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1 Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
2 Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic
* Correspondence: viktor.hlavac@szu.cz

Abstract: The advancement in molecular techniques has been attributed to the quality and signifi-
cance of cancer research. Pancreatic cancer (PC) is one of the rare cancers with aggressive behavior
and a high mortality rate. The asymptomatic nature of the disease until its advanced stage has
resulted in late diagnosis as well as poor prognosis. The heterogeneous character of PC has compli-
cated cancer development and progression studies. The analysis of bulk tissues of the disease was
insufficient to understand the disease, hence, the introduction of the single-cell separating technique
aided researchers to decipher more about the specific cell population of tumors. This review gives an
overview of the Laser Capture Microdissection (LCM) technique, one of the single-cell separation
methods used in PC research.

Keywords: Laser Capture Microdissection (LCM); pancreatic cancer; intraductal papillary mucinous
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1. Introduction

Globally among the rare lethal cancers, pancreatic cancer (PC) ranks seventh in cancer-
related deaths [1,2]. Recent advancement in imaging methods and treatment strategy has
slightly improved the 5-year survival rate after diagnosis from less than 5% to less than
10% [3]. The pancreas is a mixed organ that has endocrine and exocrine functions, hence
the tumors of the pancreas are also categorized accordingly [4]. Exocrine tumors, which
can also be benign or malignant, make up 98% of them. Adenoma, cystadenoma, lipoma, fi-
broma, hemangioma, lymphangioma, and neuroma are a few benign tumors, whilst ductal
adenocarcinoma is the most prevalent malignant tumor. Pancreatic ductal adenocarcinoma
(PDAC) arises from non-invasive precursor lesions such as pancreatic intraepithelial neo-
plasm (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic
neoplasm (MCN) [4,5]. Based on the epithelial abnormality, the precancerous lesions are
further categorized as depicted in Figure 1.

On the other hand, the remaining 1–2% of PC is caused by pancreatic endocrine tumors,
otherwise known as pancreatic neuroendocrine neoplasms (PNENs), which are further
categorized as pancreatic neuroendocrine tumors (PNETs) and neuroendocrine carcinomas
(PNEC) [6]. PNENs mostly emerge from abnormal endocrine cells or the pluripotent
cells of the pancreas. Insulinoma, gastrinoma, glucagonoma, vasoactive intestinal peptide
(VIP)-oma, and somatostatinoma are some of the endocrine tumors recognized today.
They are classified as functional or non-functional, based on the hormones released by
the tumor [7]. The heterogeneity of the disease is one of the reasons for the complications
faced in PC research. Like any other cancer, PC progression is also supported by its
microenvironment. The tumor microenvironment consists of both cellular and non-cellular
components such as stromal cells, fibroblasts, immune cells, and signaling molecules,
along with the tumor cells that aid in cancer advancement [8]. Pancreatic stellate cells, the
most abundant in stromal cells that provide nourishment; the extracellular matrix (ECM)
proteins such as laminin, fibronectin, proteoglycans, glycoproteins, and polysaccharides;
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and cancer-associated fibroblasts (CAFs), an important factor involved in stromal-to-tumor
interaction are the major contributors to the PC development [8]. Apart from the different
cells present in the tumor microenvironment, PC also consists of different cancer subtypes.
Based on the transcriptomic studies, the PC subtypes are classified as normal stroma and
activated stroma; basal-like and classical-like tumor cells, by Moffitt et al. [9]. Collisson et al.
classified them as classical, quasi-mesenchymal, and exocrine-like subtypes [10]. Bailey et al.
categorized them as squamous, progenitor, immunogenic, and aberrantly differentiated
endocrine exocrine (ADEX) [11]; whereas Puleo et al. redefined Moffitts’s classification into
pure basal-like, stroma-activated, desmoplastic, pure classical, and immune classical [12].
Comparing these classifications, basal-like, quasi-mesenchymal, squamous, and stroma-
activated, have the same lineage of origin, that is squamous; the classical, exocrine-like, and
ADEX was similar in exocrine functions, whereas the immune classical and immunogenic
were found to have roles in immunologic functions [13].
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Figure 1. Site of precancerous lesions of pancreatic cancer and their sub-categories. 
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Cancer development is always due to the accumulation of multiple mutations in cells
along with other triggers, such as environmental and lifestyle factors. Various genetic
alterations such as the mutation activation of oncogenes (example: KRAS), the inactivation
of tumor-suppressor genes (example: CDKN2A, TP53, SMAD4, BRCA2), the loss of het-
erozygosity during gene amplification, and telomere shortening, contributes to this [5,14].
Hence, understanding these changes would help in developing better tools for diagnosis,
prognosis, and therapy. The limited diagnostic methods of imaging and biopsies, the deep
inside location of the pancreas, and the asymptomatic nature until the advanced stage has
challenged the diagnosis, as well as the prognosis, of the disease [15,16]. Today, physicians
depend on biomarkers such as CA 19-9, CA 50, and CEA for diagnosis, to determine the
response to treatment, as well as for the prognosis of the recurrence of PC, and they have
shown low sensitivity and specificity [17,18]. Research on biomarkers associated with PC
is being extensively carried out, but none has implemented in clinical practice due to a
lack of validation [18]. It is possible for the proto-oncogenes, tumor suppressor genes, and
other genes (DNA) expressed during cancer conditions, as well as coding (mRNA) and
non-coding RNAs (miRNA, siRNA, lncRNA, etc.), and proteins to act as diagnostic, prog-
nostic, or predictive biomarkers [18]. They can be isolated from cancer tissues, circulating
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tumor cells (CTCs), and exosomes present in body fluids such as saliva, pancreatic juice,
blood, urine, and stool [17,19].

