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Abstract: N-terminal acetylation (NTA) is an ancient protein modification conserved throughout all
domains of life. N-terminally acetylated proteins are present in the cytosol, the nucleus, the plastids,
mitochondria and the plasma membrane of plants. The frequency of NTA differs greatly between
these subcellular compartments. While up to 80% of cytosolic and 20–30% of plastidic proteins are
subject to NTA, NTA of mitochondrial proteins is rare. NTA alters key characteristics of proteins
such as their three-dimensional structure, binding properties and lifetime. Since the majority of
proteins is acetylated by five ribosome-bound N-terminal acetyltransferases (Nats) in yeast and
humans, NTA was long perceived as an exclusively co-translational process in eukaryotes. The recent
characterization of post-translationally acting plant Nats, which localize to the plasma membrane and
the plastids, has challenged this view. Moreover, findings in humans, yeast, green algae and higher
plants uncover differences in the cytosolic Nat machinery of photosynthetic and non-photosynthetic
eukaryotes. These distinctive features of the plant Nat machinery might constitute adaptations to the
sessile lifestyle of plants. This review sheds light on the unique role of plant N-acetyltransferases in
development and stress responses as well as their evolution-driven adaptation to function in different
cellular compartments.

Keywords: compartmentalization; co-translational modification; GNAT; N-terminal acetylation;
protein turnover; PTM; stress responses

1. Introduction: N-Terminal Acetylation—An Underestimated Protein Modification

Protein modifications are key modulators of protein fate and are often the first-aid tool
for reprogramming cells in response to developmental or environmental cues. Together
with phosphorylation and ubiquitination, acetylation is one of the most pervasive protein
processing events [1]. Acetylation occurs at the α-amino group of protein N-termini (N-
terminal acetylation, NTA) or at the ε-amino group of internal lysine residues (lysine
acetylation, KA). Both NTA and KA are present throughout all kingdoms of life and are
catalyzed by N-terminal acetyltransferases (Nats) or lysine acetyltransferases (Kats) which
transfer acetyl moieties from acetyl coenzyme A (AcCoA) to their respective substrates.
Prokaryotic and eukaryotic Nats belong to the general control non-repressible 5 (GCN5)-
related N-acetyltransferases (GNAT) superfamily which counts thousands of members in
all three domains of life [2–4]. Despite their low overall sequence homology (3–23%), the
three-dimensional fold and catalytic domains of GNATs are well conserved (Figure 1A).
The core GNAT fold consists of six to seven β-strands (β0–β6) and four α-helices (α1–α4).
The loop connecting β4 and α3 harbors a highly conserved R/QxxGxA/G motif, which
mediates AcCoA binding [2,5,6]. In higher eukaryotes, the bulk of cytosolic proteins (>80%)
is co-translationally acetylated at their N-terminus, whereas KA affects selected proteins,
most prominently histones [7,8]. While KA is widely recognized as transcriptional regulator,
the overall biological significance of the more prevalent NTA remains unclear [9]. At the
molecular level, NTA alters the electrostatic properties of proteins by neutralizing the
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positive charge at their N-terminus, which results in an increased overall hydrophobicity.
In addition, NTA creates a new hydrogen bond acceptor and increases the nucleophilicity
and basicity of the α-amine. Taken together, these changes have profound implications
for the three-dimensional structure, activity, binding properties and lifetime of individual
proteins [10]. Since up to date, no N-terminal deacetylases have been identified, these
changes are considered irreversible [11,12]. Hence, NTA was for a long time perceived as
a nonregulated, and consequently a static, co-translational process [13]. This dogma was
challenged by the identification of regulatory mechanisms for Nats and a highly diversified
family of post-translational Nats in higher eukaryotes [14–19]. Specifically, in plants, the
characterization of plastid-localized GNAT proteins with dual Nat and Kat activity and
the phytohormone-triggered regulation of the ribosome-tethered NatA contributed to this
paradigm shift [20–22].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 23 
 

 

scriptional regulator, the overall biological significance of the more prevalent NTA re-

mains unclear [9]. At the molecular level, NTA alters the electrostatic properties of pro-

teins by neutralizing the positive charge at their N-terminus, which results in an increased 

overall hydrophobicity. In addition, NTA creates a new hydrogen bond acceptor and in-

creases the nucleophilicity and basicity of the α-amine. Taken together, these changes 

have profound implications for the three-dimensional structure, activity, binding proper-

ties and lifetime of individual proteins [10]. Since up to date, no N-terminal deacetylases 

have been identified, these changes are considered irreversible [11,12]. Hence, NTA was 

for a long time perceived as a nonregulated, and consequently a static, co-translational 

process [13]. This dogma was challenged by the identification of regulatory mechanisms 

for Nats and a highly diversified family of post-translational Nats in higher eukaryotes 

[14–19]. Specifically, in plants, the characterization of plastid-localized GNAT proteins 

with dual Nat and Kat activity and the phytohormone-triggered regulation of the ribo-

some-tethered NatA contributed to this paradigm shift [20–22]. 

