-κB signaling
pathways, and 4,5-didehydrojasmonate induces the differentiation of leukemia cells.

Several patents describe the use of jasmonates for the improvement of muscle func-
tions, including the heart muscle (E. A. Bababunmi, US6887499, 2005; B. Broady, US
2012/0172450, 2012) [155].

The positive effect of methyl jasmonate on mental health and the nervous system has
been confirmed. MeJA exerted a positive effect on various pathological manifestations
such as anxiety, aggression, depression, memory impairment, psychosis, and stress. In
connection with these discoveries, the possibility of using methyl jasmonate as a drug for
the treatment and prevention of behavioral and neurological disorders was suggested [183].
One of the first reports on this topic showed that MeJA has a calming effect and enhances
GABAergic neurotransmission [184]. GABAergic neurotransmission is involved in the
physiopathology of Alzheimer’s disease and may serve as a possible target for pharma-
cological intervention at the early stages of the disease [185]. Also, MeJA reduced the
manifestation of rotenone-induced Parkinson-like symptoms in mice, such as a decline in
cognitive abilities, depression-like disorders, and postural and motor instability, through
the suppression of oxidative stress and inflammation [186]. In mice, MeJA had an an-
tidepressant effect in both acute and chronic stress [179,187]. The MeJA-induced effects,
such as reduction of the immobility period in forced swimming or tail suspension tests,
are comparable to those of imipramine hydrochloride, a well-known drug for depres-
sion treatment. Under unpredictable chronic mild stress conditions, MeJA activates the
adaptogenic abilities of the animals, and relieves anxiety and memory impairment [188].
MeJA administered intraperitoneally at concentrations of 1, 5, and 10 mg/kg reduced the
symptoms of aggression in a dose-dependent manner [189]. Importantly, the use of this
oxylipin did not lead to a decrease in the defense reactions of the body.

The molecular basis of MeJA’s effects on the mental health and nervous system has
been little studied so far. It was assumed that the MeJA effects are based on the modulation
of the activity of the antioxidant system, neuroprotection, and neuronal regeneration, as
well as the regulation of levels of the neurotransmitter, inflammatory biomarkers, and corti-
costerone [190,191]. Indeed, MeJA reduced oxidative stress, which was seen in lowered
malondialdehyde levels and increased glutathione levels in mouse brains under unpre-
dictable chronic mild stress conditions [190]. In addition to the neuroprotective activity
associated with a decrease in the oxidative stress level, MeJA suppresses the activity of
acetylcholinesterase, responsible for the metabolism of acetylcholine, an important me-
diator of the central nervous system [171]. It was suggested that MeJA can influence
serotonergic and noradrenergic neurotransmitter systems [187,192].

The antipsychotic properties of MeJA are confirmed by its effect on psychosis manifes-
tations in mice, such as stereotypic behavior (constant licking, sniffing, chewing, and head
movements) [193].

The positive effect of methyl jasmonate on memory has been demonstrated in tests
assessing the ability of animals to prevent adverse events using memories from previous
experiences [171,183]. MeJA reduces the negative effects of lipopolysaccharides on memory
by regulating the expression of the Aβ(1–42) gene [171]. Through special tests, it has been
proven that MeJA improves spatial memory in mice [171]. This allows us to consider
jasmonate as a possible therapeutic agent in Alzheimer’s disease treatment since the
mechanisms associated with spatial working memory are noticeably impaired in this
disease. Also, MeJA helps to maintain connections in the dendritic network in the dark
matter and the striated body of the mouse’s brain, and the cause of Parkinson’s disease is
precisely the malfunction of neurons in the dark matter [194]. The therapeutic potential
of this substance is enhanced by the fact that MeJA does not affect locomotor functions,
exploratory drive, or psychomotor activity [187].
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Methyl jasmonate is widely used as a fragrance ingredient in perfumes, cosmetics,
shampoos, and soaps [155]. In addition, some jasmonate derivatives, in particular tetrahy-
drojasmonic acid and (3-hydroxy-2-pentylcyclopentyl)-acetic acid (4), have a beneficial
rejuvenating effect on human skin, causing extracellular matrix remodeling and improving
healing by accelerating the recovery of the epithelium [153,195].

Thus, jasmonates and their derivatives can both directly and indirectly affect the health
of humans and animals. It should be noted that most of the studies on the direct effect of
jasmonates were carried out on cell lines or model animals, which makes it difficult to apply
the results to humans. It is important that some jasmonates, in particular methyl jasmonate
and jasmonic acid, are considered safe compounds, and there are no restrictions on their
use [196]. Thus, the US Federal Environmental Protection Agency (EPA) has characterized
MeJA as a naturally occurring plant hormone that is considered a safe and natural part
of the human diet [197]. Several jasmonates and their derivatives have been confirmed to
be non-toxic to humans and other non-target organisms in all uses [198]. MeJA has also
been evaluated and approved by the Food and Agriculture Organization/World Health
Organization (FAO/WHO) as a dietary supplement [199].

