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Abstract: Periodontitis as a highly prevalent chronic infection/inflammatory disease can eventually
lead to tooth loss and masticatory dysfunction. It also has a negative impact on general health and
largely impairs quality of life. The tissue destruction during periodontitis is mainly caused by the
excessive immune–inflammatory response; hence, how to modulate the host’s reaction is of profound
importance for effective periodontal treatment and tissue protection. Melatonin, as an endogenous
hormone exhibiting multiple biological functions such as circadian rhythm regulation, antioxidant,
and anti-inflammation, has been widely used in general healthcare. Notably, the past few years have
witnessed increasing evidence for the application of melatonin as an adjunctive approach in the
treatment of periodontitis and periodontitis-related systemic comorbidities. The detailed underlying
mechanisms and more verification from clinical practice are still lacking, however, and further
investigations are highly required. Importantly, it is essential to establish standard guidelines in the
near future for the clinical administration of melatonin for periodontal health and general wellbeing.

Keywords: periodontitis; tissue destruction; systemic comorbidities; melatonin; adjunctive treatment;
host-modulation therapy

1. Introduction

Periodontitis is a bacteria-induced, chronic infection/inflammatory disease charac-
terized by progressive destruction of tooth-supporting tissues. Periodontitis has become
the main reason for tooth loss/edentulism in adults worldwide [1]. It is also linked closely
with other systemic diseases such as cardiovascular disease, Alzheimer’s disease, dia-
betes, and cancer, thus profoundly impairing people’s quality of life [2,3]. As the most
common chronic inflammatory disease of humans, periodontitis has brought about huge
socioeconomic impacts and healthcare costs [4]. Of note, the prevention and treatment of
periodontitis have become the priority for periodontal research and clinical practice.

The occurrence of periodontitis is due to microbial dysbiosis and dysregulated host
response. The accumulation of a dental plaque biofilm initiates the local inflammation (gin-
givitis), which in turn accelerates the dysbiotic environment and leads to dysregulation of
the host immune–inflammatory response. Excessive release of inflammatory cytokines and
chemokines, enhanced reactive oxygen species (ROS), and imbalanced bone metabolism
further result in the destruction of periodontal tissues [5]. Herein, the ultimate objective of
periodontal treatment is to modulate the excessive immune–inflammatory response and to
rebuild the symbiotic environment between microbes and the host.

Currently, mechanical plaque removal by scaling and root planing (SRP) is the most
widely applied method for the treatment of periodontitis [6]. Periodontal status in most
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patients could be improved after the performance of these basic periodontal therapies. How-
ever, simple plaque removal cannot totally quench the excessive immune–inflammatory
response and re-establish the imbalanced microenvironment; progressive attachment loss
still exists in certain patients after SRP [7]. Moreover, the degree of periodontal tissue de-
struction and the reaction to periodontal therapy vary greatly among individuals due to the
discrepancy of host’s genetic risk factors and systemic conditions, together with the environ-
mental and acquired risk factors. Thereby, adjunctive treatment such as host-modulation
therapy might be a better choice that should be considered.

The 2017 Nobel Prize in Physiology or Medicine was awarded for ‘the discoveries of molec-
ular mechanisms controlling the circadian rhythm’ [8]. Melatonin, an endogenous hormone that
controls the sleep–wake cycle, began to draw people’s attention due to its multiple biological
effects. Numerous functions of melatonin, such as circadian rhythm regulation, anti-infection,
anti-inflammation, antioxidant, bone remodeling, etc., have been identified. Clinical studies
mainly focus on its therapeutic effects on sleep and circadian disorders, neuroprotection, cancer,
and immunological applications [9]. Of note, growing attention has focused on its utilization
in the field of periodontology as a host-modulation agent, with positive conclusions obtained
from both laboratory work and clinical trials [10–13], although there is still no standard protocol
for its precise administration in clinical practice. More investigations are required before its
wide application.

The aim of this review is to summarize and discuss current evidence for the applica-
tion of melatonin in periodontal treatment, including its beneficial effects on periodontal
parameters, and most importantly, on periodontitis-related systemic comorbidities. First,
however, a brief introduction is given on the importance and the pathogenesis of periodon-
titis, and the limitation of current treatment methods, to provide a better understanding
of the necessity and advantage for using melatonin as an adjunctive approach for the
treatment of periodontitis.

2. Periodontitis: Importance, Pathogenesis, and Treatment
2.1. Importance of Periodontitis: ‘Local’ Lesion with Huge Disasters

Periodontitis is a chronic multifactorial inflammatory lesion that gradually destroys
periodontium, which contains hard tissues such as alveolar bone and cementum and soft
tissues such as gingiva and periodontal ligament. Left uncontrolled, periodontitis can
eventually lead to severe tooth loss and edentulous and masticatory dysfunction. Indeed,
periodontitis is the main reason for tooth loss in adults [1].

Periodontitis is not just a local lesion limited to the oral cavity, but closely linked to systemic
health [3]. For instance, data from the National Health and Nutrition Examination Survey in the
United States shows that moderate and severe periodontitis enable dampening of lung func-
tion [14]. A recent assessment indicates that periodontitis may contribute to poor coronavirus
disease 2019 (COVID-19)-related outcomes [15]. Even within ‘self-perceived healthy’ adults,
existing severe periodontitis could well indicate the possible presence of multiple inflammatory
comorbidities [16]. Moreover, periodontopathogens such as Porphyromonas gingivalis (P. gingi-
valis) is associated with cardiovascular disease [17–19], cancer [20–22], insulin resistance [23,24],
Alzheimer’s disease [25,26], and adverse pregnancy outcomes [27,28]. Furthermore, clinical
periodontal treatment is able to improve the anemic status [29], modulates endotoxemia and
stool microbial dysbiosis [30], could reduce the risks of perinatal mortality and preterm birth [31],
and is beneficial for the effective management of type 2 diabetes [32–34].