 

Figure 1. The typical GNAT fold is conserved throughout all domains of life. (A) The core GNAT 

fold consists of six to seven β-strands (β0–β6, light grey) and four α-helices (α1–α4, dark grey). The 

loop connecting β4 and α3 contains a conserved AcCoA binding motif (R/QxxGxA/G, red cross). Dif-

ferences between GNAT structures are generally confined to the N-terminal β0 strand. (B) NTA fre-

quency in different organisms as a percentage of the whole proteome. The bars represent the esti-

mated upper limit reported for the individual organisms (1: [23], 2: [20], 3: [24], 4: [25], 5: [26], 6: [27], 
7: [28], 8: [29] and 9: [30]). 

This review summarizes the current knowledge on plant N-terminal acetyltransfer-

ases and their adaptation to function in different cellular compartments. Since plastids 

originated from prokaryotes, their NTA machinery is discussed first. Next, we focus on 

the eukaryotic NTA machinery, and highlight differences between photosynthetic and 

non-photosynthetic organisms. 

2. The Prokaryotic Nat Machinery 

While in humans and plants more than 80% of cytosolic proteins are N-terminally 

acetylated [20,23], the frequency of NTA declines in single-celled organisms (Figure 1B). 

In yeast for instance, only 60% of the proteome is N-terminally acetylated [15]. 

In bacteria, NTA is an even rarer event. Unlike eukaryotes, bacteria initiate protein 

biosynthesis with formylated methionine (fMet). Before NTA can occur, the N-terminal 

formyl group has to be removed co-translationally by peptide deformylase (PDF). For the 

majority (60%) of proteins, deformylation is followed by the excision of the initiator me-

thionine (iMet) by methionine aminopeptidase (MetAP). Acetylation marks were found 

on both N-termini with and without iMet and are added by one of the three known bac-

terial acetyltransferases “Ribosomal modification I” (RimI), RimJ, and RimL [30,31]. Of 

these three enzymes, RimJ seems to be the most promiscuous since the number of N-ter-

minally acetylated proteins in E. coli drops significantly upon depletion of RimJ, but not 

Figure 1. The typical GNAT fold is conserved throughout all domains of life. (A) The core GNAT
fold consists of six to seven β-strands (β0–β6, light grey) and four α-helices (α1–α4, dark grey). The
loop connecting β4 and α3 contains a conserved AcCoA binding motif (R/QxxGxA/G, red cross).
Differences between GNAT structures are generally confined to the N-terminal β0 strand. (B) NTA
frequency in different organisms as a percentage of the whole proteome. The bars represent the
estimated upper limit reported for the individual organisms (1: [23], 2: [20], 3: [24], 4: [25], 5: [26],
6: [27], 7: [28], 8: [29] and 9: [30]).

This review summarizes the current knowledge on plant N-terminal acetyltrans-
ferases and their adaptation to function in different cellular compartments. Since plastids
originated from prokaryotes, their NTA machinery is discussed first. Next, we focus on
the eukaryotic NTA machinery, and highlight differences between photosynthetic and
non-photosynthetic organisms.

2. The Prokaryotic Nat Machinery

While in humans and plants more than 80% of cytosolic proteins are N-terminally
acetylated [20,23], the frequency of NTA declines in single-celled organisms (Figure 1B). In
yeast for instance, only 60% of the proteome is N-terminally acetylated [15].

In bacteria, NTA is an even rarer event. Unlike eukaryotes, bacteria initiate protein
biosynthesis with formylated methionine (fMet). Before NTA can occur, the N-terminal
formyl group has to be removed co-translationally by peptide deformylase (PDF). For
the majority (60%) of proteins, deformylation is followed by the excision of the initiator
methionine (iMet) by methionine aminopeptidase (MetAP). Acetylation marks were found
on both N-termini with and without iMet and are added by one of the three known bacterial
acetyltransferases “Ribosomal modification I” (RimI), RimJ, and RimL [30,31]. Of these
three enzymes, RimJ seems to be the most promiscuous since the number of N-terminally
acetylated proteins in E. coli drops significantly upon depletion of RimJ, but not RimI or
RimL. RimJ predominantly targets N-termini starting with Ser and Thr, but also Ala [32].
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Despite their role as ribosome-assembly factors, Rims are absent from mature ribosomes,
suggesting that their catalytic activity is purely post-translational [33].