4.3. Hydroperoxide Lyase Branch Oxylipins

The possibilities of using metabolites from the hydroperoxide lyase branch of the
oxylipin biosynthesis pathway in medicine have been little explored. Traumatic acid (6),
(2(E)-dodecenedioic acid), is the most studied compound of this branch in terms of practical
application, although information about the functions of this non-volatile compound in the
plant itself is rather limited [200]. As the name suggests, traumatic acid is produced in the
plant in response to injury and regulates tissue healing. This compound attracts researchers
as a potential wound-healing agent and an intermediate in prostaglandin synthesis through
the formation of traumatic lactone [201,202].

Traumatic acid (TA) exhibits a variety of positive effects on normal fibroblasts in vitro,
including an antioxidant effect and stimulation of collagen biosynthesis. It has been sug-
gested that TA can be used in preparations for the treatment of skin diseases associated
with oxidative stress and collagen biosynthesis and as a substance stimulating mucosal re-
epithelialization [203,204]. TA is already used in dental medications such as the gel Restomyl
(https://www.buccosante.eu/en/prod/restomyl (accessed on 24 September 2022)).

Interestingly, while exerting an antioxidant effect in normal fibroblasts, TA behaves
like a pro-oxidant in cancer cells [203,205,206]. The anticarcinogenic effect of TA mani-
fested itself in a significant dose-dependent reduction in the viability of cancer cells in the
three breast cancer cell lines analyzed, while the number of healthy breast epithelial cells
increased. The observed decrease in the viability of cancer cells was more pronounced
in estrogen-dependent cell lines—MCF-7 and ZR-75-1. TA reduced the viability of these
cells by increasing oxidative stress and apoptosis [205–207]. The cytotoxic effect of TA on
healthy cells was manifested only at high concentrations [207].

Traumatic acid (6) was one of the metabolites that noticeably increased in the blood of
patients infected with Plasmodium falciparum, the protozoan that causes malaria, and it was
suggested that this metabolite originates from the pathogen [208]. Although the functions
of TA in the parasite remain unknown, it is believed that the biosynthetic branch leading
to its formation may be a promising target for the development and optimization of new
antimalarial drugs [209].

A study based on computer simulations showed that traumatic acid can be a phyto-
chemical inhibitor of the large (L) polymerase from the dangerous tick-borne bunyavirus
Severe fever with thrombocytopenia syndrome virus (SFTSV) due to its ability to bind to
the N-terminal endonuclease domain, a target for antiviral drugs [210]. Among the 14,000
studied plant metabolites, traumatic acid turned out to be one of the three most promising
candidates, due to the possibility of multiple electrostatic and hydrophobic interactions in
the enzyme-TA complex [210].

https://www.buccosante.eu/en/prod/restomyl
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Volatile compounds of the HPL branch have found wide application in the indus-
try [211]. Hexanal, (Z)-3-hexenal, and (E)-2-hexenal (7) are produced on an industrial
scale and used as additives to foods for a fresher scent. In addition, these compounds
are known to have bactericidal and fungicidal properties, which stipulates their use in
the storage of products and cosmetics [211–213]. (E)-2-hexenal also shows activity against
nematodes [214]. HPL branch compounds exhibit acaricidal activity [215]. Due to the
combination of the mentioned properties, these metabolites have found wide application
in the production of cosmetics and personal care products [213].

As mentioned above, oxylipins with conjugated double bonds, so-called reactive
electrophile species, show high chemical activity. One of the most notable examples is
(E)-2-hexenal. It was shown that (E)-2-hexenal can inhibit glutathione S-transferase (GST)
activity in melanoma cells [216]. These results are in good agreement with previously
published data on the ability of related compounds (E)-2-octenal and (E)-3-nonen-2-one to
inhibit the activity of GST isozymes in rat liver [217]. (E)-2-hexenal and related oxylipins
containing conjugated double bonds can be considered as a tool to modify the activity of
GST isoenzymes that perform a variety of functions in the human body [218].

