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Abstract: Attention has been paid to the early diagnosis of Alzheimer’s disease, due to the maximum
benefit acquired from the early-stage intervention and treatment. However, the sensing techniques
primarily depended upon for neuroimaging and immunological assays for the detection of AD
biomarkers are expensive, time-consuming and instrument dependent. Here, we developed a
multichannel fluorescent tongue consisting of four fluorescent dyes and GO through electrostatic and
π–π interaction. The array distinguished multiple aggregation states of 1 µM Aβ40/Aβ42 with 100%
prediction accuracy via 10-channel signal outputs, illustrating the rationality of the array design.
Screening vital sensor elements for the simplified sensor array and the optimization of sensing system
was achieved by machine learning algorithms. Moreover, our sensing tongue was able to detect the
aggregation states of Aβ40/Aβ42 in serum, demonstrating the great potential of multichannel array
in diagnosing the Alzheimer’s diseases.

Keywords: Alzheimer’s disease; multichannel; sensor array; amyloid-β protein; machine learning
algorithm

1. Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease with com-
plex pathophysiology, accompanied by irreversible memory loss and severe cognitive
dysfunction [1]. For AD patients, early diagnosis and monitoring are of great significance.
As one of the most vital biomarkers in the diagnosis of AD, amyloid-β (Aβ) proteins con-
taining 39–43 amino acid residues exhibit differential aggregation tendencies, with varying
aggregation states showing diverse neurotoxicity [2–4]. Among them, Aβ40 and Aβ42 are
typical species with minor differences that reflected on extra isoleucine and an alanine at
its C-terminus of Aβ42 sequence. At present, the detection methods for Aβ aggregates are
mainly reliant on the combination of neuroimaging and immunological detection; however,
the wide applications of current detecting techniques are greatly limited by high cost, high
radiation, time-consuming, complicated operations, and low sensitivity [5–9]. Furthermore,
detecting individual biomarkers such as Aβ40 or Aβ42 is powerless in diagnosing AD as a
single indicator cannot reflect the progress of AD pathology. Therefore, it is highly benefi-
cial to develop a simple and rapid approach for sensing Aβ40/Aβ42 and their aggregates
simultaneously [10–12].

Differently from specific probe based on the “lock-key” mechanism, cross-reactive sen-
sor array (or chemical tongue) provides a parallelly sensing strategy for multiple analysts
through the pattern responses of sensor array towards the analyst [13–18]. In recent years,
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efforts have been devoted to the design of sensor arrays in detecting bacteria, proteins, envi-
ronmental pollutants, food security, etc. [19–27]. Recently, we have validated that the fluo-
rescent sensor array consisting of electrostatic complexes formed from poly(para-phenylene
ethynylene)s (PPEs) and graphene oxide (GO) is capable of successfully distinguishing
various Aβ aggregates [28]. To further enhance the sensitivity, we intend to introduce
a wider range of Aβ aggregates-specific and non-specific recognition moieties into the
sensing system [29]. Meanwhile, in another recent work, we demonstrated that a single-
well multichannel sensor array can greatly improve detection efficiency and increase the
sensitivity of cross-responses; hence, the strategy was employed in this work [30].

In this study, a multichannel sensor array was constructed with one five-element
complex by using four dyes with different emission wavelengths and GO for the parallel
discrimination of different aggregation states of Aβ40/Aβ42 in a single measurement. In
our smart sensing system, peptide nuances and different aggregation states can generate
various dissociation or adsorption between Aβ40/Aβ42 proteins and sensor elements,
leading to multiple fluorescent responses in a single measurement. The array has achieved
the discrimination of Aβ40/42 aggregates with 100% prediction accuracy in PBS through
10-channel signal outputs. Meanwhile, a simplified 6-channel sensor array, optimized by
machine learning algorithm, was also able to generate excellent discrimination. Addition-
ally, the anti-interference detection results were also satisfactory. Overall, our multichannel
sensor array has revealed powerful ability in discriminating Aβ40/42 aggregate species,
indicating the potential of multichannel array in disease diagnosis.

2. Results and Discussion

In this study, cationic PPE [28] and three commercially available dyes (Thioflavin T
(ThT), Nile Red (NR) and Victoria Blue B (VBB)) were combined with negatively charged
GO to form an integral stable complex (Figure 1a). PPE can bind to Aβ aggregates non-
specifically and can be replaced or self-aggregated, leading to fluorescence recovery or
further quenching [28]. Normally, a short fluorescence lifetime and low quantum yield of
ThT in water are generally observed as the rapid rotation of C–C bond between two aro-
matic ring leads to the dissipation of excitation state energy [31]. However, the rotation of
ThT is limited by the geometric constraints in the binding site and, thus, exhibits increased
quantum yield after binding with fibrotic amyloid protein [32,33]. NR and VBB are also
commercial specific probes for amyloid fibrils and show little changes toward monomeric
proteins [34–37].
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Figure 1. (a) Structure and ClogP (predicted by ChemBioDraw Ultra 18.0) of PPE, ThT, NR and VBB.
(b) Schematic diagram of a multichannel sensor array for recognition of Aβ40/Aβ42 aggregates.