Initially, only five endogenous proteins were reported to be N-terminally acetylated
in Escherichia coli, including the ribosomal proteins S5, L7/L12, and S18 as well as the
elongation factor EF-Tu and the chaperone SecB [26,34–38]. Recent mass spectrometry-
based proteome-studies expanded this originally short list of N-terminally-acetylated
proteins in E. coli to over 100 entries, accounting for 10% of the E. coli proteins with
experimentally assessed acetylation status [30,32]. In Pseudomonas aeruginosa PA14 and
Mycobacterium tuberculosis for instance, between 18 and 29% of the proteome were found to
be N-terminally-acetylated (Figure 1B) [28,29].

Acetylation levels are similar in archaea, where 13–29% of all proteins are affected by
NTA [26,27,39]. Archaea express a single conserved Nat, which exhibits a broad substrate
specificity. The active site of this Nat is a hybrid of known eukaryotic Nat active sites [40,41],
suggesting that the cytosolic Nats in eukaryotes derived from this ancestral form [42]. The
function of NTA in archaea has only been demonstrated for individual proteins. In the
salt-loving archaea Haloferax volcanii for instance, the NTA of the α1 proteasome subunit
mediates the efficiency of proteolysis by altering the conformation of the channel leading
up to the proteasomal core [43]. On the organismal level, the importance of NTA in archaea
remains to be elucidated.

3. The Eukaryotic Nat Machinery

So far, six evolutionary conserved Nats (NatA-F) have been identified in metazoans
(Figure 2). The existence of five of those (NatA-C and NatE-F) has been experimentally
confirmed in the model plant A. thaliana [20,44–48]. NatD has been proposed to exist in
Arabidopsis based on the substantial homology to its human orthologue [7]. Unlike NatD
and NatF, most cytosolic Nats are composed of one catalytic and one or more auxiliary
subunits facilitating ribosome association and catalytic properties [49]. While NatA–E
are thought to be ribosome-bound in humans and plants, NatF localizes to the plasma
membrane in plants and the Golgi-membrane in humans [14,46]. In addition, a family of
plastid-localized Nats (GNAT1-7 and GNAT10) with dual Kat/Nat activity was recently
characterized in A. thaliana [21,22].
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Figure 2. Phylogenetic tree of Nats from different domains of life based on protein sequence
comparison. Homologous Nat sequences from the photosynthetic eukaryotes Arabidopsis thaliana (At)
and Oryza sativa (Os), the non-photosynthetic eukaryotes Homo sapiens (Hs), Drosophila melanogaster
(Ds) and Saccharomyces cerevisiae (Sc), as well as the bacterium Escherichia coli (Ec) and the archaeon
Saccharolobus solfataricus (Ss) were aligned with ClustalW. For OsNAA50 and OsNAA60, only one
protein could be identified by blasting the respective human orthologs against the rice proteome. The
resulting phylogenetic tree was circularized with the iTOL tool (https://itol.embl.de, accessed on 20
October 2022).

https://itol.embl.de
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Nats are present in all plant organs (Supplemental Figure S1). While NatA–E and
the plastidic Nats are widely expressed in aereal organs except for the male reproductive
parts, NatF is most strongly expressed in anther and pollen. Although the distribution
of the plastidic Nats among different tissues is similar, there are differences between the
transcription patterns of the individual enyzmes, indicating that they might fullfil different
roles in specific organs. However, in specific organs, transcript levels of Nats barely change
upon various biotic and abiotic stresses (Supplemental Figure S2).

Furthermore, Nats may gain defined functions due to their specific subcellular com-
partments, which is summarized in Figure 3. In the following, we discuss the function of
the Nat machinery with respect to their localization.
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Figure 3. Subcellular localization and substrate specificity of N-acetyltransferases in the model
plant Arabidopsis thaliana. Catalytic subunits are schematically represented in red, whereas auxil-
iary subunits are depicted in orange. Subunits for which only predictions of subcellular localization
are available are shown in lighter colors. From the plastid Nat family only NatG is shown for simplic-
ity (1: [20,44,50–52]; 2: [47]; 3: [45]; 4: [46]; 5: [21,22], ?: debated in Arabidopsis). The pie chart shows
the relative contribution of the individual acetyltransferases to the plant acetylome. Estimates are
based on experimental data where acetyltransferases were assigned to acetylated N-termini based on
their substrate specificity [20,53].