Ten-carbon aldehydes from diatoms, (2E,4Z,7Z)-2,4,7-decatrienal, (2E,4E,7Z)-2,4,7-
decatrienal, and (2E,4E)-2,4-decadienal (10), had an antiproliferative effect and stimulated
apoptosis in human carcinoma cells [219]. Aldehydes (2E,4E)-2,4-decadienal (10), (2E,4E)-
2,4-octadienal (11), and (2E,4E)-2,4-heptadienal (12) had a toxic effect on adenocarcinoma
cells of the lungs and rectum without negatively affecting normal cells [220]. The most
active compound, (2E,4E)-2,4-decadienal, similarly to the most known anticancer drugs,
activated apoptosis of cancer cells, but unlike other known anticancer drugs that promoted
an intrinsic cell death pathway, this compound activated the extrinsic (receptor-mediated)
apoptotic machinery.

4.4. Oxy-, Hydroxy-, and Epoxy-Derivatives of Fatty Acids

Fatty acid hydroxy derivatives are formed in several branches of the oxylipin biosyn-
thesis pathway, both as a result of direct fatty acid oxidation by α-dioxygenase (α-DOX) and
as a result of further transformations of fatty acid hydroperoxides formed by lipoxygenases
with the participation of reductase, peroxygenase, and epoxyalcohol synthase, including
reoxidation of fatty acid hydroperoxides by lipoxygenase. As a result of the epoxy alco-
hols’ hydrolysis, trihydroxy derivatives of fatty acids can be formed [221], and dihydroxy
derivatives can be formed by epoxide hydrolases [222]. Therefore, hydroxy-, dihydroxy-,
trihydroxy-, oxo-, epoxy-, or keto-derivatives of fatty acids are widely represented in plant
tissues. Nevertheless, there are very few studies on the practically significant properties of
these metabolites.

Isomers of 9,10,13-trihydroxy-11-octadecenoic (15) and 9,12,13-trihydroxy-10-
octadecenoic acids (16) isolated from the onion Allium cepa have been shown to exhibit
prostaglandin-E2-like activity and inhibit platelet aggregation [223]. Most likely, it is these
compounds that determine the medicinal properties of onions, which are used in tradi-
tional medicine for the treatment of atherosclerosis and gastrointestinal ulcers. Trihydroxy-
octadecadienoic acids with prostaglandin-like activity were also isolated from the roots of
another medicinal plant, Bryonia alba [224].

Dihydroxy triene derivatives formed from docosahexaenoic acid by the double lipoxy-
genation of soybeans inhibit human blood platelet aggregation at sub-micromolar con-
centrations and display anti-inflammatory properties [225]. α-Linolenic acid-derived di-
hydroxylated metabolites, 9(S),16(S)-dihydroxy-10E,12Z,14E-octadecatrienoic and 9(R),16(S)-
dihydroxy-10E,12Z,14E-octadecatrienoic acids (22), decreased the level of prostaglandins
synthesized by recombinant cyclooxygenase COX-1, inhibited platelet aggregation trig-
gered by collagen, and significantly decreased the formation of endogenous oxylipins,
leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5(S)-HETE), formed from arachi-
donic acid by 5-LOX of human polymorphonuclear leukocytes [226].
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Oxylipin from the roots of Zanthoxylum zanthoxyloides (Lam) Zepern. & Timler, 9-oxo-
10,12-octadecadienoic acid (23), selectively inhibits the in vitro growth of Trypanosoma brucei,
causing the “sleeping sickness” disease [227]. Treatment with this oxylipin caused significant
oxidative stress in T. brucei cells, stopped the parasite cell cycle at the G0–G1 transition stage,
promoted cell aggregation, and induced morphological changes in parasite cells.

Some hydroxy derivatives of linolenic acid exhibited cytotoxicity against cancer
cells [228,229]. An oxylipin-enriched fraction from stinging nettle Urtica dioica showed an-
tiproliferative activity against non-small cell lung cancer cells, selectively killing these
cells by inducing ER-mediated apoptosis, while not having a toxic effect on normal
lung cells [230]. The main active ingredient was identified as 13-S-hydroxy-9Z,11E,15Z-
octadecantrienoic acid (28). The fatty alcohol ester nonyl 8-acetoxy-6-methyloctanoate
(NAMO) (30), isolated from the diatom algae Phaeodactylum tricornutum, has anticancer
effects on three different cancer cell lines, including human leukemia (HL-60), lung carci-
noma (A549), and mouse melanoma [231]. (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-
trienoic acid (13-HOTE) (28), a major oxylipin from the microalgae Chlamydomonas debaryana,
and (5Z,8Z,11Z,13E,15S,17Z)-15-hydroxyeicosa-5,8,11,13,17-pentaenoic acid (15-HEPE) (29)
from Nannochloropsis gaditana displayed a cytotoxic effect against melanoma cells, which
was associated with the capability of these compounds to deplete ATP [232]. In addition,
the combination of 13-HOTE with the anticancer drug 5-fluorouracil induced synergistic
toxicity against colon adenocarcinoma HT-29 cells.