Nowadays, cancer researchers are interested in high throughput techniques, especially
emerging single-cell sequencing technology (SCST), which involves sorting the cells before
sequencing. Most of the complications in the diagnosis, prognosis, and therapy of PC are
resolved by this technology [20]. SCST involves four major steps: the isolation of individual
cells; the amplification of the nucleic acid; the interrogation of the amplified products;
and the interpretation of the data, considering all the biases and errors that occurred in
the first three stages that are more critical in producing high-quality data [21]. A cell
suspension of viable single cells is prepared by mechanical or enzymatic methods. Earlier,
patch-clamp electrophysiology, fluorescence in situ hybridization, flow cytometry, and
ELISpot were some of the methods available to isolate and examine the single cells [22]
but now, methods like Laser Capture Microdissection (LCM), Fluorescent Activated Cell
Sorting (FACS), and Microfluidics technologies are commonly used for the single-cell
isolation, mainly from cell suspensions, except for LCM [23]. The nucleic acids and proteins
isolated from the sorted cells or a specific cell population are then lysed using optical,
ultrasonication, electrical, mechanical, or chemical methods [24]. The isolated biomolecule
of interest from the cells are then subjected to amplification and analysis for which methods
like DOP-PCR, isothermal amplification (multiple displacement amplification (MDA),
Microwell displacement amplification system (MIDAS)), and hybrid methods (MALBAC
or PicoPLEX) are employed for whole-genome amplification. The amplified products
can be explored by either sequencing specific loci, sequencing the whole-exome, or the
entire genome [21]. For single-cell transcriptomic studies, the methods such as reverse
transcription, quantitative real-time PCR (qPCR), microfluidics platforms like CytoSeq,
inDrop, and DropSeq techniques, are used [22,24]; whereas 2D-gel electrophoresis, mass
spectrometry, Edman sequencing, and NMR spectroscopy techniques are utilized for
proteomic studies [25]. The CytoSeq microfluidic method is a recent technology that
includes magnetic beads containing random primers with a universal PCR priming site, a
barcode, a unique molecular index (UMI), and an mRNA capture sequence that helps in
yielding high-quality, bias-free, and quantitative data of single-cell transcriptome, whereas
other two microfluidics methods are automated in which the nanodrop of cells formed
from the oil and water are barcoded, lysed and sequenced and referred as droplet-based
microfluidics; this method is also known as a lab-on-a-chip method [22,26]. In droplet-
based microfluidics, the cells in the suspension are generated into droplets with the help of
passive droplet fusion, electro-coalescence, or picoinjection, and then sorted [27,28]. The
principle of droplet-based microfluidics is employed in FACS for the fluorescent-labelled
samples and further sorted using the hydrodynamics-optic principle [29]. The examination
of the amplified product is one of the crucial steps in single-cell analysis; the data from the
analysis are interpreted using a combination of different biostatistical and bioinformatics
tools [30].

Having high-throughput sequencing technologies, LCM marks its importance in
understanding the role of individual cells/a specific cell population in a heterogeneous
population of cancer tissue, thus providing precise information compared to the results from
bulk tissues [31]. Likewise, LCM is being used in numerous research projects to explore PC.
Hence, this review gives an insight into the application of laser-assisted microdissection
techniques in various aspects of PC research.

2. Laser Capture Microdissection (LCM)

LCM is a sophisticated technique in which a laser is coupled with an inverted micro-
scope and linked to a computer. This technique was developed in 1996 at the National
Institute of Cancer, USA, for isolating selected human cell populations from a heteroge-
neous population of cells (Figure 2) [32]. The laser systems used in this apparatus have been
modified since then from ultraviolet (UV) to high-energy nitrogen, infrared, and carbon
dioxide lasers [33]. Based on the laser beams used, LCM can be of two types: infrared
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and UV. The commercially available Arcturus Pixcell IIE LCM platform is an example of
infrared LCM, whereas the PALM Laser-MicroBeam System, MMI cellcut® (Molecular
Machines and Industries), and the Leica Laser Microdissection system, are commercialized
instruments in which UV-laser beams are installed [31,33–35]. The latter is a widely used
instrument in which the solid tissues are typically prepared on a membrane-covered slide
to identify the target cells and examined under the microscope [32], whereas the cell culture
specimens are cultured on membrane-bound culture plates to which the cells adhere [36].
The membranes are usually polyethylene naphthalate, to which methods such as hema-
toxylin/eosin staining, fluorescent in situ hybridization (FISH), and immunohistochemistry
(IHC) are used for staining the cells [33]. Then, the cells of interest are manually marked
on the computer screen, and the laser cuts along the marked direction [32]. This is fol-
lowed by contact-based extraction, contact-free gravity-assisted microdissection (GAM), or
contact-free laser pressure catapulting (LPC), after which the cells are treated with appro-
priate buffers for processing and sequencing [26]. While working with the frozen tissue
sample, careful handling during the cryosectioning, staining, and marking of the cells of
interest for microdissection aids in yielding a high-quality nucleic acid for next-generation
sequencing [37].

Like every technique, LCM has benefits and drawbacks. It enables small tissue isola-
tion from a heterogeneous population in a single step through direct visualization through
a microscope; it is a fairly quick method of dissection; it secures the tissue morphology
during the dissection; and it also allows to separate live cells/single cells in a culture dish
and re-culture them. Especially when the content of tumor cells in neoplastic tissue is low,
LCM takes the advantage of enriching the tumor fraction. The drawbacks of this method
include its high cost, the need for a histologist or other specialized personnel to identify
the cells of interest, and the possibility that the quality of the dissected tissue will not meet
the standards needed for the further processing of the sample because of the absence of a
coverslip, which causes dehydration of the sample [33,35]. When compared to FACS and
microfluidics systems, which are often used on liquid samples especially for separating
cells from the blood, LCM can isolate the single cells from tissue samples like FFPE and
fresh frozen, whereas the need for professional personnel to identify the cells holds the
disadvantage of LCM. In addition, though it is time-consuming, the tumor cells can be iso-
lated using a laser beam directly without treating the samples with fluorophores, which is
often done in both FACS and microfluidics [38,39]. Having advantages and disadvantages
of the technique, LCM is an efficient tool for isolating single cells from tissue samples.