Periodontitis has become a huge socioeconomic burden worldwide [35]. According
to the first Global Burden of Disease (GBD) Study, severe periodontitis affects 11.2% of
the entire global population and has been ranked as the sixth most prevalent disease in
humans [4,36]. In China, periodontal disease could be detected among 90% of adults,
and more than 30% of adults are suffering from severe periodontitis [37]. Notably, the
global age-standardized prevalence rate of severe periodontitis increased by 8.44% during
the last 30 years (from 1990 to 2019) [38]. Huge expenditure has been paid for direct
periodontal treatment and indirect productivity losses. In 2010 alone, the indirect costs
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resulting from dental diseases were approximately $144 billion worldwide, among which
44% was due to severe tooth loss and 38% to severe periodontitis [4]. In 2018, around USD
154 billion and EUR 158 billion costs were caused by periodontal disease in the US and
Europe respectively [39].

In summary, periodontitis as a ‘local’ lesion in the oral cavity can result in huge
disasters to systemic health and to the entire world. Thus, more efforts are urgently needed
for the prevention and treatment of periodontitis. To control periodontitis successfully, it is
necessary to clarify the pathogenesis of periodontitis, which means the biological processes
that lead to the disease.

2.2. Pathogenesis of Periodontitis: Infection and Inflammation
2.2.1. Infection: Initiation of Periodontitis

Researchers in the earlier era proposed that calculus around the teeth was the local
etiological factor of the disease. Following the expansion of our knowledge on micro-
biology, the importance of bacteria in the etiology began to rise. The last century has
successively witnessed the occurrence of the ‘nonspecific plaque hypothesis’ (NSPH) [40],
the ‘specific plaque hypothesis’ (SPH) [40], the ‘ecological plaque hypothesis’ (EPH) [41],
and the ‘keystone pathogen hypothesis’ (KPH) [42,43]. The four hypotheses represent
the development of our knowledge on the etiology of periodontal disease. In spite of
some misunderstandings in earlier days, we are indeed gradually approaching the truth.
Actually, the initiation of periodontal diseases is the combination of the NSPH, EPH, and
KPH [44]. In the light of these theories, mechanical plaque removal is still the most widely
applied method for disease prevention and treatment. Nevertheless, the development of
periodontitis is a highly complex process, which is affected by both the pathogens and the
host. Fully understanding how the host determines the development of periodontitis is of
critical importance for preventing tissue damage caused by the disease.

2.2.2. Inflammation: Progression of Periodontitis

In the 1990s, people began to realize that, although bacteria play essential role in the
initiation of periodontitis, they are inadequate to cause severe hard-tissue destruction. A
classical model of periodontal disease pathogenesis was developed by Page and Kornman
in 1997, demonstrating that the microbial challenge and the host response influence each
other, leading to the progression of periodontitis [45]. This model highlighted for the first
time that tissue breakdown is not only caused by the direct effects of bacteria, but also
results from the immune–inflammatory response. Moreover, the degree of periodontal
tissue destruction varies greatly among individuals due to differences in the host’s genetic
risk factors together with the environmental and acquired risk factors. Based on this model,
simple removal of the microbial flora is insufficient for periodontal treatment—risk factors
from the host and the environment need to be considered as well [46].

In 2015, a new model of periodontal disease pathogenesis [47] clarifies the concept
of ‘clinical health’, meaning a symbiotic relationship between oral microorganisms and
the host, but not a condition without any microbes. Indeed, a health-promoting biofilm is
necessary and equally important for maintaining the symbiotic state. Moreover, unlike the
classical paradigm stating a unidirectional route from the pathogenic microflora to inflam-
mation, it is now clear that inflammation also facilitates the biofilm formation and function.
Thus, further investigations are required to develop novel approaches for resolving the
chronic inflammation lesion and re-establishing the symbiotic relationship between the
oral flora and the host.

2.3. Periodontal Tissue Destruction: Consequences of Inflammation

Inflammation is a complex biological response of our body when facing harmful
stimuli such as pathogens. During the process of inflammation, all kinds of immune cells,
such as neutrophils, monocytes/macrophages, dendritic cells, and activated T-cells and
B-cells, gather at the disease site. A cluster of (pro)inflammatory cytokines, enzymes,
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and mediators are secreted by them, accompanied with increased levels of ROS. These
components form as a network fighting against the invading pathogens, while resulting in
tissue destruction at the same time.

2.3.1. Inflammation-Induced Destruction: Caused by Cytokines

Increased serum levels of cytokines and mediators, such as IL-1, IL-6, IL-12, tumor
necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and C-reactive protein (CRP), have
been reported in patients with severe periodontitis [48]. These cytokines, on one hand,
can damage periodontal tissues directly, leading to irreversible periodontal attachment
loss [48]. On the other hand, cytokines act as key modulators of cellular responses by
inducing intracellular signaling and modifying gene expression during periodontal in-
flammation. For example, IL-1 and TNF-α as proinflammatory cytokines upregulate the
immune–inflammatory level and enhance the expression of many components includ-
ing matrix metalloproteinase (MMP) and receptor activator of nuclear factor kappa-B
ligand (RANKL) [49]. These components in turn cause tissue damage through various
mechanisms (Figure 1).

MMPs are a cluster of extracellular proteinases that exert multifunctions during vari-
ous physiological events such as immune response and tissue repair. MMPs have potent
ability to degrade extracellular matrix proteins; thus, their activation is tightly regulated
such as by tissue inhibitors of metalloproteinases (TIMPs) [50] and by extracellular ma-
trix metalloproteinase inducer (EMMPRIN) [51]. When uncontrolled inflammation like
periodontitis occurs, the established MMP proteolytic cascades result in widespread peri-
odontal tissue destruction [52]. Our group has identified higher expression of EMMPRIN
in inflamed human gingiva than in healthy individuals [53]. Enhanced MMP-1, MMP-2,
MMP-3, MMP-7, MMP-8, MMP-13, and MMP-9 levels have been detected in the gingi-
val crevicular fluid (GCF) and saliva samples in periodontitis patients, in parallel with
decreased periodontal parameters [54–60]. Moreover, active MMPs can modulate the
biological functions of certain cytokines and chemokines as well, thus in turn regulate peri-
odontal inflammation [52]. Herein, MMPs have been regarded as key regulators involved
in periodontal tissue destruction and potential targets for periodontal treatment.