Hydroxy derivatives of fatty acids from the aforementioned microalgae, 13(S)-
hydroxyoctadecadienoic (27) and 13(S)-hydroxyoctadecatrienoic (28) acids from Ch. De-
baryana, and 15S-hydroxy-eicosapentaenoic acid (29) from N. gaditana, demonstrated
an anti-inflammatory effect, decreased pro-inflammatory cytokine production in THP-1
macrophages, including IL-1β and IL-6, as well as iNOS and COX-2 expression levels [233].
It was suggested that these oxylipins could be used for the treatment of inflammatory
diseases such as inflammatory bowel disease. Hydroxy- and oxy-derivatives of fatty
acids from corn and rice also showed a suppressive effect on polysaccharide-induced NO
production and expression of several pro-inflammatory genes [234].

Epoxy alcohols can be products of the catalytic action of various enzymes: peroxy-
genases, lipoxygenases, and epoxyalcohol synthase [43,46,47]. Epoxy alcohols containing
double bonds are also formed in animal tissues, mainly from 20-carbon fatty acids, where
they perform important regulatory functions [235,236]. There is very little information on
the ability of plant epoxy alcohols to influence processes in animal cells. The antimicrobial
and fungicidal properties of epoxy alcohols, 9-hydroxy-10,11-epoxy-octadecadienoic, 11,12-
epoxy-13-hydroxyoctadecadienoic acids, and trihydroxy acids derived from epoxy alcohols
have been described [237]. In living cells, epoxy alcohols can be transformed into hydroxy
derivatives [236,238,239], individual representatives of which are described above [25,240].

4.5. Phytoprostanes and Phytofurans

Phytoprostanes and phytofurans are products of non-enzymatic oxidation of polyun-
saturated fatty acids formed in all plant tissues considered structural analogs of animal
isoprostanes and prostanoids [89,90,95,241]. Significant similarities with active regulators
of biological processes in the animal cell determine the growing interest in these com-
pounds. In addition to being present in significant amounts in plant foods, they affect
human health [241–243]. Phytoprostanes, taken orally in vegetable oils, have been found
to circulate in plasma in free and conjugated forms, influencing the immune system [244].
However, individual metabolites of this group have received little attention because most
studies used the extracts enriched with a mixture of several compounds rather than pure
phytoprostanes or phytofurans.

The anti-inflammatory, immunomodulatory, and other health-promoting properties
of products containing phytoprostanes have been confirmed in several studies [245–248].
Given that these compounds are well absorbed by intestinal cells, their health effects should
not be underestimated. Gevuina avellana nut oil, which exhibits potential health-promoting
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activities, contains eight phytoprostanes and three phytofurans [247]. An extract from
the edible red algae Gracilaria longissimi enriched with phytoprostanes and phytofurans
affected the pro-inflammatory cytokine gene expression [248]. Olive oil extract enriched
with phytoprostanes has demonstrated a hypoglycemic (anti-diabetic) effect [246].

It was previously believed that proteins were the main pollen allergens, but studies
have shown that pollen phytoprostanes can also cause allergic reactions [249,250]. The
authors suggest that the allergenicity of phytoprostanes is associated with their interaction
with T-cells, leading to an increase in the synthesis of the pro-inflammatory cytokine IL-12
and the formation of an allergic reaction [249,251].

Analysis of the effect of phytoprostanes on SH-SY5Y neuroblastoma cells, used as a
model of undifferentiated neurons especially sensitive to oxidative stress, showed that phy-
toprostane B1 increases the metabolic activity of cells, protects against oxidative damage,
and promotes differentiation of oligodendrocyte progenitors [245,252]. Phytoprostanes did
not affect cells in which the process of differentiation had already begun. The same phyto-
prostanes acted on immature oligodendrocytes, stimulating their differentiation into mature
cells, although they did not show a protective effect under conditions of oxidative stress.
The neuroprotective properties and stimulation of nerve fiber myelination are thought to
be carried out through via the nuclear receptor PPAR-γ, a ligand-dependent transcription
factor that is involved in the control of inflammation, immunity, and cell differentia-
tion [245,253]. The same receptor is involved in the signal transduction of phytoprostane
E1 from the pollen of white birch Betula alba, which inhibits lipopolysaccharide-induced
NF-κB activation and, consequently, pro-inflammatory cytokine (IL-12) synthesis [254].

The ability of several phytoprostanes and phytofurans to modulate inflammatory
responses mediated by prostaglandins in lipopolysaccharide-stimulated THP-1 monocytic
cells was also demonstrated [255]. It is presumed that the consumption of foods enriched
with these oxylipins may have an anti-inflammatory effect.