The application of LCM in cancer research was reviewed in some solid cancers. Lawrie
and Curran [40] described the use of LCM in colorectal cancer proteomics; Fuller et al. [31]
reviewed the utility of LCM in breast cancer; neuroblastoma [41] and prostate cancer [42]
were also reviewed. However, this was before the onset of novel techniques such as next-
generation sequencing. Some recent reviews advocate the use of LCM in oral cancer [43] or
testicular germ cell tumors [44]. Liotta et al. [45] described the use of LCM in the protein
analysis of solid cancers and methodology, with example applications in cancer tissues,
thoroughly reviewed in von Eggeling and Hoffmann [46]. However, the whole omics view
on the use of LCM in PC is completely missing.
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permission from BMJ Publishing Group Ltd.

3. Impact of LCM on Pancreatic Cancer Research

The heterogeneous cell population and numerous genetic alterations resulting in gene
expression differences contribute to PC’s aggressive nature. Exploring these areas aids in
developing new biomarkers for improvement of the treatment and maintaining the condi-
tion [5]. The research work has been carried out extensively in elucidating the mutations,
understanding the proteome, as well as the prognostic and predictive characterization and
stratification of the PC patients, which is discussed in the following sections.

3.1. Mutation Studies

The heterogeneous nature of PDAC is characterized by various genetic alterations like
the activation of the proto-oncogene, KRAS; the inactivation of CDKN2A, TP53, SMAD4, and
STK11/LKB1, the tumor suppressor genes [48]; the loss of heterozygosity at 19p13.3 [14], 6q
and 17p (in IMPNs) [49], and so on. These alterations are thoroughly studied to understand
their role in PC metastasis, seek their role in prognosis/survival, or identify therapeutic
targets [14]. Before the use of single-cell separation methods, the bulk tissues were analyzed
for the research in PC. The mutations of KRAS and TP53, inactivation of p16/CDKN2A, and
SMAD4/DPC4 in PanIN, IPMN, and MCN were found in the analysis of FFPE samples of
tumor tissues [50].

KRAS mutation was found to be an early event in all three precancerous lesions
accompanied by p16/CDKN2A inactivation in PanIN and IPMN. Whereas TP53 mutation
and silencing of SMAD/DPC4 were the late events in PanIN, IPMN, and MCN [50]. Also,
the frequent mutation of KRAS at codon 12 and exceptionally at codon 13, and 61; the
difference in the pattern of KRAS mutation in Japanese and European populations with
GGT to GAT (G12D) in Japanese and GGT to GAT (G12D), GGT to GTT (G12V), CGT
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(G12R) or TGT (G12C) in European population respectively were discovered before the
introduction of LCM [50].

Using LCM, most of these findings were confirmed like the typical KRAS, SMAD/DPC4,
and TP53 mutations, along with the somatic mutation of PIK3CA in MCN [51], and along
with it, many more interesting facts were deduced from the specific cell population of the
tumors such as the mutation analysis conducted by Crnogorac-jurcevic et al. two decades
ago using LCM treated normal and tumor samples (the overview of the LCM-based studies
is provided in Table 1) of PDAC revealing the homozygous deletion of CDKN2 and the
mutation of KRAS using single-strand conformation polymorphism (SSCP) and direct
sequencing methods. In the same experiment, they used a cDNA array, tissue array, and
IHC to discover the involvement of overexpressed genes TIMP1, CD59, ABL2, NOTCH4,
SOD1, and the downregulation of XRCC1 gene in different pathways leading to pancreatic
malignancy [52].

Similarly, the population-based study conducted on the Japanese and European popu-
lations was performed on Chinese populations using LCM, PCR, and direct sequencing.
The KRAS mutations in the Chinese population were found to be different compared to
the Japanese-European population with a mutation in the first or second base of the codon
12 (GGT) [53]. A similar study on KRAS and TP53 gene mutation in PDAC patients from
highly polluted regions of the Nile River delta in Egypt to the less polluted region showed
a significantly higher rate of mutation in the KRAS codon 12 G to T (G12V) transversion
mutation and mutation in exon 5-8 of TP53 in patients from highly polluted areas, pointed
out the importance of the interaction of environment and genes in carcinogenesis [54].

A different study was carried out by Izawa et al. [55] on LCM-derived IPMN tissues
to study the clonal characterization using the combination of KRAS analysis and analysis of
human androgen receptor gene (HUMARA) during X-chromosome inactivation. The study
concluded the polyclonal/oligoclonal nature of IPMNs and their origin from multiple
precancerous lesions. Pancreas is made up of different cells like ductal, stellate, acinar, and
beta cells among which, acinar cells perform the role of secreting digestive enzymes namely
amylase, protease, and lipase in the form of zymogens [56].

The analysis of the whole-tumor tissue had given researchers the idea that acinar
cells could be the origin of human pancreatic neoplasia but with the help of LCM, PanIN
lesions, acinar-ductal metaplasia lesions, stromal cells, and acinar cells were isolated and
closely studied for KRAS mutation (LigAmp technique) to disapprove this hypothesis [57].
There were contradictory findings like the study using LCM showing the TP53 gene could
be found in the early stage of PDAC, which was found to be a late-stage event by the
study on bulk tissue, but the same experiment supported that KRAS mutation along with
other somatic gene mutations found in early-stage PanIN-2 lesions promotes the PDAC
progression [58]. However, a recent study substantiated the role of TP53 in the evolution of
PDAC and found that TP53 is not only a gateway to genetic chaos but also a provider of
deterministic patterns of genome evolution that may show new strategies for the treatment
of tumors with TP53 mutation [59].