RANKL is a type II membrane protein that binds to RANK on osteoclast surfaces
and functions as a key factor for osteoclast differentiation and activation. Osteoprotegerin
(OPG) functions as a decoy receptor for RANKL, thus inhibiting osteoclastogenesis and
bone resorption. The RANKL/OPG ratio in periodontal tissues determines the occurrence
and degree of bone destruction, and enhancing expression of RANKL in periodontium
is highly associated with bone resorption [61]. In periodontitis tissues, many more T
cells and B cells express RANKL, as compared with healthy gingival tissues [62,63], thus
leading to more bone resorption. Nevertheless, conventional periodontal treatment such as
mechanical plaque removal cannot affect the RANKL/OPG ratio. So, novel approaches
that could reverse the RANKL/OPG ratio might be an alternative choice for preventing
bone destruction.

2.3.2. Inflammation-Induced Destruction: Caused by ROS

Increasing evidence has identified the role of ROS in the pathogenesis of periodontitis
during the past few years. Enhanced levels of oxidative stress markers and decreased total
antioxidant status (TAS) have been reported in saliva, GCF, and plasma of periodontitis
patients, in parallel with poorer clinical periodontal parameters and higher levels of oxidant-
induced DNA damage, with reference to periodontally healthy controls [64–66]. Moreover,
systemic disorders that have tight connections with periodontitis (e.g., type 2 diabetes,
obesity, and rheumatoid arthritis) and unhealthy lifestyles could increase the production
of ROS, which further worsens the periodontal condition [67]. Furthermore, periodontal
treatment had beneficial effects on periodontal parameters and the levels of the oxidative
stress markers and antioxidant status [64,68]. Herein, oxidative stress could function as a
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therapeutic target for periodontitis management. Indeed, numerous endeavors have been
made to manage periodontitis using ROS scavengers and obtained promising results [69,70].

The excessive ROS is normally released by the ‘hyperactivated’ polymorphonuclear neu-
trophils (PMNs) under inflammatory condition [71]. PMNs are the most abundant white blood
cells in humans and the first immune cell line of defense against periodontopathogens [72].
They play an essential role in maintaining periodontal health through phagocytosis and ROS
production. Moderate levels of ROS help to eradicate invading pathogenic microbes and exert
essential functions on immune regulation [73]. Whereas, an overabundance of ROS results in
increased oxidant stress as well as reduced antioxidant capacity, which then lead to pathological
alteration and eventually host tissue destruction [74].

Several mechanisms exist behind the periodontal tissue damage caused by the su-
perfluous ROS. ROS-induced oxidative stress can directly damage lipid, nucleic acid, and
protein, leading to lipid peroxidation, chromosome disruption, and protein denaturation.
Moreover, ROS as a signaling molecule is able to regulate several inflammatory processes
such as NF-κB signaling activation [75], NLRP3-induced inflammasomes assembling [76],
and RANKL-stimulated osteoclastogenesis [77], which lead to cytokine-induced tissue
damage, pyroptosis, and bone resorption, respectively. Furthermore, ROS is able to activate
the key MMPs in periodontal tissues via direct enzyme oxidation [78], and the activated
MMPs degrade extracellular matrix proteins, as discussed above.

2.4. Current Concepts in Periodontitis Treatment and Further Perspectives

Recently, the European Federation of Periodontology (EFP) published two guidelines
for the treatment of stage I to IV periodontitis, which might be the latest and most effective
evidence-based approach for the management of periodontitis [79,80]. For stages I, II,
and III periodontitis, a pre-established stepwise approach is recommended depending
on the stage of the disease. Four steps are included in this guidance: (1) patients’ behav-
ioral changes; (2) supra- and subgingival instrumentation (i.e., scaling and root planing);
(3) proper periodontal surgical interventions; (4) regular supportive periodontal care [79].
Stage IV periodontitis is much more complex than stages I–III periodontitis; hence, a
combined periodontal therapy involving different departments is needed. Additionally,
compared with stages I–III periodontitis, patients with stages IV periodontitis should be
more aware of their condition and give more attention to self-performed plaque control
and risk factor control [80].

In general, the two guidelines emphasize the importance of subgingival dental biofilm
control. All of these approaches are based on the etiology of periodontitis that periodon-
topathogens initiate the disease; hence, removal of all the subgingival dental biofilm is the
most effective method and has to be the priority during periodontal treatment. However,
even with similar quantity of dental plaque, the progress rate of periodontitis varies greatly
among different people. As mentioned above, periodontal tissue destruction is caused
by the inflammation-related cytokines and mediators, and the host’s genetic risk factors
together with the environmental and acquired risk factors determine the degree of tissue
damage. In this respect, the term ‘host-modulation therapy’ was introduced by Maria E.
Ryan and Lorne M. Golub [81–83] and developed rapidly for the treatment of periodontitis.

Initially, anti-inflammation drugs such as inhibitors of PGE2 and cyclooxygenase
(COX), or TNF-α antagonists were used as adjunctive host-modulation therapies, while
none of them have been approved for clinical use due to their serious side effects [84].
Based on its potent antimatrix metalloproteinase ability [85,86], doxycycline (nonantibiotic
formulations) have been approved for periodontitis treatment in the US, Canada, and Eu-
rope, and exert powerful effects on preventing tissue destruction [87]. Yet, considering the
severe consequence, the high occurrence rate, and the relapse/recalcitrance of periodontitis,
developing more host-modulation agents for periodontal treatment is still highly required.
Concerning the pathogenesis of periodontitis, the newly developed agent should have the
ability of anti-infection, inflammation regulation, antioxidation, and bone regeneration. In
this regard, melatonin might be the most appropriate candidate.
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3. Melatonin: Biological Functions and Beneficial Effects on Periodontal Health

Melatonin (N-acetyl-5-methoxy-tryptamine) is an endogenous hormone exhibiting a
broad spectrum of biological effects. It was initially isolated from bovine pineal glands [88],
and many investigations have been made since then for this amazing molecule. Melatonin is
mainly produced and released by the pineal gland, and is synthesized by other extrapineal
tissues as well, such as heart, liver, placenta, kidney, gut, and bone marrow [89,90]. The
biosynthesis and secretion pattern of melatonin and its application to cancer treatment
have been reviewed by us recently [91]. So, the current review mainly focuses on the latest
evidence for the protective role of melatonin in the pathogenesis of periodontitis, and the
biological functions of melatonin that may be involved in periodontal treatment.