Phytoprostanes modulate the function of immune cells and exhibit anti-cancer activity
in different classes of cancer cells. Phytoprostanes A1, deoxy-PPJ1 (41), and, to a lesser
extent, B1, exhibit anti-inflammatory activity, induce apoptosis, and modulate the expres-
sion of several genes related to the cell cycle in the cells of the leukemic T-lymphocyte
line (Jurkat T-cells), and the mechanism of their action is most likely the same as that
of endogenous regulators—prostaglandins [241,244]. The efficiency of the induction of
malignant cell apoptosis is dependent on the structural organization of the molecule, and
this efficiency cannot always be predicted by the structural analogy with prostaglandins.
In addition, phytoprostane 16-A1 induces apoptosis of T-cell lymphoma to a greater extent
than prostaglandin A2, whereas phytoprostanes 16- and 9-B1 (42), structural analogs of the
phytoprostane A1, were found to be inactive [244].

Cytotoxicity, chemosensitization, and anti-migratory activities of phytoprostanes and
phytofurans were demonstrated on the breast cancer cell lines MCF-7 and MDA-MB-
231 [256]. Phytoprostane Ent-9-L1 reduced the cell viability of both lines, while phyto-
prostanes 16-F1t and 9-L1 (43) reduced the cell viability of only one of the two lines. In
combination with a subcytotoxic dose of doxorubicin, these phytoprostanes significantly
increased the cytotoxic effect on MCF-7 cells, while the chemotherapeutic drug itself had
no effect. Phytofuran Ent-9-(RS)-12-epi-ST-∆10-13 (48) noticeably inhibited the metastatic
activity of MDA-MB-231 cells. The possibility of using these compounds as adjuvants to
increase the effectiveness of drugs for the treatment of breast cancer has been noted.

4.6. Unusual and Unidentified Oxylipins

In addition to the information about the mentioned classes of compounds, there are
examples of the analysis of individual oxylipins with a more complex chemical structure
(Figure 8). Momordicatin, 4-(o-carboethoxyphenyl) butanol (49), from Momordica charantia
fruit, was effective in vitro and in vivo against Leishmania donovani [257]. It inhibited the
parasite’s iron-containing superoxide dismutase (SOD) without affecting the host’s SOD.



Int. J. Mol. Sci. 2022, 23, 14627 17 of 31

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 17 of 33 
 

 

(Jurkat T-cells), and the mechanism of their action is most likely the same as that of en-
dogenous regulators—prostaglandins [241,244]. The efficiency of the induction of malig-
nant cell apoptosis is dependent on the structural organization of the molecule, and this 
efficiency cannot always be predicted by the structural analogy with prostaglandins. In 
addition, phytoprostane 16-A1 induces apoptosis of T-cell lymphoma to a greater extent 
than prostaglandin A2, whereas phytoprostanes 16- and 9-B1 (42), structural analogs of 
the phytoprostane A1, were found to be inactive [244]. 

Cytotoxicity, chemosensitization, and anti-migratory activities of phytoprostanes 
and phytofurans were demonstrated on the breast cancer cell lines MCF-7 and MDA-MB-
231 [256]. Phytoprostane Ent-9-L1 reduced the cell viability of both lines, while phytopros-
tanes 16-F1t and 9-L1 (43) reduced the cell viability of only one of the two lines. In combi-
nation with a subcytotoxic dose of doxorubicin, these phytoprostanes significantly in-
creased the cytotoxic effect on MCF-7 cells, while the chemotherapeutic drug itself had no 
effect. Phytofuran Ent-9-(RS)-12-epi-ST-∆10-13 (48) noticeably inhibited the metastatic ac-
tivity of MDA-MB-231 cells. The possibility of using these compounds as adjuvants to 
increase the effectiveness of drugs for the treatment of breast cancer has been noted. 

4.6. Unusual and Unidentified Oxylipins 
In addition to the information about the mentioned classes of compounds, there are 

examples of the analysis of individual oxylipins with a more complex chemical structure 
(Figure 8). Momordicatin, 4-(o-carboethoxyphenyl) butanol (49), from Momordica charantia 
fruit, was effective in vitro and in vivo against Leishmania donovani [257]. It inhibited the 
parasite’s iron-containing superoxide dismutase (SOD) without affecting the host’s SOD. 

 
Figure 8. Chemical structures of a rare complex oxylipin momordicatin, 4-(o-carboethoxyphenyl) 
butanol (49). 

There are also multiple examples of studies where the effects caused by the extracts 
containing unidentified oxylipins were described, and the active components of these ex-
tracts have yet to be identified. For example, the anti-inflammatory effect of the lyophi-
lized biomass of microalgae Chlamydomonas debaryana enriched with oxylipins was 
demonstrated on a mouse colitis model [258]. Unidentified diatom oxylipins exhibit anti-
bacterial, anti-parasitic, anti-inflammatory, and anti-cancer properties [259]. Ethyl extracts 
and butanol fractions isolated from Tinospora sinensis induced an oxidative burst in mac-
rophages by increasing the production of ROS and NO, which led to the destruction of 
Leishmania donovani [260]. 