In addition, the study conducted by Fang et al. [60] on pancreatic adenosquamous
carcinoma (PASC) and PDAC samples dissected using LCM revealed the possibility of the
origin of both cancers from the same progenitor cancer cells, that was supported by the
similar results in the genomic variation in KRAS and TP53 genes. They also highlighted
the importance of 3p loss in PASC with the help of copy number variation analysis that
gave the researchers new insight into the knowledge about mixed-type tumors. Another
type of mixed tumor, acinar-neuroendocrine-ductal carcinoma, was rarely diagnosed and
studied with the help of LCM for isolating the acinar and neuroendocrine tumor cells for
performing next-generation sequencing. This type of cancer was found to have a frameshift
mutation in TP53 (p.N210fs) and a missense mutation in KRAS (p.G12R) [61].

Carcinosarcoma is also one among the rare PC, and the study performed by Bai
et al. [62] with the help of LCM to isolate carcinomatous and sarcomatous cells from
carcinosarcoma samples, were studied for IHC, clinicopathological, and KRAS mutation,
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which showed similar mutation pattern in KRAS mutation (p.G12D and p.G12V) in both
the samples, indicating that both the components has a monoclonal origin.

The conflict in the results from bulk and specific cell population also includes the
study of epidermal growth factor (EGFR) that plays a critical role in many cancer types,
with its downstream pathways including RAS-MAPK/PI3K-AKT-mTOR pathways that
are well studied in cancer prognosis [63]. However, the study on pancreatic cell lines
and clinical samples using LCM and direct sequencing revealed that the EGFR gene is
highly conserved in pancreatic cancer and contradicted its association with PC prognosis,
leaving room for other explanations of the relevance of EGFR mutation in PDAC [64].
Additionally, one of the simulation studies performed by Fujii et al. [65] demonstrated the
lack of microsatellite instability in PC using specialized fluorescent microsatellite analysis
on microdissected PDAC specimens, but the study showed profound LOH in these samples.
Further, they recommended against the usage of LCM in microsatellite instability studies
using tissue samples.

Several other fascinating observations about KRAS, such as the study demonstrating
the carcinogenic role of the secretory and trophic effects-regulating hormone, gastrin,
was carried out on gastrin gene-knockout, KRAS-mutant mice, and in human samples
microdissected using LCM. The results were interesting as the knockout mutant mice
showed decreased PanIN progression, inflammation, and fibrosis compared to the results
obtained from the re-expression of gastrin. The decrease in KRAS expression reverted the
signal transduction to the canonical pathway and they found a significant increase in the
gastrin mRNA expression in PC samples when it was re-expressed. Hence, with the help
of LCM on healthy pancreatic tissue and tumor tissues, the expression study of gastrin
unveiled its possible role in activating KRAS in PC [66].

Likewise, other findings such as the silencing of CDKN1C by an epigenetic mecha-
nism [48], the role of FXYD3 in cell proliferation [67], and the association of the Sox4/Ezh2
and miR-335 with the epigenetic mechanism of Sox4 expression, which in turn stimulated
EMT pathway [68], were possible on cell lines, xenografts, and PDAC samples using LCM
as it aided in the selection of tumor and healthy tissue. These studies employed techniques
like DNA oligonucleotide microarray, IHC, qPCR, semi-quantitative reverse-transcription
PCR, methylation-specific PCR, northern blot, immunofluorescence, and bisulfite sequenc-
ing, which is further detailed in Table 1. The study by Hasegawa et al. [68] also found an
association of miR-335 with poorer disease-free and overall survival. Nakahara et al. [69]
found the possibility of miR-101-EZH2 interaction in microdissected IPMN samples to play
a vital role in IPMN carcinogenesis. The knock-down study of miR-101 on PC cell lines
confirmed that the miRNA targets EZH2 and the loss of miR-101, which was effectively
found in most of the IPMN samples, could stimulate the PDAC by upregulating EZH2.
Hence, the study highlights the therapeutic target efficiency of miR-101.

3.2. Breakthrough of PC Subtypes and Their Relevance in Survival

The integration of genomics, transcriptomics, proteomics, methylation studies, and
other omics studies, can help better understand and identify biomarkers of early diagnosis,
prognosis, or therapy prediction of cancer patients. It also helps to identify the targets for
treatment. The study on molecular subtypes of pancreatic cancer contributed to under-
standing the survival of patients. Collisson et al. used LCM-based techniques to distinguish
cancer and stromal subtypes of PC [10]. Thereafter, Moffitt et al. [9] determined the PC
subtypes using an algorithm-based virtual microdissection on PDAC tissue samples and
validated the use of bulk RNA-sequencing data using the Non-negative matrix factorization
(NMF) method. A similar study was conducted by Kalloger et al. [70]. This study suggested
the prognostic roles of the genes KRT6A, CTSV, and LY6D and highlighted the urge for
studies on stromal cells and their importance in cancer progression compared to the studies
in epithelial PDAC. Puleo et al. [12] preferred manual microdissection and supported the
work of Moffitt et al. [9] whereas Bailey et al. [11] and Maurer et al. [71] conducted the
genomic analysis and RNA sequencing, respectively, on bulk tumor tissue, which resulted
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in more subtypes. In short, the clarity on molecular subtypes of PC was attained using the
single-cell separation method.