3.1. Melatonin and Periodontal Health: Increasing Evidence
3.1.1. Evidence from Clinical Observations

Numerous clinical trials have been performed to measure the melatonin levels in the
samples from the oral cavity (e.g., plasma, saliva, GCF, and gingival tissue) of humans
with and without periodontitis [92–95]. Recently, a systematic review and meta-analysis
including 14 articles was performed and concluded that, compared with healthy controls,
patients with chronic periodontitis exhibited a significantly lower level of melatonin in
saliva [96] (Table 1). However, the included studies had limited quality and low level of
evidence. More investigations with an increased sample size and stringent age and sex
matching are required to obtain a convincing conclusion. Moreover, all of these results were
obtained from cross-sectional studies; it would be more persuasive to perform longitudinal
studies recording melatonin levels within the same individuals at a different stage of
periodontal condition (i.e., from periodontal health to disease). Nevertheless, this evidence
does make clear the potential effects of melatonin for maintaining periodontal health.

Table 1. Increasing evidence for the beneficial role of melatonin in patients with periodontitis.

Study Type Main Findings References

Clinical observations

• Salivary and GCF
melatonin levels
decrease in subjects with
periodontitis

[92]

• Melatonin levels in both
GCF and saliva were
lower in patients with
chronic periodontitis and
aggressive periodontitis
than in patients with
gingivitis and in healthy
subjects

[93]

• Melatonin levels were
significantly lowered in
gingival tissue samples
of chronic periodontitis
patients compared to
healthy individuals

[94]
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Table 1. Cont.

Study Type Main Findings References

• Melatonin in GCF levels
were significantly higher
in the control than the
GAgP and CP groups

[95]

• Patients with chronic
periodontitis exhibited a
significant lower level of
melatonin in saliva, with
reference to healthy
controls

[96]

Randomized controlled
clinical trials

• Intrapocket application
of 1% melatonin gel for 1
week combined with
NSPT helps to get better
clinical and radiographic
outcomes

[97]

• Intrapocket application
of 5% melatonin gel
weekly once for 4 weeks
combined with NSPT
improves clinical and
radiographic outcomes

[98]

• Taking melatonin
capsules (1 mg per day
for 1 month) after NSPT
results in a greater CAL
gain and PD reduction

[99]

• A 2-month regimen of 10
mg oral melatonin
capsule once daily before
bedtime after NSPT
results in a greater CAL
gain and PD reduction

[100]

• Adjunctive melatonin
supplementation (topical
and systemic) could
significantly improve the
PD, CAL, and other key
periodontal parameters
(systematic review and
meta-analysis)

[13,101]

• Melatonin (tablets
containing 6 mg of
melatonin, once a day for
8 weeks) benefits
periodontal status of
type 2 diabetes patients

[102]
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Table 1. Cont.

Study Type Main Findings References

• Melatonin (tablets
containing 6 mg of
melatonin, once a day for
8 weeks) ameliorates the
inflammatory and
antioxidant parameters
of type 2 diabetes
patients

[103,104]

• Melatonin exerts positive
effects on bone formation
around implants
(systematic review and
meta-analysis)

[105,106]

• The application of
ABG/melatonin
(VIVAMAX3; AMOUN
Pharmaceutical
Industries Co. (APIC),
Cairo, Egypt) exerts
positive effects on bone
formation around
implants

[107]

Abbreviations: GCF, gingival crevicular fluid; GAgP, generalized aggressive periodontitis; CP, chronic periodonti-
tis; NSPT, nonsurgical periodontal therapy; CAL, clinical attachment level; PD, probing depth; ABG, autogenous
bone graft.

3.1.2. Evidence from Randomized Controlled Clinical Trials

Increasing evidence from clinical trials has proved that melatonin exhibits beneficial
effects for the treatment of periodontitis. For instance, local delivery of melatonin gel as
an adjunct to nonsurgical periodontal therapy (NSPT) helps to provide better clinical and
radiographic outcomes [97,98]. Systemic administration of melatonin after one-stage full
mouth NSPT results in a greater clinical attachment level (CAL) gain and probing depth
(PD) reduction, with reference to NSPT with placebo treatment [99,100]. Those reported
have been analyzed recently by several systematic review and meta-analyses, concluding
that adjunctive melatonin supplementation (topical and systemic) can significantly improve
the PD, CAL, and other key periodontal parameters [13,101]. Moreover, for those patients
with type 2 diabetes, systemic application of melatonin was able to benefit their periodon-
tal status [102] and ameliorate their inflammatory and antioxidant parameters [103,104].
Furthermore, in the field of implant dentistry, melatonin may exert positive effects on bone
formation around implants [105–107], despite that the available data are still limited and
further trials are required to support the clinical significance (Table 1).

Despite the above evidence proving the beneficial effects of melatonin on periodontal
treatment, several reports also showed no statistical difference for the improvement of
periodontal parameters with or without melatonin treatment. For instance, Konecna
and colleagues demonstrated that systemic administration of melatonin neither prevent
alveolar bone loss nor reduce salivary markers of oxidative stress within a periodontitis rat
model, and mouth rinse with melatonin did not demonstrate positive effects in patients
with periodontitis [108]. Moreover, Faramarzi et al. revealed that, although melatonin
reduced more serum ferritin levels than the control group, no statistical difference was
calculated [109]. The occurrence of these discrepancies may due to the limited sample
size, the low dosage of melatonin applied, or the short duration of the study. Hence, more



Int. J. Mol. Sci. 2022, 23, 14541 9 of 23

long-term observations with larger sample size and appropriate drug concentration are
needed for further confirmation.