5. Conclusions 
Thus, an impressive number of studies confirm the ability of plant oxylipins to influ-

ence the various processes in animal cells and their protective and therapeutic properties 
(Table 1). At the same time, the potential of many oxylipins has not been determined until 
now. It primarily applies to many phytoprostanes, oxy-, epoxy-, and hydroxy-derivatives 
of fatty acids. Further progress in this research area and the application of plant oxylipins in 
medical practice depends on the interdisciplinary research at the interface between plant 
biology and medicine dedicated to the search for new natural metabolites, the evaluation of 
their therapeutic potential, and the creation of synthetic analogs with improved properties, 
such as increased activity, stability, and the ability to reach intracellular targets. 

Figure 8. Chemical structures of a rare complex oxylipin momordicatin, 4-(o-carboethoxyphenyl)
butanol (49).

There are also multiple examples of studies where the effects caused by the extracts
containing unidentified oxylipins were described, and the active components of these extracts
have yet to be identified. For example, the anti-inflammatory effect of the lyophilized biomass
of microalgae Chlamydomonas debaryana enriched with oxylipins was demonstrated on a
mouse colitis model [258]. Unidentified diatom oxylipins exhibit antibacterial, anti-parasitic,
anti-inflammatory, and anti-cancer properties [259]. Ethyl extracts and butanol fractions
isolated from Tinospora sinensis induced an oxidative burst in macrophages by increasing the
production of ROS and NO, which led to the destruction of Leishmania donovani [260].

5. Conclusions

Thus, an impressive number of studies confirm the ability of plant oxylipins to influ-
ence the various processes in animal cells and their protective and therapeutic properties
(Table 1). At the same time, the potential of many oxylipins has not been determined until
now. It primarily applies to many phytoprostanes, oxy-, epoxy-, and hydroxy-derivatives
of fatty acids. Further progress in this research area and the application of plant oxylipins
in medical practice depends on the interdisciplinary research at the interface between plant
biology and medicine dedicated to the search for new natural metabolites, the evaluation of
their therapeutic potential, and the creation of synthetic analogs with improved properties,
such as increased activity, stability, and the ability to reach intracellular targets.

Table 1. Potential therapeutic and protective properties of plant oxylipins.

Oxylipin Concentration The Studied System Effect Refs.

Derivatives of acetylenic fatty acids

Falcarinol (31)

0.5–20 µM Tissue culture, mouse
model

Stimulates neuritoge-nesis,
restores memory

mechanisms,
neuropro-tective properties

[134,135]

0.016–2 µg/mL

Human gastric
adenocarcinoma, leukemia

like, mouse
fibroblast-derived tumor,

mouse melanoma

Anti-cancer properties [80]

0.1–10 µM Transfected cells of human
embryonic kidney

reversible agonist of
cannabinoid receptors [261]

Falcarinol (31) and
didehydrofalcarinol (32) 20–200 g/mL Fungal spores Antifungal properties [82,118]

Falcarinol (31), falcarindiol
(33) and

falcarindiol-3-acetate (34)

0.5–20 µM Mice macrophages cell
lines

Anti-inflammatory, NO
production inhibition, no

cytotoxicity
[131]

100 µg/mL Rabbit blood Antiplatelet effect [113]

Falcarindiol (33), falcarinol
(31)

10 µg/mL
MIC 16.4 µM, In vitro activity Antimicrobe and

antimycobacterial [119–122]

Falcarindiol-8-methyl ether
(35); panaxydiol (40) IC50 3.5 µM/L Human cancer cell lines Cytotoxic effect [80,124]
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Table 1. Cont.

Oxylipin Concentration The Studied System Effect Refs.