Recently, Birnbaum et al. [34] took an effort to conduct a transcriptomic study to
explore the role of PC subtypes of cancer and stromal cells in prognosis and precision
medicine. They identified four cancer subtypes (C1–C4) and three stromal subtypes (S1–S3)
and they correlated it with the short-term survival and long-term survival using differen-
tially expressed gene (DEG) analysis. The canonical pathway and Gene Ontology (GO)
biological process evaluated the involvement of the C1 subtype in protein folding and
leukocyte chemotaxis; C2 in neuronal membrane signaling and pancreatic endocrine cell
development; C3 in protein translation regulation and nucleotide biosynthesis; C4 in the
oncogenic signal transduction pathway; S1 in cell development and differentiation; S2
in antigen processing and presentation; and S3 in macromolecular modification. These
sub-types were identical to Bailey, Collison, Moffitt, and Puleo’s classifications, in which,
C1 and C3 were found similar to classical or pancreatic progenitor subtypes, C2 to ADEX,
or exocrine-like subtype, and C4 to squamous or basal-like or quasi-mesenchymal sub-
type [9–11,34].

From the gene expression study conducted for prognosis and survival, genes asso-
ciated with short-term survival were associated with cell plasticity, axon guidance, cell
proliferation, and signal transduction; whereas long-term survival was associated with cell
cycle regulation and tRNA/mRNA processing. Out of 113 genes, 13 genes were found to be
exclusively expressed in cancer cells and they were confirmed by the two-color RNA-ISH
(RNA-In situ Hybridisation). Genes AP5M1, TCP1, and PNP associated with long-term-
and MIA, MUC16, and ADGRF1 associated with short-term survival were highlighted as
gene signatures for survival [34]. The microdissection technique was used for the investiga-
tions on subtypes and their association with survival within the recent prospective trial
study, COMPASS, initiated at the Princess Margaret Cancer Centre in Toronto. Researchers
used metastatic tumor cells to study the predictive mutational and transcriptional char-
acteristics of PDAC for better treatment selection [72]. Whole-genome sequencing and
RNA-sequencing of the microdissected samples revealed that the subtypes from the III/IV
stage of PDAC were similar to Moffitt et al. classical subtype tumors and their response
to mFOLFIRINOX first-line chemotherapy was better compared to the basal-like tumors.
They also highlighted the importance of GATA6 expression in differentiating the classical
and basal-like subtypes in PDAC [72].

Apart from the cancer subtypes studies, the study conducted by Nakamura et al. [73]
on DEG of different zones of same PC samples isolated from mice implanted with Human
L3.6pl PC cells analysed using LCM, affymetrix GeneChip hybridisation techniques con-
cluded that it is important to understand expression profiles of zonal heterogeneity in the
discovery of prognostic and therapeutic biomarkers, and LCM aids in the reproducibility
of the analysis in such studies.

3.3. Proteins, Pathways, and Cancer Management

Understanding the protein profile of the cancer is always of key importance, as it
helps to enlighten the pathways leading to cancer development and metastasis [74]. The
proteomic studies could be of two types: expression proteomics and functional proteomics.
The studies that focus on the upregulation and down-regulations of proteins are the
expression proteomics, whereas the studies that focus on the molecular mechanism and the
unraveling of the biological functions of novel proteins are called the functional proteomics
study [75]. Like the proteomic studies conducted on bulk tissues, which is not the scope
of this discussion, single-cell separation methods, especially LCM, are also employed to
understand the expression and functional proteomics of PC. Here, we highlight some of the
proteins elucidated using LCM that are involved in various pathways of cancer progression.

In PC, there are several proteins such as the S100 family, a small integrin-binding ligand
N-linked glycoprotein (SIBLING) family, and secreted protein acidic and rich in cysteine
(SPARC) family proteins associated with cancer progression [76,77]. Bone Sialoprotein
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(BSP) is a member of the SIBLING family of proteins and was studied using LCM along
with qPCR, DNA microarray, immunoblotting, radio-immunoassays, IHC, cell-growth,
invasion, scattering, and adhesion assays on chronic pancreatitis, PDAC, and PC cell lines,
to mark its importance in cancer growth, and metastasis (Figure 3) [78].
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Figure 3. Schematic diagram of the possible mechanism of tumorigenesis of PC by SIBLING protein
family, SPARC protein family, and S100 protein family, and proteins stimulated during hypoxia
condition resulting in cancer development. SIBLING, Small Integrin Binding Ligand N-linked
Glycoprotein; OPN, Osteopontin; BSP, Bone SialoProtein; DMP1, Dentin Matrix Protein I; CD44,
Cluster of Differentiation 44; RAS/RAF, RAt Sarcoma/Rapidly Accelerated Fibrosarcoma GTP
binding proteins; MEK/ERK, Mitogen-Activated protein kinases/Extracellular signal-regulated
protein kinases; PI3K/Akt, Phosphatidylinositol 3-Kinase/Ser/Thr Protein kinase; NF-κβ, Nuclear
factor Kappa light-chain-enhancer of activated B cells; MAPK, Mitogen-Activated Protein Kinase;
SAPK/JNK, Stress-activated protein kinases/c-Jun N-terminal Kinases; AP-1, Activating protein-1;
PC cells, Pancreatic Cancer cells; PGE2, Prostaglandin E2; EMT, Epithelial to Mesenchymal Transition;
INSIG2, Insulin-induced gene 2; HIF1α, Hypoxia-induced factor-1α; BNIP3, BCL2 interacting protein
3; PGK1, phosphoglycerate kinase 1; bFGF, basic fibroblast growth factor; VEGF, vascular endothelial
growth factor; PDGFA, Platelet-derived growth factor-alpha.
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SPARC-like protein 1 (SPARCL1), a SPARC family protein, aka Hevin, found in the
extracellular matrix was studied in LCM-applied normal pancreatic tissue and PDAC sam-
ples, using qPCR, and other protein analyzing methods. SPARCL1 expression was elevated
in PDAC samples compared to the normal tissue and PC cell lines, and its expression was
found to be downregulated in the late stages of PC indicating the role of SPARCL1 as a
tumor suppressor gene (Figure 3) [79].