3.2. Melatonin and Periodontal Health: Underlying Mechanisms

As discussed above, periodontitis is initiated by bacteria-induced infection, yet the
periodontal tissue destruction is mainly caused by the excessive immune–inflammatory
response. The action of inflammation includes upregulated expressions of cytokines and
chemokines (e.g., IL-1β, TNF-α, and MMPs), increased ROS levels, high RANKL/OPG
ratio, and so on. Herein, in order to manage periodontitis and reduce the tissue damage
it causes, elimination of the periodontopathogen-induced infection is required to reduce
inflammatory cytokine expression levels, to control the ROS level in periodontal tissues, and
to re-establish balanced bone metabolism. Notably, melatonin exerts multitudinal biological
functions that are suitable for periodontal treatment (Figure 1); detailed mechanisms are
described as follows.
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Figure 1. Melatonin exerts multitudinal biological functions for periodontal tissue protection. When
facing challenges from periodontopathogens, immune cells secret a cluster of (pro)inflammatory cytokines,
chemokines, enzymes, and mediators, which cause tissue damage through various mechanisms (see
the text above for details). Melatonin protects periodontal tissues from destruction via its antimicrobial,
anti-inflammation, antioxidation, and bone protection effects (see the text below for details).

3.2.1. Antimicrobial Effects of Melatonin

Melatonin is an endogenous hormone that exhibits potent anti-infection ability as
well [110]. In vitro studies have demonstrated that melatonin was able to inhibit the growth
of Pseudomonas aeruginosa, Acinetobacter baumannii, and Methicillin-resistant Staphylococcus
aureus [111]. The in vivo antibacterial action of melatonin is normally associated with
immune responses, such as reducing inflammatory cytokine production [112] and accel-
erating healing from bacteria-induced damage [113]. However, only very few studies
investigate the antimicrobial activity of melatonin against periodontopathogens. To give
an instance, both melatonin and its receptor agonist ramelteon exhibit antimicrobial effects
against planktonic-cultured P. gingivalis. Notably, they inhibit the formation of P. gingivalis
biofilm, disrupt the established biofilm, and reduce the viability of P. gingivalis biofilm [114].
Considering the powerful antibacterial ability of melatonin, it is reasonable to suppose
similar anti-infection effects of melatonin on oral pathogens such as Tannerella forsythia (T.
forsythia) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Moreover,
since the formation of persisters is one of the survival strategies for P. gingivalis [115,116], it
would be promising to explore the antipersister potential of melatonin. Therefore, more
investigations are needed to prove these hypotheses.
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3.2.2. Anti-Inflammation Effects of Melatonin

Since most periodontal destruction is caused by the abundant inflammatory responses,
better control of inflammation may prevent tissue damage to a great extent. The current
widely used anti-inflammation drugs such as aspirin, non-steroidal anti-inflammatory
drugs (NSAIDs), and corticosteroids always lead to serious side effects such as gastroin-
testinal discomforts [117] and bone comorbidities [118]. Melatonin as a hormone has
been proved to exert strong anti-inflammation effects with very few side effects [119].
Herein, investigations have been performed to verify whether melatonin could prevent
periodontal tissue damage via controlling the inflammatory responses. For instance, Kara
et al. have proved that in periodontitis-induced rats, melatonin reduced inflammatory
cytokines (IL-1β and TNF-α) and minimized periodontal tissue destruction [120]. More-
over, periodontitis-induced rats exhibit high RANKL/OPG ratio, enhanced TLR4/MyD88
activity, and upregulated proinflammatory cytokine levels. Notably, melatonin remarkably
normalizes RANKL/OPG signaling by depressing TLR4/MyD88-mediated proinflam-
matory cytokine production [121]. Furthermore, IL-1β-induced CXCL-10, MMP-1, and
TIMP-1 production in human periodontal ligament cells could be decreased by melatonin
as well [122].

3.2.3. Antioxidant Effects of Melatonin

It is speculated that the origination of melatonin can date back to 3.0–2.5 billion years
ago, when melatonin was designed to neutralize the toxic O2 in photosynthetic bacteria
during photosynthesis. After almost 3 billion years evolution, the functions of melatonin
have expanded greatly while the original antioxidant function has been maintained [123].
Nowadays, it is widely acknowledged that melatonin is a potent free radical scavenger and
antioxidant. Different from other classical antioxidants, the metabolites of melatonin are
able to neutralize oxygen derivatives as well. Thus, the cascade reaction makes melatonin
much more powerful than other antioxidants such as vitamin C, vitamin E, glutathione,
and NADH [124].

Owing to increasing attention on ROS for its tissue damage effects, numerous efforts
have been made to control excessive ROS in periodontal tissue. As the most potent an-
tioxidant substance, melatonin might be an excellent candidate. A randomized controlled
clinical trial showed that melatonin significantly enhanced the antioxidative capacity (TAC)
and inhibited the MMP-9 levels in GCF [98]. A meta-analysis of two RCTs revealed that in
periodontitis patients with diabetes, combined NSPT with melatonin remarkably reduce
the periodontal pocket depths, with reference with NSPT alone [125]. In gingival fibroblast
from Wistar rats, glutamate (GLUT) and DL-buthionine sulfoximine (BSO) treatment lead
to the production of superoxide anion and cell apoptosis, which can be totally counteracted
by melatonin [10]. In periodontitis-induced rats, melatonin alleviates the oxidative stress
caused by periodontal inflammation by inhibiting the inflammatory cytokine expression
and restoring the antioxidant concentration [120]. Moreover, P. gingivalis has been proved
to elevate oxidative stress and inflammatory response in human aortic endothelial cells via
the NF-κB-BMAL1-NF-κB signaling loop, thus accelerating atherosclerosis progression. No-
tably, melatonin combined with metronidazole reversed the superoxide radical production
and proinflammatory cytokines elevated by P. gingivalis. Thus, the combination of metron-
idazole and melatonin might be an alternative approach for atherosclerotic cardiovascular
diseases [126].