In Figure S1 (Table S1), the fluorescence emission peaks of PPE, ThT, NR and VBB were
located at 445 nm, 490 nm, 635 nm and 700 nm, respectively. The excitation wavelengths
of four dyes were selected for obtaining fluorescent intensities (Figure 2c), leading to
10-channel signal outputs in a single well. To construct the multichannel sensing system, the
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four dyes mixing solution were mixed with GO. After the addition of GO, the fluorescent
emissions were obviously quenched. The ratio of four dyes/GO were selected for the
construction of multichannel sensor array when the fluorescence intensity of PPE was
quenched to about 70% through the titration experiment (Figure S2).
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Figure 2. (a) Multichannel fluorescence response pattern (I − I0)/I0 obtained by sensor array against
Aβ40/42 aggregates (1 µM) in PBS, error bars indicate the standard deviation (SD) of six replicates.
(b) Heat map of the fluorescence response of Aβ40/42 aggregates in PBS. Six replicates are shown
for each protein. (c) The excitation and emission wavelength of each channel. (d) Canonical score
plot for the first two factors of fluorescence patterns obtained from the sensor array with Aβ40/42
aggregates in PBS. The scores were generated through LDA with 95% confidence ellipses.
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The fluorescence response of each sensing channel toward Aβ40/Aβ42 (1 µM) with
different aggregating states was verified by calculating the relative fluorescence change
(I − I0)/I0 of each signal channel (Figure 2a). Each channel showed various fluorescent
intensity changes for Aβ40/Aβ42 with different aggregating states as Aβ40/Aβ42 proteins
could selectively bind to one or more dyes by competing with GO. For example, Channel
1, 2, and 5 showed enhanced fluorescence for all Aβ40/Aβ42 species, channel 3 exhibited
multifariously quenched fluorescence, while channel 4, 6, and 7 revealed various fluorescent
responses for Aβ40/Aβ42 species. In our sensing system, 10-channel signal outputs could
be obtained in a single measurement which produced a unique fluorescence response
pattern for Aβ40/Aβ42 aggregates, making the rationality of sensor array for the detection
of Aβ proteins via the construction of fingerprint. The prominent fluorescent response
patterns via cross-reactive responses could also be observed in the heatmap (Figure 2b).
Training matrices (10 channels × 6 analytes × 6 replicates) were created, and LDA results
were performed using SYSTAT software (Figure S4 and Table S2). In the typical score
plot, factor 1 accounted for 40% of the total variance and the sum of factor 1 and factor 2
accounted for 71% of the total variance, which provided the best discrimination among
six Aβ aggregate species. Aβ40 was in the upper part of the score chart, and Aβ42 was in
the lower part of the score chart (Figure 2d). The cross-validated jackknifed classification
matrix showed 94% accuracy (Table S3). To verify the ability of 10-channel sensor array for
the prediction of unknown samples, 24 unknown Aβ proteins with different aggregation
forms were randomly selected as blind test samples, and all 24 unknown proteins were
distinguished with 100% prediction accuracy (Table S4).

The number of sensing channel represents the workload in the detecting process, and
thus, the simplification for sensing channels of multichannel sensor array is also necessary
through algorithms. The principal component analysis (PCA) approach was employed
to remove redundant signal channels from our sensing system. Only the signal channels
with high contribution rates were retained within the sensor array, while low-contributing
channels were eliminated. According to the output result of PCA, the discriminating
contribution of the first two PCs was as high as 88.31% (Figure 3a). Therefore, six channels
(channel 1, channel 2, channel 4, channel 5, channel 6 and channel 7) with the largest
contribution in the first two PCs were selected to identify and distinguish six Aβ40/Aβ42
species (Figure 3a, Tables S5 and S6). Using the LDA algorithm, it can be seen from the 2D
typical score map that Aβ40/Aβ42 species continued to be well divided into six clusters
without any misclassification. The clusters of Aβ40 and Aβ42 were distributed on the
upper and lower sides of the canonical score plot, respectively (Figures 3b and S5). The
cross-validated jackknifed classification matrix showed 97% accuracy and the prediction
accuracy for unknown samples was 100% in blind test (Tables S7 and S8). The improved
discriminating accuracy indicated that the simplification of sensing channel achieved
by PCA screening could remove elements with interfering effects and generate more
effective models.