Similarly, the S100 family proteins are another widely studied, calcium-binding protein
family, which has the potential to contribute to the early detection and prognosis of PC [76].
S100A6 was investigated with the help of LCM by A.R. Shekouh et al. They performed
LCM with 2D-gel electrophoresis and other techniques such as isoelectric focusing, silver
staining, MALDI-TOF, and IHC on normal and malignant tissue samples and validated
that this calcium-dependent protein is highly expressed in tumor cells compared to the
normal tissues [80]. The same combination of techniques, along with fluorescence dye
saturation labelling, was performed on PanIN and normal samples along with comparing
the data with proteome reference to find the role of three actin filament proteins (actin,
transgelin, and vimentin) in PC progression [81]. S100P, a member of the same family,
along with another protein 14-3-3 sigma/SFN, was found to be a promising biomarker in
a study on PDAC and its matched lymph node metastasis FFPE sample microdissected
using LCM (Figure 3) [82]. Later, a study conducted by F Robin et al. tackled the molecular
profile of stroma from fresh frozen PDAC, separated using LCM, and analyzed using
genome-wide expression profiling, tissue microarray, IHC, and ELISA to conclude that
SFN/14-3-3 sigma/stratifin can be a potential candidate for the prognostic biomarker
of PDAC [83]. It was clear that stratifin (14-3-3 sigma) played a vital role in cell cycle
regulation and apoptosis using the combination of LCM, qPCR, DNA arrays, IHC, and
western blotting [84]. The interesting fact is that these proteins stimulate the downstream
main pathways like KRAS, apoptosis, DNA damage control, regulation of G1/S phase
transition, Hedgehog, and many more [77,84], which gives them the potential to be used as
diagnostic or prognostic biomarkers, as well as possible therapeutic targets.

Chronic pancreatitis (CP) is one of the risk factors for PC, a study comparing the protein
expression in LCM performed CP, PDAC, and normal cells adjacent to infiltrating PDAC
samples, were studied and deciphered the significant expression of cartilage glycoprotein-
39 (HC gp-39), pancreatitis-associated proteins (HIP/PAP), and lactoferrin in both the
samples compared to the healthy tissue indicating the potential role of these proteins as a
predictive biomarker [85].

The study conducted by Sawai et al. [86], on one of the DNA editing enzyme, activation
induced cytidine deaminase (AID), in the microdissected PDAC and normal tissue showed
a significant increase in AID expression in acinar ductal metaplasia, PanIN, and PDAC
suggesting the involvement of the protein in inducing cancer. It was further validated by
deep sequencing the samples obtained from transgenic AID mice.

However, by employing LCM, researchers have made the initial step toward identify-
ing several more proteins associated with PC that has not yet been fully studied [87–93], like
the downregulation of Cav-1 as a possible prognostic marker in PC (included in Table 1) [89].
They have tried to understand the tumor progression using LCM along with proteomic
studies that included LC-MS/MS, tissue microarray, and IHC on fresh frozen PDAC and
adjacent normal tissues [88]. There are also studies using LCM (referred in Table 1) showing
the influence of CTCs [90], lncRNA H19 [91], HOTTIP [92], and FN1-ITGA-3 [93] on PC
prognosis, which has to be studied in detail for further clarifications.
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Table 1. Overview of developments in PC research using LCM.

Author/Year Finding Sample Used Techniques Used along with
LCM Reference

Emmert-buck
et al., 1996

Discovery of LCM
technique [32]

Crnogorac-
Jurcevic et al.,

2002

Association of ABL2,
NOTCH4, SOD1, XRCC1

with metastasis of PC

Fresh frozen tissue of PDAC and
PC cell lines (ASPC1, Bxpc-3,

CaPan1, CaPan2, HS766T, Mia
PaCa-2, PANC-1, SU86.86)

Micro-array derived gene
expression analysis,

quantitative real-time PCR
(qPCR), Tissue array, IHC

[52]

Shekouh et al.,
2003

Identification of DEGs in
PDAC

Fresh frozen samples of PDAC
and normal tissues

Isoelectric focusing,
SDS-PAGE, silver staining,

MALDI-TOF, IHC
[80]

Guweidhi et al.,
2004

role of
14-3-3sigma/stratifin in
cell cycle regulation, and

apoptosis

Fresh-frozen and PPFE samples
of human PDAC and normal

tissues

cDNA array, qPCR, southern
blot, IHC, mutation analysis
(sequencing), western blot,

immunoprecipitation, FACS
analysis

[84]

Kayed et al.,
2005

Role of FXYD3 in PC
development

FFPE samples of PDAC and PC
cell lines (ASPC-1, BxPc-3,

CaPan-1, Colo-357, SU86.86,
T3M4)

qPCR, DNA oligonucleotide
microarray, IHC, northern blot,

immunofluorescence
[67]

Wei et al., 2005
The difference in KRAS
mutation in the Chinese

population
PDAC Samples PCR and direct sequencing [53]

Erkan et al.,
2005

Role of BNIP3 in
chemoresistance resulting

in poor prognosis and
survival in PDAC

PDAC tissue samples and PC
cell lines (ASPC-1, BxPc-3,

CaPan-1, Colo-357, MiaPaCa-2,
Panc-1, SU86.86, T3M4)

cDNA microarray, qPCR, IHC [94]

Sato et al., 2005
Down-regulation of

CDKN1C in PC by an
epigenetic mechanism

Fresh frozen IPMNs and normal
tissues PC cell lines

(AsPC1,BxPC3, CaPan1, CaPan2,
CFPAC1, Hs766T, MiaPaCa2,

Panc1), and xenografts

Microarray, semiquantitative
reverse-transcription PCR,

IHC, Methylation-specific PCR,
and Bisulfite sequencing

[48]