3.2.4. Bone Protection Effects of Melatonin

Bone resorption and tooth loss are the most serious consequence of periodontitis. How
to prevent bone damage and re-establish the balanced bone metabolism is the primary
objective during periodontal treatment. Through various mechanisms, melatonin has been
demonstrated to exert beneficial potential on bone regeneration. As an illustration, the pro-
liferation and synthesis rate of type I collagen are stimulated by melatonin in human bone
cells and the human osteoblastic cell line [127]. Moreover, melatonin promotes osteogenesis
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in MC3T3-E1 cells by activating Sirtuin 1 [128], promotes bone marrow mesenchymal stem
cell osteogenic differentiation [129], and inhibits adipogenesis yet enhances osteogenesis of
human mesenchymal stem cells [130]. Furthermore, melatonin prevents bone resorption
via attenuating RANKL-induced osteoclastogenesis [131,132].

Melatonin could protect the bone in the oral cavity as well. In rats with experimental
periapical lesions, melatonin exerts anti-inflammatory and bone-protection activities by
inhibiting IL-1β, RANK, and RANKL expression levels while enhancing OPG expres-
sion level. Moreover, melatonin significantly decreases the bacteria localization scores
in periodontal tissues [133]. The osteogenic differentiation of dental pulp mesenchymal
stem cells (DPSCs) can be enhanced by melatonin and in vivo bone defects can be rescued
by melatonin-preconditioned DPSCs [134,135]. In rats with experimental periodontitis,
melatonin treatment decreases serum terminal C telopeptide of collagen Type I levels
and increases bone alkaline phosphatase levels. Alveolar bone resorption, myeloper-
oxidase activity, and RANKL and osteoclast activity are statistically downregulated by
melatonin [136]. Melatonin could also protect drug-induced damage in osteoblasts. For
instance, the application of chlorhexidine results in poor morphology of MC3T3 cells, leads
to the upregulation of total ROS and superoxide levels in the cells, and diminishes the num-
ber of vital and metabolic active osteoblasts. Notably, melatonin is able to alleviate these
damages caused by chlorhexidine in MC3T3 cells, and thus protects osteoblasts during
chlorhexidine treatment [137]. For the prevention of peri-implantitis, melatonin could be a
potent agent as well. In the lipopolysaccharides (LPS)-induced peri-implantitis rat model,
melatonin dampens the proinflammatory cytokine expression, decreases the osteoclast
numbers, prevents alveolar bone damage, and reduces the peri-implantitis incidence. The
osteoclastic formation and function are suppressed, and the osteoblastic differentiation and
function are promoted by melatonin in vitro as well [11].

3.2.5. Other Effects of Melatonin

Apart from the biological functions above, melatonin exhibits protective effects on oral
tissues under harmful conditions as well. For instance, melatonin administration is able
to decrease the oxidative stress and protect periodontal tissues caused by radiation ther-
apy [138]. Moreover, melatonin attenuates the senescence of human periodontal ligament
cells (PDLSCs) caused by ethanol-stimulation [139] and long-term ex vivo culture [140].

In summary, increasing evidence has identified the beneficial effects of melatonin on
maintaining periodontal health and on periodontal treatment. The multiple biological
functions of melatonin facilitate its protective role in periodontal tissues. Whereas most
evidence comes from laboratory work, there is still a long way to go before the widespread
administration of melatonin as an adjunctive therapy for periodontal treatment. More
investigations are needed to determine the dosage and delivery approach for melatonin
during its application.

4. Melatonin and Periodontitis-Related Systemic Diseases: Far More Than Oral Cavity

As mentioned above, periodontitis is a ‘local’ lesion in the oral cavity yet is involved in
the development of various systemic comorbidities. At the same time, systemic diseases and
disorders could affect the development and consequence of periodontitis as well. So, in this
part, we describe how melatonin favors those periodontitis-related systemic comorbidities.

4.1. Melatonin and Diabetes Mellitus

The relationship between diabetes mellitus and periodontitis has drawn people’s
attention worldwide for many years. It has been long since diabetes was considered as a
major risk factor of periodontitis [141]. Indeed, periodontitis has been regarded as the sixth
complication of diabetes ever since the 1990s [142]. At the same time, periodontitis has a
negative effect on glycemic control [143], and periodontitis patients have higher prevalence
of type 2 diabetes [144]. Additionally, periodontal treatment contributes to better glycemic
control within type 2 diabetes patients [33,34]. This bidirectional interrelationship between
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diabetes and periodontal diseases inspire us to treat them together with the cooperation of
different departments.

Diabetes is characterized by high blood glucose levels and glucose intolerance, together
with lipid and carbohydrate metabolic disorders [145]. These disturbances always cause
inflammatory changes in the body, including enhanced RANKL/OPG ratio, increased
proinflammatory mediator expression, and abundant ROS production [146]. Additionally,
periodontitis-related tissue destruction is caused by too much ROS and an abnormal
RANKL/OPG ratio. Herein, better control of diabetes could facilitate the treatment outcome
of periodontitis. In vivo studies have proved that melatonin is able to decrease osteoclastic
activity and reduce hyperglycemia-induced oxidative stress and alveolar bone loss in rats
with diabetes and periodontitis [145,147]. Clinical trials have identified the moderating
effects of melatonin on salivary RANKL/OPG ratio [148] as well as the reduction in salivary
acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin concentration in
patients with diabetes and periodontal disease [149]. Moreover, systemic administration
or topical application of melatonin alleviates the inflammatory condition and improves
periodontal status in diabetes patients with periodontitis [102,103,150]. Periodontal pocket
depths were significantly reduced when combining melatonin with NSPT in periodontitis
patients with diabetes [125].

Apart from the benefits to the local periodontal parameters, melatonin also favors the
systemic conditions of diabetes patients with periodontitis. For instance, individuals with
diabetes and periodontal disease may present high levels of serum C-reactive protein and
IL-6, which could be decreased by local application of melatonin [151]. When combined
with NSPT, melatonin leads to better glycemic control in periodontitis patients with type 2
diabetes [12,102]. In pinealectomyzed rats with periodontal disease, systemic administra-
tion of melatonin could prevent insulin resistance and increase plasma insulin levels [152].
Rats with apical periodontitis exhibit low insulin sensitivity and impaired insulin signaling,
which could be rescued by melatonin [153].