Plasma Aβ42/Aβ40 has been reported to directly reflect the accumulation of amy-
loid plaques in the brains of AD patients, so blood-based test has been used for AD
diagnosis [38–41]. To further verify the practical application capability of our sensing
system, the multichannel sensor array was used to discriminate Aβ proteins (1 µM) in
serum samples (Figures S3 and S7 and Tables S12–S14). Similarly, each channel produced
various fluorescent responses towards Aβ40/Aβ42 species (Figure 4a). Moreover, the
distinctive response patterns can be obtained with the heatmap generated from relative
fluorescence changes. The training matrix (6 channels × 6 analytes × 6 replicates) was
acquired and converted into canonical scores by LDA (Table S9). In the canonical score
plot (Figures 4b and S6), various aggregate types of Aβ40/Aβ42 proteins could be clearly
visualized, forming six separate clusters. The sum of factor 1 and factor 2 accounted for 90%
of the total variance. Meanwhile, the heat map showed the unique response patterns gener-
ated through cross-reaction between 6-channel sensor array and Aβ40/Aβ42 (Figure 4c).
According to the jackknifed classification matrix, the recognition accuracy for each Aβ
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aggregate was 100% (Table S10). Twenty-four kinds of β-amyloid proteins were randomly
selected for blind testing, with 91.7% prediction accuracy, demonstrating the potential of
our simplified sensing system in the discrimination of unknown samples (Table S11). These
results revealed that the multichannel sensor array had a strong recognition ability for Aβ
proteins and the potential for clinical detection of AD.
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Figure 4. (a) Fluorescence response pattern (I−I0)/I0 obtained by optimized 6-channel sensor ar-
ray against Aβ40/42 proteins (1 µM) in serum, error bars indicate the standard deviation (SD) of
six replicates. (b) Canonical score plot for the first two factors of fluorescence patterns obtained from
the optimized 6-channel sensor array with Aβ40/42 proteins in serum. The scores were generated
through LDA with 95% confidence ellipses. (c) Six-channel heat map of the fluorescence response of
Aβ40/42 protein in serum. Six replicates are shown for each protein.
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The accuracy improvement of sensing system is a key factor to achieve practical appli-
cations; thus, the approach to improved detecting accuracy is worth exploring. As far as we
know, machine learning algorithms have confirmed the strong power in the optimization
of sensing results. Therefore, machine learning algorithms including branch and bound
(BnB), generalized predictive control (GPC), K-nearest neighbor (KNN), logistic regression
(LR) and random forest (RF) were applied to optimize the detecting results of 6-channel
sensor array. The dataset we took consisted of 60 examples from different aggregate species
of Aβ40/Aβ42 with a ratio of 6:4 (training set:test set). For discriminating Aβ protein in
PBS (Figure 5a), LDA and RF algorithms showed the highest training accuracy (97.2%) and
test accuracy (91.7%). For the detecting experiments in serum samples, KNN algorithm
illustrated the highest training accuracy (94.4%) and test accuracy (95.8%), surpassing the
LDA result (Figure 5c).
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3. Methods and Materials
3.1. Reagent

Thioflavin T (E080911) was purchased from energy-chemical. Nile Red (D051404)
was purchased from energy-chemical. Victoria Blue B (V820449) and 1,1,1,3,3,3-
Hexafluoroisopropanol (HFIP) (H811026) were purchased from Macklin. Beta amy-
loid 1-40 (107P33) were purchased from Nanjing Peptide Valley Biotechnology Co., Ltd.
(Nanjing, China) and beta amyloid 1-42 (A834109) were purchased from Macklin (Shanghai,
China). Single-layer GO with a thickness of 0.8–1.2 nm was purchased from XFNANO
Materials Tech Co., Ltd. (Nanjing, China). Phosphate-buffered saline (PBS powder, 0.01 M,
pH 7.4) was purchased from Beijing Solar Bio-Science & Technology Co., Ltd. (Beijing,
China). Human serum was purchased from XINFAN TECHNOLOGY (Shanghai, China).
PPE was synthesized according to the reported procedures [19,28,42].

3.2. Instrumentation

The fluorescence values were recorded on a SpectraMaxR ID3 Multi-Mode Microplate
Reader (Molecular Devices, San Jose, CA, USA), at room temperature. The 96-well plates
were produced from Costar (3590, Washington, DC, USA).

3.3. Machine Learning Algorithms

Machine learning methods, including branch and bound (BnB), generalized predictive
control (GPC), K-nearest neighbor (KNN), logistic regression (LR) and random forest (RF)
were built in Python using the scikit-learn package, which is an open-source tool for data
analysis and machine learning. (https://github.com/scikit-learn/scikit-learn, accessed on
15 September 2022). The division of the data set calls the ‘train_test_split’ function in scikit-
learn, and the test set size is 0.4. (Random state = 4). All test results are cross-validated ten
times with ‘cross_val_score’.