Furanocoumarin ethers of
falcarindiol (38) ED50, 3.2–8.5 µg/mL Tissue culture Antiproliferative activity [125]

11(S),16(R)-Dihydroxy-
octadeca-9Z,17-dien-12,14-

diyn-1-yl acetate (39);
falcarindiol (33)

IC50
24 µM; 73 µM, In vitro activity

Inhibition of 5-, 12-, and
15-lipoxygenases,

cyclooxygenase (COX-1)
[83,128,129]

11(S),16(R)-Dihydroxy-
octadeca-9Z,17-dien-12,14-
diyn-1-yl acetate (39); (3R,

8S)-falcarindiol (33)

IC50 118 µM In vitro radiolabeled
ligand binding

Serotonin receptor binding,
serotonergic, antidepressant

potential
[136]

1,2-Dihydro-11-acetoxy-
falcarindiol (36);

11-Acetoxy-falcarindiol
(37)

0.001–100 µM;
IC50 0.3–29 µM Human cancer cell lines Inhibition of cell

proliferation [127]

Jasmonates

JA, 3-oxo-2-(2-pentenyl)
cyclopentaneacetic acid (1);

MeJA (3)
0.5–3 µM

Human T lymphoblastic
leukemia, breast carcinoma,

melanoma,
androgen-responsive

prostate adenocarcinoma
cells; mouse T lymphoma

cells

Cell death and inhibition of
cell proliferation in cancer
cells, no damage to normal

lymphocytes

[157]

MeJA (3)

1–5 mM Human carcinoma cell
lines

Cell death and growth
inhibition [161]

20 µM Microglial cell line BV-2
Protects against

β-amyloid-induced oxidative
stress and inflammation

[177]

MeJA analogs 12.5–100 µM RAW264.7 murine
macrophage cells

Inhibition of biosynthesis of
pro-inflammatory mediators [170,181]

Jasmonate derivative,
(3-hydroxy-2-

pentylcyclopentyl)-acetic
acid (4)

10 µM

Epidermal primary
keratinocytes and
reconstituted skin

epidermis

Induce expression of major
skin proteoglycans, skin

healing, accelerated
epithelial repair in vivo

[195]

12-oxo-phytodienoic acid
(2) 7.5–30 µM Mouse microglial cells

Suppression of LPS-induced
expression of the

inflammatory cytokines and
NO production

[180]

Hydroperoxide lyase branch oxylipins

Traumatic acid (6)

1–10 µM Fibroblast cell line
Antioxidant and stimulatory

effects on collagen
biosynthesis

[203]

0.5–1000 µM
ZR-75-1 cell line, treated

with mesotrione to
enhance growth

Anticancer activity [205]

0.5–1000 µM Breast cancer cell lines and
normal breast cell lines

Reduction of
pesticide-induced cancer cell

division
[207]

(E)-2-hexenal (7);
(2E,6Z)-2,6-nonadienal (8);

(E)-2-nonenal (9)
4–314 mg/g

Mites Acarus siro L.,
Tyrophagus putrescentiae
(Schrank), Aleuroglyphus

ovatus

Growth inhibition
(4–35 mg/g), death

(36–314) mg/g
[215]
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Table 1. Cont.

Oxylipin Concentration The Studied System Effect Refs.

(2E,4E)-2,4-decadienal (10);
(2E,4E)-2,4-octadienal (11);
(2E,4E)-2,4-heptadienal (12)

2.5–10 µM
Lung and colon cancer cell
lines; normal lung/brunch

epithelial cell line

Cytotoxic effect against
cancerous but not normal

cells
[220]

Oxy-, hydroxy-, and epoxy-derivatives of fatty acids

9,10,13-trihydroxy-11-
octadecenoic (15);

9,12,13-trihydroxy-l0-
octadecenoic acid

(16)

-

Rabbit coeliac and
mesenteric arteries; rat
fundus strip; cascade
superfusion system

Prostaglandin-like
activity–smooth muscle

relaxation
[223]

9,12,13-trihydroxy-15-
octadecadienoic (17);

12,15,16-trihydroxy-9,13-
octadecadienoic (18);

9,10,13-trihydroxy-11,15-
octadecadienoic (19);

12,13,16-trihydroxy-9,14-
octadecadienoic acid

(20)

- Rat colon, suspended strip
Prostaglandin-like

activity–smooth muscle
relaxation

[224]

10,17-dihydroxy-
docosahexa-4,7,11,13,15,19-

enoic acid
(21)

0.3-10 µM Platelet suspension
Inhibited collagen-induced

platelet aggregation in a
dose-dependent manner.

[225]

9,16-dihydroxy-10,12,14-
octadecatrienoic acid,

isomers (22)
1 µM

Platelet suspensions,
leukocyte suspensions,

recombinant COX protein

Anti-inflammatory,
antithrombotic effects,

inhibition COX-1
[226]

9-oxo-10,
12-octadecadienoic acid

(23)
EC50 1.2 µM Blood stream T. brucei form,

mouse macrophages T. brucei growth inhibition [227]

13-hydroxy-10-oxo-11-
octadecenoic acid (24);

10-oxo-11-octadecen-13-
olide, enantiomers

(25)

- Mouse leukemia cells Cytotoxicity [229]

9-hydroxy-10,12-
octadecadienoic acid (26)

13-hydroxy-9,11-
octadecadienoic acid

(27)