4.2. Melatonin and Cardiovascular Diseases

The increased risk of periodontitis on cardiovascular diseases has been widely investi-
gated. Periodontitis patients have a higher prevalence of cerebrovascular disease (CVD),
and periodontal treatment produces a reduction in the incidence of CVD events [154,155].
It is postulated that the bacteremia caused by periodontitis results in bacterial invasion of
endothelial cells, and this has been proved by the fact that specific oral bacterial species
have been detected in cardiovascular specimens [156].

Only several studies explore how melatonin affects periodontitis-induced cardiovascu-
lar damage. For instance, melatonin combined with metronidazole reversed the superoxide
radical production and proinflammatory cytokines elevated by P. gingivalis in human aor-
tic endothelial cells. Thus, the combination of metronidazole and melatonin might be
an alternative approach for atherosclerotic cardiovascular diseases [126]. Moreover, the
expression levels of malondialdehyde (MDA), MMP-9, and cardiac Troponin-T (cTnT) in
cardiac left ventricular tissue were upregulated in experimental periodontitis rats, and
could be downregulated remarkably by melatonin [157]. Although no obvious antioxidant
effects of melatonin were detected in this trial, another in vivo study demonstrated higher
glutathione peroxidase level in periodontitis + melatonin group than periodontitis + saline
solution group [158]. Thus, potential protective effects of melatonin on cardiovascular
tissues might exist, but more investigations are required to support this conclusion.

4.3. Melatonin and Kidney Disease

The association between kidney disease and periodontitis has been discussed for
the past few years [159]. On one hand, the impaired immune system in patients with
kidney disease leads to high risks of infectious diseases such as periodontitis. On the
other hand, periodontal pathogens and their virulence factors such as LPS, fimbriae, and
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gingipains could transfer from periodontal lesions to the kidney by the bloodstream, and
periodontitis-induced inflammatory cytokines cause kidney damage as well [160].

Very few studies investigate the role of melatonin in kidney damage within those
periodontitis patients. It has been revealed that in LPS-induced periodontitis rats, the
increased serum aspartate aminotransferase, alanine transaminase, and urea nitrogen
levels could be ameliorated with melatonin treatment [161]. A recent study demonstrated
that periodontitis enhanced the levels of proinflammatory cytokines (TNF-α and IL-1β),
oxidative stress (MDA), and proteases (MMP-8, MMP-9, and cathepsin D) in rat kidneys,
while melatonin suppressed them significantly. Nevertheless, melatonin failed to rescue
the impaired renal function [162]. More investigations are needed to further explore the
connection between periodontal treatment and kidney disease and how melatonin affects
this process.

4.4. Melatonin and Obesity

It has been concluded that overweight or obese individuals have a higher risk of peri-
odontitis. Bone marrow adiposity leads to decreased osteoblasts and increased osteoclasto-
genesis [163]. Excessive white adipose tissue results in enhanced ROS and inflammatory
cytokines production, which in turn causes periodontal tissue damage [164]. Periodontitis
patients with obese harbored higher levels of periodontopathogens such as A. actinomycetem-
comitans, T. forsythia, and Fusobacterium nucleatum [165]. On the other hand, periodontitis
could increase the risk of obesity as well [164]. Periodontitis-related insulin resistance re-
sults in hyperinsulinemia [23], which further promotes obesity [166]. Periodontitis-induced
masticatory dysfunction forces patients to select a soft, high-fat/high-calorie diet, which
facilitates fat accumulation [167].

Only two studies from the same group investigate the connections between melatonin
and periodontitis associated with obesity. In rats with comorbidities of obesity and peri-
odontitis, plasma melatonin levels were significantly lower with reference to controls and
to those rats with only obese or periodontitis [168]. Notably, adjunctive melatonin therapy
with periodontal treatment in these experimental rats remarkably prevented alveolar bone
loss and exerted protective anti-inflammatory effects. These effects were much better than
the adjunctive usage of chlorhexidine [169]. Although melatonin supplementation has been
proved to reduce body weight and prevent obesity-related complications in obese patients
or mice [170,171], there are still no reports on whether melatonin could facilitate body
weight control in periodontitis patients associated with obesity. Additional investigations
are required to verify the beneficial effects of melatonin on periodontitis-related obesity.

4.5. Melatonin and Coronavirus Disease 2019 (COVID-19)

COVID-19 has spread globally and brought about huge disasters for almost the past
three years. Many components of the established cytokine storm during COVID-19 are
similar to the cytokine expression profile of periodontitis [172]. Thus, the possible influence
of periodontitis on COVID-19 has been broadly discussed. It has been demonstrated
that periodontitis patients had a higher risk of acquiring severe COVID-19 complications,
death, ICU admissions, or assisted ventilation [15,173]. The underlying mechanisms have
been identified as well [174]. For instance, angiotensin-converting enzyme 2 (ACE2),
one of the key receptors for the invasion of SARS-CoV-2, is highly expressed on the
epithelial cells of oral mucosa [175], and could be upregulated in patients with periodontal
disease and diabetes [176]. Moreover, periodontopathogens aspirated into the lungs could
facilitate more SARS-CoV-2 invasion and replication [177]. Therefore, better management
of periodontitis may help to reduce infection and transmission of SARS-CoV-2.

Increasing evidence has proved that melatonin as an adjunctive agent exhibited bene-
ficial effects for COVID-19 prevention and treatment [178,179], although there is still no
direct evidence supporting the possible role of melatonin in COVID-19 outcomes with
periodontitis patients. It is hypothesized that melatonin may prevent the activation of
NLRP3 inflammasome, thus protect tissue damage from COVID-19 and periodontitis [180].
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Thus, more investigation from both laboratory work and clinical tests are still required to
support the hypothesis.