3.4. Linear Discriminant Analysis

Linear discriminant analysis (LDA) was carried out using classical LDA in SYSTAT
(version 13.0, licensed by Systat Software Inc., San Jose, CA, USA). In LDA, all vari-
ables were used in the model (complete model) and the tolerance was set as 0.001. The
fluorescence response patterns were transformed into canonical patterns. The Maha-
lanobis distances of each individual pattern to the centroid of each group in a multidimen-
sional space were calculated and the assignment of the case was based on the shortest
Mahalanobis distance.

3.5. Titration Experiment and Preparation of Sensor

An amount of 1mM PPE stock solution was prepared with deionized water. ThT,
NR and VBB stock solutions were prepared by dispersing 5 mM ThT, NR and VBB in
DMSO, respectively, and filtered with a 0.22 µM filter. The stock solution of PPE and three
dyes (ThT, NR, VBB) was diluted to 8 µM with PBS and then mixed in a ratio of 1:1:1:1.
Dilute 1 mg/mL of GO solution with PBS to different concentration gradients. Then, add
100 µL of the mixed solution above to the 96-well plate and add 100 µL of GO solution of
different concentrations, respectively. The fluorescence titration curve was read through the
microplate reader. (Figure S2) The ratio of four dyes/GO was selected for the construction
of multichannel sensor array when the fluorescence intensity of PPE was quenched to
about 70%. In order to ensure that the final concentrations of PPE and three dyes were
1 µM, respectively, when reacting with proteins, the stock solutions of PPE and three dyes
(ThT, NR, VBB) were diluted to 16 µM with phosphate buffer (10 mM, pH 7.4), respectively.
Then, the four 16 µM solutions are mixed in equal volumes to prepare a mixed solution.
The final concentration of each dye in the mixed solution is 4 µM. Finally, according to the
results of the titration experiment, the mixed solution was mixed with 8 × 10−4 mg/mL
GO at the corresponding concentration in equal volumes to obtain the sensor.

https://github.com/scikit-learn/scikit-learn
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3.6. Pretreatment of Aβ Proteins

According to the literature [43], Aβ monomers powder was completely dissolved
in HFIP, placed at room temperature for 6h, and dried in vacuum to remove HFIP. Aβ
monomers solution was prepared by dissolving the lyophilized powder of Aβ monomers
in PBS (10 mM, pH 7.4) and sodium hydroxide (1 mM) at the desired concentration. The
100 µM Aβ40 monomers solution was prepared by adding 100 µL sodium hydroxide and
130 µL PBS to the lyophilized powder of Aβ40 monomers. Additionally, the 100 µM Aβ42
monomers solution was dissolved by 100 µL sodium hydroxide and 120 µL PBS. To obtain
Aβ40 oligomers, 100 µM Aβ40 monomers solution was incubated, at 37 ◦C, for 12 h by
shaking. To obtain Aβ40 fibrils, 100 µM Aβ40 monomers solution was incubated, at 37 ◦C,
for 24 h by shaking. In addition, Aβ42 monomers, Aβ42 oligomers and Aβ42 fibrils were
prepared by the same methods.

3.7. Aβ40/Aβ42 Aggregates Identification

Aβ40/Aβ42 monomers, Aβ40/Aβ42 oligomers and Aβ40/Aβ42 fibrils were diluted
to 2 µM by PBS (10 mM, pH 7.4). Then, 100 µL of sensing solution and 100 µL sample
solution of different Aβ aggregation states or phosphate buffer (10 mM sodium phosphate,
pH 7.4) for the control experiment were added to each well on a 96-well plate, respectively.
The final concentration of Aβ peptides for fluorescence emission measurement is 1 µM. The
96-well plate was incubated, at room temperature, for 60 min. The fluorescence intensity
of the array before and after the addition of proteins was recorded by microplate reader
and collected by 10-channel fluorescence signals (Figure 2c,d). Finally, the fluorescent data
were evaluated by LDA through SYSTAT (version 13.0) (Tables S2–S4). Except for the Aβ
protein being diluted with artificial serum to 2 µM, the experimental procedures are the
same in experiment of the serum sample (Tables S12–S14).

4. Conclusions

In this study, a multichannel fluorescent sensor array composed of four fluorescent
dyes and GO through electrostatic and π–π interaction was developed. The single-well
five-element complex formed by dyes and GO exhibited pattern responses towards various
Aβ40/Aβ42 species through 10-channel signal outputs. Meanwhile, a 6-channel sensor
array simplified by the PCA algorithm which showed higher discriminating and predicting
performance for PCA screening highlights the contribution of the best sensing channel
and removes interference factors such as background noise. Moreover, our sensing system
illustrated the detecting ability in the serum. The optimization of the sensing model could
be achieved with higher accuracy through machine learning algorithms, demonstrating
the power of the sensor array with multichannel signals in clinical detection via machine
learning algorithms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232314562/s1.