-
Mouse fibroblast cells,

simian virus
40-transformed cells

Cytotoxicity [229]

9-hydroxy-10,12-
octadecadienoic acid;

13-hydroxy-10-oxo-11-
octadecenoic acid;

10-oxo-11-octadecen-13-
olide

0.8–100 µM Murine macrophages,
monkey kidney cells Anti-inflammatory [234]

13-hydroxyoctadeca-
9,11,15-trienoic acid (28);

15-hydroxyeicosa-
5,8,11,13,17-pentaenoic

acid (29)

10 mM
Human colonic

adenocarcinoma and
melanoma cell lines

Cytotoxicity [232]

Nonyl 8-acetoxy-6-
methyloctanoate

(30)
25, 50 mg/mL

Human leukemia cells;
lung carcinoma;

mouse melanoma
Anticancer effects [231]
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Table 1. Cont.

Oxylipin Concentration The Studied System Effect Refs.

13-hydroxy-9,11,15-
octadecantrienoic acid

(28)
- Non-small cell lung cancer Anti-proliferative activity [230]

Phytoprostanes, phytofurans

B1-Phytoprostanes 0.1–25 µM Undifferentiated
neuroblastoma cells Neuroprotective activity [245,252]

E1-Phytoprostanes -
Culture of

monocyte-derived
dendritic cells

Anti-inflammatory activity [249,254]

Phytoprostanes A1, E1,
and deoxy-J1 (41) 10–80 µM

Healthy males ages 18–35
years, human embryonic

kidney cells,
macrophage-like cells

Anti-inflammatory,
apoptosis-inducing activity [244]

Phytoprostanes from olive
oil -

In vitro inhibition of
α-glucosidase and

α-amylase
Antidiabetic activity [246]

16-B-1 (42)- and
9-L1-phytoprostanes (43) - Human neuroblastoma

cells Antioxidant activity [245]

Phytoprostanes: 9-F1t,
9-epi-9-F1t (44), ent-16-F1t,

ent-16-epi-16-F1t (45),
9-D1t, 9-epi-9-D1t (46),

16-B1 (42), and 9-L1 (43);
Phytofurans:

ent-16(RS)-9-epi-ST∆14-10,
ent-9(RS)-12-epi-ST-∆10-13
(48), and ent-16(RS)-13-epi-

ST-9-∆14-9

-

Human colorectal
adenocarcinoma and

human endothelial cell
lines

Anti-inflammatory [248]

Betulla alba pollen
phytoprostane

Monocyte-derived
dendritic cells, T cells

Modulation of human
dendritic cells function [249]

Phytoprostanes: 16-F1t,
16-epi-16-F1t (45), 16-B1,

Ent-16-B1 (42), 9-L1,
Ent-9-L1 (43), 9-E1;

Phytofurans: Ent-9-(RS)-
12-epi-ST-9-∆10-13

(48)

0.1–100 µM Human breast cancer cell
lines Anticancer effects [256]

Phytoprostanes: 9-F1t,
9-epi-9-F1t (44), ent-16-F1t,

ent-16-epi-16-F1t (45),
9-D1t, 9-epi-9-D1t (46),

16-B1 (42), 9-L1 (43);
Phytofurans:

ent-16(RS)-9-epi-ST∆14-10,
ent-9(RS)-12-epi-ST-∆10-13

(48),
ent-16(RS)-13-epi-ST-∆14-9 (47)

0.002–100 µM The monocytic human
(THP-1) cell line Anti-inflammatory activity [255]

Unusual complex oxylipins

Momordicatin (49)
4-(o-carboethoxyphenyl)

butanol
- L. donovani strain Antileishmania agent [257]

MIC—Minimal inhibitory concentration; IC50—half maximal inhibitory concentration; ED50—median
effective dose.
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Abbreviations

LOX Lipoxygenase
α-DOG α-Dioxygenase
AOS Allene oxide synthase
HPL Hydroperoxide lyase
DES Divinyl ether synthase
EAS Epoxy alcohol synthase
JA Jasmonic acid
MeJA Methyl jasmonate
12-OPDA 12-Oxo-phytodienoic acid
dn-OPDA Dinor-12-oxophytodienoic acid
PP Phytoprostane
RES Reactive electrophile species
ILs Interleukins
TNF-α Tumor necrosis factor alpha
PKC-β Protein kinase C-beta
NF-κB Nuclear factor kappa B
PPAR Peroxisome proliferation activator receptor
TA Traumatic acid
KEAP1 Kelch-like ECH-associated protein 1
NRF2 Nuclear factor associated with erythroid factor 2
iNOS Inducible nitric oxide synthase
GABA γ-Aminobutyric acid
SOD Superoxide dismutase
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