Above all, periodontitis is closely related with multiple systemic diseases and dis-
orders, and melatonin exhibits beneficial effects not only on periodontal health but also
on general conditions (Table 2). Nevertheless, the current investigations are far from
enough, more research is required to explore how melatonin facilitates the treatment of
other periodontitis-related comorbidities such as Alzheimer’s disease, adverse pregnancy
outcomes, and rheumatoid arthritis. Overall, based on the present evidence, the application
of melatonin should be promising and harbors a bright future.

Table 2. Melatonin and periodontitis-related systemic diseases.

Periodontitis-Related Systemic
Diseases Function Mechanisms of Melatonin Application Methods of Melatonin Reference

Diabetes mellitus

• Decreasing osteoclastic activity;
reducing
hyperglycemia-induced
oxidative stress and alveolar
bone loss

• Male Wistar rats,
intraperitoneal injection of 10
mg/kg/day for 4 weeks

[145]

• Male Sprague Dawley rats, 10
mg/body weight
intraperitoneal dose of
melatonin once a day for 14
days

[147]

• Moderating salivary
RANKL/OPG ratio

• Diabetic patients, topical
application of melatonin (1%
orabase cream formula) once
daily for 20 days

[148]

• Reduction in salivary acid
phosphatase, alkaline
phosphatase, osteopontin, and
osteocalcin concentration

• Diabetic patients, topical
application of melatonin (1%
orabase cream formula) once
daily for 20 days

[149]

• Ameliorating inflammation;
improving periodontal status

• Diabetic patients, tablets
containing 6 mg of melatonin,
once a day for 8 weeks, 1 h
before bedtime

[102]

• Diabetic patients, tablets containing
6 mg of melatonin, once a day for 8
weeks, 1 h before bedtime

[103]

• Diabetic patients, topical
application of melatonin (1%
orabase cream formula) once
daily for 20 days

[150]

• Reducing periodontal pocket
depths

• Systematic review and
meta-analysis

[125]

• Reducing serum C-reactive
protein and IL-6

• Diabetic patients, topical
application of melatonin (1%
orabase cream formula) once
daily for 20 days

[151]
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Table 2. Cont.

Periodontitis-Related Systemic
Diseases Function Mechanisms of Melatonin Application Methods of Melatonin Reference

• Leading to better glycemic
control combined with NSPT

• Diabetic patients, tablets
containing 6 mg of melatonin,
once a day for 8 weeks, 1 h
before bedtime

[12]

• Preventing insulin resistance;
increasing plasma insulin levels

• Male Wistar albino rats, 5
mg/kg body weight in drinking
water for 28 days

[152]

• Improving insulin sensitivity;
rescuing impaired insulin
signaling

• Male Wistar rats, 5 mg kg−1

melatonin (diluted in drinking
water) for 60 days

[153]

Cardiovascular diseases

• Reversing the superoxide
radical production and
proinflammatory cytokines
when combined with
metronidazole

• C57BL/6J mouse, 5 mg/kg
intraperitoneal dose of
melatonin once a day for 16
weeks

[126]

• Downregulating MDA, MMP-9,
and cTnT expression levels

• Male Sprague-Dawley rats, 10
mg/body weight
intraperitoneal dose of
melatonin once a day for 14
days

[157]

• Improving glutathione
peroxidase level

• Wistar Albino male rats,
intraperitoneal injection of 10
mg/kg/day for 2 weeks

[158]

Kidney diseases

• Downregulating serum
aspartate aminotransferase,
alanine transaminase, and urea
nitrogen levels

• Female Wistar albino rats,
intraperitoneal injection 50
mg/kg of melatonin, daily for
10 d

[161]

• Suppressing expression levels
of proinflammatory cytokines
(TNF-α and IL-1β), oxidative
stress (MDA and OSI), and
proteases (MMP-8, MMP-9, and
CtD)

• Male Sprague Dawley rats,
daily intraperitoneal dose of 10
mg/kg of melatonin

[162]

Obesity
• Preventing alveolar bone loss and
exerting protective anti-inflammatory
effects

• Wistar rats, 25 µg/mL of
melatonin dissolved in the
drinking water for 4 weeks

[169]

COVID-19 • Preventing the activation of
NLRP3 inflammasome • Hypothesis [180]

Abbreviation: RANKL, receptor activator of nuclear factor kappa-B ligand; OPG, osteoprotegerin; IL, interleukin;
NSPT, nonsurgical periodontal therapy; MDA, malondialdehyde; MMP-9, matrix metalloproteinase-9; cTnT,
cardiac Troponin-T; TNF, tumor necrosis factor-alpha; OSI, oxidative stress index; CtD, cathepsin D; NLRP3,
NOD-like receptor thermal protein domain associated protein 3.

5. Conclusions and Perspectives

Chronic infectious and inflammatory diseases have emerged as a major global health
burden [181]. Periodontitis as a bacteria-induced, chronic infection/inflammatory disease
destroys the periodontium and contributes to various systemic disorders. Based on our
understanding of the pathogenesis of periodontitis, host-modulation therapy should be an
adjunctive approach applied with classical SRP during periodontal treatment. Melatonin,
a pleiotropic hormone that has been universally applied for treating sleep disorders, is
justified as a host modulating agent during periodontal treatment, due to its anti-infection,
anti-inflammation, antioxidant, and bone remodeling capacities. Increasing evidence from
clinical practice and laboratory work has proved the beneficial effects of melatonin on
periodontal health and general healthcare. However, it is still inadequate for our current
knowledge of melatonin in the field of periodontology. There is a lack of standard guidelines
for the clinical administration of melatonin in periodontal treatment. Although both short-
term and long-term systemic usage of melatonin is safe, a few mild side effects such as
dizziness, headache, nausea, and sleepiness may occur among some individuals [182].
Thus, local delivery might be more suitable for its oral application. Therefore, more
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investigations are needed to illustrate the proper dosage and precise delivery approaches
of melatonin for periodontitis treatment. Considering the multiple beneficial effects of
melatonin on human health, we do hope this review can help to enrich our understanding
of the management of periodontitis and periodontitis-related systemic comorbidities. More
host modulating agents besides melatonin would dramatically contribute to precisely and
effectively tackling inflammatory disease-induced tissue damage.
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