Sitek et al., 2005
Role of actin filament

proteins in PanIN
progression

Fresh frozen PanIN samples and
PC cell lines (CFPAC, CAPAN,
Hs766T, IMIMPC-2, SCPC-1,

PATH-8988T)

2-D electrophoresis (2-DE),
fluorescence dye saturation

labeling, MALDI-TOF
[81]

Fukushima
et al., 2005

Role of HC gp-39,
lactoferrin, and HIP/PIP as

potential predictive
biomarker of PC

Fresh frozen tissues and serum
samples

Oligonucleotide hybridization,
IHC, qPCR, ELIS [85]

Hwang et al.,
2006

Upregulation of PGK1 in
PDAC and its potential role
in therapeutic strategies or
as a diagnostic biomarker

PDAC and normal tissues,
serum samples

2-DE, MALDI-TOF, ELISA,
IHC, Western blot [95]

Tzeng et al.,
2007

Conservation of EGFR in
PC and its unavailability to
act in the prognosis of PC

PDAC tissue samples, PC cell
lines (S2-VP10 AND S2-103) PCR, and sequencing [64]

Kayed et al.,
2007

Role of BSP in cancer
progression

PDAC and chronic pancreatitis
(CP) tissue, PC cell lines

(ASPC-1, BxPc-3, CAnPan-1,
Colo-357, MiaPaCa-2, Panc-1,

SU86.86, T3M4)

qPCR, cDNA array, IHC,
Radioimmunoassay (RIA),

FACS, Invitro invasion,
scattering, and adhesion assays

[78]
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Table 1. Cont.

Author/Year Finding Sample Used Techniques Used along with
LCM Reference

Esposito et al.,
2007

Role of SPARC1 as a tumor
suppressor gene in PC

Fresh frozen PDAC, PanIN
tissue samples, and PC Cell lines

(ASPC-1, BxPc-3, Capan1,
colo-357, Su86.86, and T3M4)

FACS, in-vitro invasion assays,
IHC [79]

Soliman et al.,
2007

Importance of
gene-environment

interaction in
cancerogenesis

FFPE samples of PDAC and
normal tissues PCR, DNA sequencing [54]

Nakamura et al.,
2007

Importance of DEG studies
in zonal heterogeneity of

PDAC

Human PC cell line (L3.6pl),
nude mice

Affymetrix HG-U133 plus 2.0
array, FISH [73]

Hoffmann et al.,
2008

Overexpression of HIF1A
during the hypoxic

condition in PDAC and its
correlation with PDGFA,

VEGF, and FGF2

PDAC FFPE samples qPCR [96]

Shi et al., 2009
Involvement of acinar cells

in the development of
PanIN/PDAC

PanIN lesions PCR, LigAmp analysis, IHC [57]

Kubo et al., 2009

Mutation of KRAS/BRAF
in resequenced tyrosine
kinase gene showing its

importance in the
downstream signaling

pathway

PDAC samples and cell lines WGA and sequencing [87]

Collisson et al.,
2011 Subtypes of PDAC

PDAC FFPE samples and Cell
lines (HPAC, Capan2, HPAF II,

6.03, CFPac1, MPanc96, 2.13,
Panc1, MiaPaca2, 10.05, and

Colo357)

IHC, microarray [10]

Kayashima
et al., 2011

Stimulation of INSIG2 in
PC during hypoxia

condition

PC cell lines (SUIT-2, ASPC-1,
BxPC-3, PANC-1, KP-1N, KP2,

KP-3, MiaPaCa2, CaPan1, CaPan
2, CFPAC-1, SW1990, HS766T,
H48N, NOR-P1, HDPE6-E6E7)

and PanIN lesions

qPCR, microarray [97]

Naidoo et al.,
2012

Protein composition of
PDAC and lymph node

metastasis
PDAC FFPE samples

Multidimensional Protein
Identification Technology

(MudPIT), IHC
[82]

Nakahara et al.,
2012

Role of miR-101 as a
therapeutic target in

IMPNs

FFPE samples, PC cell lines
(PANC-1, PK8, PK9, PK-59,

KLM-1, MIA PaCa2, PK-45P)

IHC, qPCR, knock-down of
miR101 [69]

Zhu et al., 2013

A better understanding of
tumor progression using

proteomic analysis of
PDAC samples

Fresh frozen PDAC and adjacent
normal tissue

LC-MS/MS, Tissue microarray,
IHC [88]

Murphy et al.,
2013

Mutation of KRAS, TP53,
and other somatic genes in
PanIN-2 lesions and its role

in PDAC progression

Frozen PDAC samples Exome sequencing [58]

Shan et al., 2014
Downregulation of Cav-1

as a prognostic indicator in
PC

Fresh frozen PDAC samples IHC, reverse-transcriptase
PCR, qPCR, FISH [89]
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Table 1. Cont.

Author/Year Finding Sample Used Techniques Used along with
LCM Reference

Garcia-
Carracedo et al.,

2014

PIK3CA mutation in
pancreatic MCN FFPE samples of MCN IHC, direct sequencing [51]

Sawai et al.,
2015

Role of AID in PDAC
development

PPFE samples of PDAC tissues,
transgenic mice IHC, deep sequencing [86]

Hasegawa et al.,
2015

Role of Sox4/Ezh2 in
epigenetic mechanism and

EMT pathway in PC
patients

Fresh frozen PDAC samples IHC, qPCR [68]

Court et al.,
2016

Role of CTCs in molecular
diagnostics of PC

PC cell lines (CFPAC-1, ASPC-1,
Panc-1, BxPC-3, HPAF-II) and

blood samples of
pancreatobiliary cancer patients

WGA, KRAS PCR, Sanger
sequencing [90]

M.Ling et al.,
2016

Role of lncRNA H19 in PC
tumorigenesis

Fresh frozen PDAC and normal
tissues, PC cell lines (Colo-357,

Capan1, MiaPaca-2, AsPC-1,
BxPC-3, Panc-1, T3M4, SW1990)

qPCR, western blot, IHC [91]