Author Contributions: The authors F.L. and L.Z. contributed equally to this work. F.L., J.H. (Jinsong Han)
and J.W. designed research; F.L., L.Z., W.N., J.H. (Jiabao Hu), M.W. and S.C. performed and verified
experiments; F.L., L.Z, X.G., W.N., J.H. (Jinsong Han) and J.W. discussed and analyzed the data; J.H.
(Jinsong Han), J.W., F.L. and L.Z. wrote the paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This project was supported by the National Natural Science Foundation of China (82072017,
32272415 and 52003298), Natural Science Foundation of Jiangsu Province (BK20200578 and BK20191500)
and Funding of Double First-Rate Discipline Innovation Team (CPUQNJC22_04).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author.

https://www.mdpi.com/article/10.3390/ijms232314562/s1
https://www.mdpi.com/article/10.3390/ijms232314562/s1


Int. J. Mol. Sci. 2022, 23, 14562 9 of 10

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, P.; Tan, C. Cross-Reactive Fluorescent Sensor Array for Discrimination of Amyloid Beta Aggregates. Anal. Chem. 2022, 94,

5469–5473. [CrossRef] [PubMed]
2. Duan, Y.; Chen, J.; Jin, Y.; Tu, Q.; Wang, S.; Xiang, J. Antibody-Free Determinations of Low-Mass, Soluble Oligomers of Abeta42

and Abeta40 by Planar Bilayer Lipid Membrane-Based Electrochemical Biosensor. Anal. Chem. 2021, 93, 3611–3617. [CrossRef]
[PubMed]

3. Xu, L.; Wang, H.; Xu, Y.; Cui, W.; Ni, W.; Chen, M.; Huang, H.; Stewart, C.; Li, L.; Li, F.; et al. Machine Learning-Assisted Sensor
Array Based on Poly(amidoamine) (PAMAM) Dendrimers for Diagnosing Alzheimer’s Disease. ACS Sens. 2022, 7, 1315–1322.
[CrossRef] [PubMed]

4. Fu, W.; Yan, C.; Guo, Z.; Zhang, J.; Zhang, H.; Tian, H.; Zhu, W.H. Rational Design of Near-Infrared Aggregation-Induced-
Emission-Active Probes: In Situ Mapping of Amyloid-beta Plaques with Ultrasensitivity and High-Fidelity. J. Am. Chem. Soc.
2019, 141, 3171–3177. [CrossRef] [PubMed]

5. Tago, T.; Furumoto, S.; Okamura, N.; Harada, R.; Adachi, H.; Ishikawa, Y.; Yanai, K.; Iwata, R.; Kudo, Y. Structure-Activity
Relationship of 2-Arylquinolines as PET Imaging Tracers for Tau Pathology in Alzheimer Disease. J. Nucl. Med. 2016, 57, 608–614.
[CrossRef] [PubMed]

6. Ariza, M.; Kolb, H.C.; Moechars, D.; Rombouts, F.; Andres, J.I. Tau Positron Emission Tomography (PET) Imaging: Past, Present,
and Future. J. Med. Chem. 2015, 58, 4365–4382. [CrossRef]

7. Liu, T.C.; Lee, Y.C.; Ko, C.Y.; Liu, R.S.; Ke, C.C.; Lo, Y.C.; Hong, P.S.; Chu, C.Y.; Chang, C.W.; Wu, P.W.; et al. Highly
sensitive/selective 3D nanostructured immunoparticle-based interface on a multichannel sensor array for detecting amyloid-beta
in Alzheimer’s disease. Theranostics 2018, 8, 4210–4225. [CrossRef]

8. Pietroboni, A.M.; Colombi, A.; Carandini, T.; Sacchi, L.; Fenoglio, C.; Marotta, G.; Arighi, A.; De Riz, M.A.; Fumagalli, G.G.;
Castellani, M.; et al. Amyloid PET imaging and dementias: Potential applications in detecting and quantifying early white matter
damage. Alzheimer’s Res. Ther. 2022, 14, 33. [CrossRef]

9. Perez-Grijalba, V.; Fandos, N.; Canudas, J.; Insua, D.; Casabona, D.; Lacosta, A.M.; Montanes, M.; Pesini, P.; Sarasa, M. Validation
of Immunoassay-Based Tools for the Comprehensive Quantification of Abeta40 and Abeta42 Peptides in Plasma. J. Alzheimer’s
Dis. 2016, 54, 751–762. [CrossRef]

10. Li, F.; Stewart, C.; Yang, S.; Shi, F.; Cui, W.; Zhang, S.; Wang, H.; Huang, H.; Chen, M.; Han, J. Optical Sensor Array for the Early
Diagnosis of Alzheimer’s Disease. Front. Chem. 2022, 10, 874864. [CrossRef] [PubMed]

11. Kim, K.; Kim, M.J.; Kim, D.W.; Kim, S.Y.; Park, S.; Park, C.B. Clinically accurate diagnosis of Alzheimer’s disease via multiplexed
sensing of core biomarkers in human plasma. Nat. Commun. 2020, 11, 119. [CrossRef] [PubMed]

12. Han, X.; Man, Z.; Xu, S.; Cong, L.; Wang, Y.; Wang, X.; Du, Y.; Zhang, Q.; Tang, S.; Liu, Z.; et al. A gold nanocluster chemical
tongue sensor array for Alzheimer’s disease diagnosis. Colloids Surf. B 2019, 173, 478–485. [CrossRef] [PubMed]

13. Anzenbacher, P., Jr.; Lubal, P.; Bucek, P.; Palacios, M.A.; Kozelkova, M.E. A practical approach to optical cross-reactive sensor
arrays. Chem. Soc. Rev. 2010, 39, 3954–3979. [CrossRef] [PubMed]

14. Qiao, M.; Fan, J.; Ding, L.; Fang, Y. Fluorescent Ensemble Sensors and Arrays Based on Surfactant Aggregates Encapsulating
Pyrene-Derived Fluorophores for Differentiation Applications. ACS Appl. Mater. Interfaces 2021, 13, 18395–18412. [CrossRef]

15. Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119,
231–292. [CrossRef]

16. Li, Z.; Suslick, K.S. The Optoelectronic Nose. Acc. Chem. Res. 2021, 54, 950–960. [CrossRef] [PubMed]
17. Sedgwick, A.C.; Brewster, J.T.; Wu, T.; Feng, X.; Bull, S.D.; Qian, X.; Sessler, J.L.; James, T.D.; Anslyn, E.V.; Sun, X. Indicator

displacement assays (IDAs): The past, present and future. Chem. Soc. Rev. 2021, 50, 9–38. [CrossRef]
18. You, L.; Zha, D.; Anslyn, E.V. Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chem. Rev. 2015,

115, 7840–7892. [CrossRef]
19. Han, J.; Cheng, H.; Wang, B.; Braun, M.S.; Fan, X.; Bender, M.; Huang, W.; Domhan, C.; Mier, W.; Lindner, T.; et al.

A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine. Angew. Chem. Int. Ed. 2017, 56,
15246–15251. [CrossRef]

20. Fan, X.; Xu, W.; Han, J.; Jiang, X.; Wink, M.; Wu, G. Antimicrobial peptide hybrid fluorescent protein based sensor array
discriminate ten most frequent clinic isolates. Biochim. Biophys. Acta Gen. Sub. 2019, 1863, 1158–1166. [CrossRef]

21. Zheng, L.; Qi, P.; Zhang, D. Identification of bacteria by a fluorescence sensor array based on three kinds of receptors functionalized
carbon dots. Sens. Actuators B Chem. 2019, 286, 206–213. [CrossRef]

22. Rochat, S.; Gao, J.; Qian, X.; Zaubitzer, F.; Severin, K. Cross-reactive sensor arrays for the detection of peptides in aqueous solution
by fluorescence spectroscopy. Chemistry 2010, 16, 104–113. [CrossRef] [PubMed]

23. Ghasemi, F.; Hormozi-Nezhad, M.R.; Mahmoudi, M. Label-free detection of beta-amyloid peptides (Abeta40 and Abeta42):
A colorimetric sensor array for plasma monitoring of Alzheimer’s disease. Nanoscale 2018, 10, 6361–6368. [CrossRef] [PubMed]

24. Xu, S.; Wu, Y.; Sun, X.; Wang, Z.; Luo, X. A multicoloured Au NCs based cross-reactive sensor array for discrimination of multiple
proteins. J. Mater. Chem. B 2017, 5, 4207–4213. [CrossRef] [PubMed]