Fu et al., 2017 Role of lncRNA HOTTIP in
DFS of PC Cell lines (PANC-1 and SW1990) qPCR, western blot, FACS,

IHC [92]

Fang et al., 2017
Showed PASC and PDAC

originated from same
progenitor cancer cells

FFPE samples of normal and
tumor tissue

Whole-genome, whole-exome
sequencing [60]

Anug et al.,
2018 COMPASS trial Fresh frozen PDAC samples and

whole blood samples WGS, RNA-seq, RNA-ISH [72]

Maurer et al.,
2019

Molecular subtypes of
PDAC Fresh frozen PDAC samples RNA sequencing [71]

Nadella et al.,
2019

Role of gastrin in
stimulating KRAS and in

turn carcinogenesis
Gastrin Knockout mice Reverse phase protein array,

IHC, miRNA analysis [66]

Hiroshima et al.,
2019

Impact of FN1-ITGA3 on
prognosis of PDAC Fresh frozen tissue of PDAC LC-MS/MS [93]

Robin et al.,
2020 Prognostic role of stratifin PDAC FFPE samples Gene expression analysis, IHC,

ELISA [83]

Birnbaum et al.,
2021

Transcriptomic analysis of
PDAC samples to identify

molecular subtypes of
PDAC

Fresh frozen PDAC samples RNA-seq, RNA-ISH [34]

Kalloger et al.,
2021

Prognostic roles of genes
expressed in stroma and

epithelium of PDAC
PDAC FFPE samples mRNA quantification [70]

The hypoxic environment of PC is another widely investigated area. During cancer
progression, the cells undergo rapid proliferation resulting in consuming a huge amount
of oxygen. The drastic alteration in the oxygen levels stimulates a number of proteins
such as Insig2, HIF1A, and BNIP3, which in turn activates the downstream pathways,
which leads to more aggressive behavior and therapy resistance in PC (Figure 3) [94,96–99].
Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors made of two
subunits, alpha and beta (HIFα and HIFβ) [98]. HIFα is known to induce the VEGF
(vascular endothelial growth factor), PDGFA (platelet-derived growth factor alpha), and
FGF2 (coding basic fibroblast growth factor, bFGF), but has not been explored much [96,99].
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HIF1A induces the glycolytic enzymes as well, the PGK1 (phosphoglycerate kinase 1) is
one such enzyme found overexpressed in microdissected PDAC samples analyzed using
proteomic studies. They also marked its potential to act as a diagnostic biomarker or as a
therapeutic target [95]. A study conducted on microdissected FFPE samples of PDAC by
qPCR and other statistical analysis showed the correlation between the genes HIF1A, FGF2,
VEGF, and PDGFA in PC development and the significance of HIF1A in prognosis [96].
Inspired by recent research on insulin-induced gene 2 (INSIG2) as a novel biomarker for
colon cancer, Kayashima et al. attempted to study the involvement of INSIG2 in pancreatic
malignancy. They analyzed INSIG2 mRNA expression on laser microdissected normal
pancreatic epithelial cells, invasive ductal carcinoma cells, and PanIN cells, as well as on PC
cell lines cultured under normoxic (21% O2) and hypoxic (<1% O2) conditions. They found
a significant increase of INSIG2 expression in the PC cell line under the hypoxic conditions
as well as in the microdissected samples. Cell proliferation and invasion were found
to be decreased in one of the PC INSIG2-knockdown cell lines. The mRNA expression
levels were also evidently higher in late-stage cancer compared to the early stage [97].
The hypoxia-inducible proapoptotic gene, BNIP3, was discovered to be downregulated
in PDAC tissues as well as in cell lines. It showed resistance to both drugs gemcitabine
and 5-fluorouracil, which led to a lower patient survival rate and a worse prognosis [94].
All these appealing results pointed out that these proteins play a vital role in pancreatic
cancer progression and metastasis and they can act as a biomarker for diagnosis, prognosis,
and therapy.

The ultimate goal of all cancer study efforts is to find a suitable solution for the
disease’s management or cure. Having said about the aggressive nature, poor prognosis,
and decreased survival rate of PC, the studies on prognosis, diagnosis, therapy, and survival
are of great importance both to physicians as well as to the public. Several studies are
being conducted using bulk tissues as well as on specific cell populations to understand
the scenario better. The importance of LCM lies as it aids in isolating the specific cell
populations of interest and allows the research work carried out in a specific direction.

4. Conclusions

Pancreatic cancer is the rarest and most aggressive disease with a poor prognosis. The
development of techniques for diagnosis, prognosis, and therapy is of the most impor-
tance. LCM is a powerful tool that has the capability of isolating specific cell populations
from FFPE, fresh frozen, and cell-cultured samples. Utilizing LCM facilitated the isolation
of a particular cell population and the discovery of some excellent findings, such as the
involvement of gene/protein alterations in the downstream pathway leading to PC devel-
opments. These findings are critical for comprehending prognostic/diagnostic biomarkers
and addressing potential therapeutic targets. PC’s stromal and cancer subtypes were better
categorized using the LCM, which provided researchers with a holistic image of the tumor
microenvironment. Various high throughput methods were employed downstream of
LCM to interpret different areas of cancer. Improving the staining methods, laser systems,
and preservation methods would improve LCM’s scope in cancer research. More could be
unravelled using this technique or any other single-cell separating techniques such as FACS
and microfluidics platforms, as it allows us to study the individual cells or groups of cells
with the same characteristics, giving us more accurate results. This could aid in discovering
a potential biomarker for prognosis, diagnosis, or even identifying a therapeutic target. In
the future, we must contribute more towards implementing them into clinical practice and,
consecutively, to society.
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