http://doi.org/10.1021/acs.analchem.2c00579
http://www.ncbi.nlm.nih.gov/pubmed/35362962
http://doi.org/10.1021/acs.analchem.0c05281
http://www.ncbi.nlm.nih.gov/pubmed/33571410
http://doi.org/10.1021/acssensors.2c00132
http://www.ncbi.nlm.nih.gov/pubmed/35584464
http://doi.org/10.1021/jacs.8b12820
http://www.ncbi.nlm.nih.gov/pubmed/30632737
http://doi.org/10.2967/jnumed.115.166652
http://www.ncbi.nlm.nih.gov/pubmed/26697966
http://doi.org/10.1021/jm5017544
http://doi.org/10.7150/thno.25625
http://doi.org/10.1186/s13195-021-00933-1
http://doi.org/10.3233/JAD-160325
http://doi.org/10.3389/fchem.2022.874864
http://www.ncbi.nlm.nih.gov/pubmed/35444997
http://doi.org/10.1038/s41467-019-13901-z
http://www.ncbi.nlm.nih.gov/pubmed/31913282
http://doi.org/10.1016/j.colsurfb.2018.10.020
http://www.ncbi.nlm.nih.gov/pubmed/30326364
http://doi.org/10.1039/b926220m
http://www.ncbi.nlm.nih.gov/pubmed/20820464
http://doi.org/10.1021/acsami.1c03758
http://doi.org/10.1021/acs.chemrev.8b00226
http://doi.org/10.1021/acs.accounts.0c00671
http://www.ncbi.nlm.nih.gov/pubmed/33332086
http://doi.org/10.1039/C9CS00538B
http://doi.org/10.1021/cr5005524
http://doi.org/10.1002/anie.201706101
http://doi.org/10.1016/j.bbagen.2019.04.010
http://doi.org/10.1016/j.snb.2019.01.147
http://doi.org/10.1002/chem.200902202
http://www.ncbi.nlm.nih.gov/pubmed/19938007
http://doi.org/10.1039/C8NR00195B
http://www.ncbi.nlm.nih.gov/pubmed/29561053
http://doi.org/10.1039/C7TB00367F
http://www.ncbi.nlm.nih.gov/pubmed/32264150


Int. J. Mol. Sci. 2022, 23, 14562 10 of 10

25. Rasouli, Z.; Ghavami, R. A 3 × 3 visible-light cross-reactive sensor array based on the nanoaggregation of curcumin in different
pH and buffers for the multivariate identification and quantification of metal ions. Talanta 2021, 226, 122131. [CrossRef]

26. Mohan, B.; Xing, T.; Kumar, S.; Kumar, S.; Ma, S.; Sun, F.; Xing, D.; Ren, P. A chemosensing approach for the colorimetric and
spectroscopic detection of Cr3+, Cu2+, Fe3+, and Gd3+ metal ions. Sci. Total Environ. 2022, 845, 157242. [CrossRef]

27. Chen, L.; Li, L.; Wu, D.; Tian, X.; Xia, D.; Lu, L.; Yang, C.; Nie, Y. Construction of multi-channel fluorescence sensor array and
its application for accurate identification and sensitive quantification of multiple metal ions. Sens. Actuators B Chem. 2020,
303, 127277. [CrossRef]

28. Wang, H.; Chen, M.; Sun, Y.; Xu, L.; Li, F.; Han, J. Machine Learning-Assisted Pattern Recognition of Amyloid Beta Aggregates
with Fluorescent Conjugated Polymers and Graphite Oxide Electrostatic Complexes. Anal. Chem. 2022, 94, 2757–2763. [CrossRef]

29. Harrison, E.E.; Waters, M.L. Application of an Imprint-and-Report Sensor Array for Detection of the Dietary Metabolite
Trimethylamine N-Oxide and Its Precursors in Complex Mixtures. Angew. Chem. Int. Ed. 2022, 61, e202205193. [CrossRef]

30. Wang, H.; Zhou, L.; Qin, J.; Chen, J.; Stewart, C.; Sun, Y.; Huang, H.; Xu, L.; Li, L.; Han, J.; et al. One-Component Multichannel
Sensor Array for Rapid Identification of Bacteria. Anal. Chem. 2022, 94, 10291–10298. [CrossRef]

31. Sulatskaya, A.I.; Maskevich, A.A.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Fluorescence quantum yield of thioflavin T in
rigid isotropic solution and incorporated into the amyloid fibrils. PLoS ONE 2010, 5, e15385. [CrossRef] [PubMed]

32. Younan, N.D.; Viles, J.H. A Comparison of Three Fluorophores for the Detection of Amyloid Fibers and Prefibrillar Oligomeric
Assemblies. ThT (Thioflavin T); ANS (1-Anilinonaphthalene-8-sulfonic Acid); and bisANS (4,4′-Dianilino-1,1′-binaphthyl-5,5′-
disulfonic Acid). Biochemistry 2015, 54, 4297–4306. [CrossRef] [PubMed]

33. Lindberg, D.J.; Wranne, M.S.; Gilbert Gatty, M.; Westerlund, F.; Esbjorner, E.K. Steady-state and time-resolved Thioflavin-T
fluorescence can report on morphological differences in amyloid fibrils formed by Abeta(1-40) and Abeta(1-42). Biochem. Biophys.
Res. Commun. 2015, 458, 418–423. [CrossRef] [PubMed]

34. Mishra, R.; Sjolander, D.; Hammarstrom, P. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent
dye Nile red. Mol. Biosyst. 2011, 7, 1232–1240. [CrossRef] [PubMed]

35. Bongiovanni, M.N.; Godet, J.; Horrocks, M.H.; Tosatto, L.; Carr, A.R.; Wirthensohn, D.C.; Ranasinghe, R.T.; Lee, J.E.; Ponjavic, A.;
Fritz, J.V.; et al. Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping. Nat. Commun. 2016,
7, 13544. [CrossRef]

36. Nie, J.; Tian, P.; Chen, Z. Victoria Blue B acts as a protein isomerization targeting probe for monitoring lysozyme fibrillation. Sens.
Actuators B Chem. 2019, 293, 45–52. [CrossRef]

37. Nie, J.; Chen, Z. Protein-Based Nano-Vessels Facilitates the Victoria Blue B Mediated Inhibition of Amyloid Fibrillation. Macromol.
Rapid Commun. 2020, 41, e2000368. [CrossRef]

38. Udeh-Momoh, C.; Zheng, B.; Sandebring-Matton, A.; Novak, G.; Kivipelto, M.; Jonsson, L.; Middleton, L. Blood Derived Amyloid
Biomarkers for Alzheimer’s Disease Prevention. J. Prev. Alzheimer’s Dis. 2022, 9, 12–21. [CrossRef]

39. West, T.; Kirmess, K.M.; Meyer, M.R.; Holubasch, M.S.; Knapik, S.S.; Hu, Y.; Contois, J.H.; Jackson, E.N.; Harpstrite, S.E.;
Bateman, R.J.; et al. A blood-based diagnostic test incorporating plasma Abeta42/40 ratio, ApoE proteotype, and age accurately
identifies brain amyloid status: Findings from a multi cohort validity analysis. Mol. Neurodegener. 2021, 16, 30. [CrossRef]

40. Li, Y.; Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Weiner, M.W.; Shaw, L.M.; Masters, C.L.; Fowler, C.J.;
Trojanowski, J.Q.; et al. Validation of Plasma Amyloid-beta 42/40 for Detecting Alzheimer Disease Amyloid Plaques. Neurology
2022, 98, e688–e699. [CrossRef]

41. Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Li, Y.; Gordon, B.A.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L.S.;
Xiong, C.; et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology 2019, 93,
e1647–e1659. [CrossRef] [PubMed]

42. Wang, B.; Han, J.; Zhang, H.; Bender, M.; Biella, A.; Seehafer, K.; Bunz, U.H.F. Detecting Counterfeit Brandies. Chemistry 2018, 24,
17361–17366. [CrossRef] [PubMed]

43. Hatai, J.; Motiei, L.; Margulies, D. Analyzing Amyloid Beta Aggregates with a Combinatorial Fluorescent Molecular Sensor.
J. Am. Chem. Soc. 2017, 139, 2136–2139. [CrossRef] [PubMed]

http://doi.org/10.1016/j.talanta.2021.122131
http://doi.org/10.1016/j.scitotenv.2022.157242
http://doi.org/10.1016/j.snb.2019.127277
http://doi.org/10.1021/acs.analchem.1c03623
http://doi.org/10.1002/anie.202205193
http://doi.org/10.1021/acs.analchem.2c02236
http://doi.org/10.1371/journal.pone.0015385
http://www.ncbi.nlm.nih.gov/pubmed/21048945
http://doi.org/10.1021/acs.biochem.5b00309
http://www.ncbi.nlm.nih.gov/pubmed/26087242
http://doi.org/10.1016/j.bbrc.2015.01.132
http://www.ncbi.nlm.nih.gov/pubmed/25660454
http://doi.org/10.1039/c0mb00236d
http://www.ncbi.nlm.nih.gov/pubmed/21279219
http://doi.org/10.1038/ncomms13544
http://doi.org/10.1016/j.snb.2019.04.146
http://doi.org/10.1002/marc.202000368
http://doi.org/10.14283/jpad.2021.70
http://doi.org/10.1186/s13024-021-00451-6
http://doi.org/10.1212/WNL.0000000000013211
http://doi.org/10.1212/WNL.0000000000008081
http://www.ncbi.nlm.nih.gov/pubmed/31371569
http://doi.org/10.1002/chem.201804607
http://www.ncbi.nlm.nih.gov/pubmed/30298635
http://doi.org/10.1021/jacs.6b10809
http://www.ncbi.nlm.nih.gov/pubmed/28170248

	Introduction 
	Results and Discussion 
	Methods and Materials 
	Reagent 
	Instrumentation 
	Machine Learning Algorithms 
	Linear Discriminant Analysis 
	Titration Experiment and Preparation of Sensor 
	Pretreatment of A Proteins 
	A40/A42 Aggregates Identification 

	Conclusions 
	References