The substrate specificity of Nats is largely determined by the first two amino acids
of their substrate proteins [11]. Consistent with the ability of Nats to acetylate distinct
N-termini, the Nat catalytic sites differ in shape, size, and electrostatic properties (Figure 4).
The catalytic mechanisms of AtNAA50 and AtNAA60 are very similar and rely on tyrosine
and histidine residues that coordinate a catalytic water molecule [46,54]. Even though the
catalytic mechanisms of AtNatA–NatC have not been uncovered yet, the residues required
for catalysis in their human counterparts are conserved in plants [10].
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Figure 4. Three-dimensional models of Arabidopsis thaliana Nats. The AcCoA-binding motives
(A) of Arabidopsis Nats are strongly conserved (shown in red with conserved residues highlighted
in ribbon mode). AcetylCoA is represented in grey. The Nat catalytic sites (B) have distinct surface
characterizations in shape, size, and electrostatic properties, which is consistent with their ability to
acetylate distinct substrate pools. Catalytically important residues were either reported in [1,2] for
AtNatE and AtNatF or estimated based on their human and yeast counterparts for AtNatA–C [3]
and are represented in stick mode. The crystal structures of AtNAA50 (6YZZ, green) and AtNAA60
(6TGX, cyan) were downloaded from the Protein Data Bank (https://www.rcsb.org, accessed on
the 9 November 2022), whereas the three-dimensional structures of the other Nats were generated
with SwissModel (https://swissmodel.expasy.org, accessed on the 9 November 2022) based on their
human or yeast counterparts using the templates 6c9m.2.B (AtNAA10, blue), 7stx.1.A (AtNAA20,
yellow) and 7l1k.1.A (AtNAA30, orange).

Interestingly, some proteins are not acetylated even though based on their primary
sequence they fit the recognition potential of Nats. A search in the NterDB database (https:
//nterdb.i2bc.paris-saclay.fr/) reveals that of 1327 nuclear-encoded putative Arabidopsis
NatA substrates 179 (14%) are not acetylated. Hence, substrate recognition might depend
on so far unknown determinants. Those might include the three-dimensional properties of
the nascent chain or competition of Nats with other ribosome-associated factors attracted
by those nascent chains.

3.1. The Crowded Ribosome Exit Tunnel: Ribosome-Bound Nats

Even though post-translational NTA occurs in different organelles, a substantial part
of plant proteins is initially acetylated at the cytosolic ribosome [20]. Ribosomes function
as protein biosynthesis machines and assist the co-translational modification, folding and
translocation of newly synthesized proteins. Several of these processes occur simulta-
neously and require the participation of enzymes, chaperones and targeting factors that
exploit ribosomes as landing pads to gain access to nascent polypeptides [55]. Hence, the

https://www.rcsb.org
https://swissmodel.expasy.org
https://nterdb.i2bc.paris-saclay.fr/
https://nterdb.i2bc.paris-saclay.fr/
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association of the co-translationally operating Nats (NatA–E) with the ribosome-nascent
chain (RNC) complex must be concerted spatiotemporally with other RNC-interacting
factors. As the translation speed ranges between three to six polymerized amino acids
per second in eukaryotes, this concerted action requires the dynamic rearrangement of
protein complexes around the exit tunnel. Recent findings suggest that several ribosome
expansion segments participate in the positioning of Nats above the ribosome exit tunnel,
which safeguards their catalytic function [56]. Our knowledge of the interactions between
Nats and other RNC-interacting factors is sparse and originates mostly from experiments
conducted in metazoa. However, these findings potentially also apply to plants due to
the substantial evolutionary conservation of the eukaryotic ribosome and its associated
Nat machinery. Therefore, this review will also refer to the human or yeast Nat machinery
for comparison.

3.2. NatA—The Major Eukaryotic Acetyltransferase

NatA was first discovered in S. cerevisiae as a heterodimeric complex comprised of
the catalytic subunit NAA10 (Ard1p) and the auxiliary subunit NAA15 (Nat1p). The
ribosome-association of the core NatA complex and its substrate specificity are conserved
among eukaryotes [57–61]. However, species-specific adaptations of the interaction sites
between NAA10 and NAA15 occurred as yeast NatA deletion strains can be complemented
by expression of ScNatA or HsNatA but not by heterologous combinations of ScNAA10
and HsNAA15 and vice versa [23].

In yeast, electrostatic forces between positively charged regions on NAA15 and a
negatively charged patch on the ribosomal protein L23 tether NAA15 to the ribosome
and orient NAA10 towards the exit tunnel [58]. In addition to its ribosome-tethering
function, ScNAA15 wraps around ScNAA10 in a ring-like manner and remodels the
enzyme’s catalytic site. This allosteric reconfiguration induces a shift in ScNAA10 substrate
specificity [62]. While the NAA10 monomer post-translationally targets the α-amino groups
of proteins with acidic side chains, NatA co-translationally acetylates small amino acids
(Ser, Gly, Ala, Thr and Cys). Acetylation via NatA requires prior removal of the iMet
by MetAP. Cryo-electron microscopy studies suggest simultaneous binding of NatA and
MetAP to the RNC, allowing MetAP to hand over the processed nascent chain to NAA10
for acetylation [56,63].

In total, NatA is responsible for modifying 50% of the plant and 40% of the human
proteome [23,25,53]. In agreement with its promiscuity, the depletion of NatA causes severe
defects in all eukaryotes. Many studies link the loss of NAA10 activity to neurodegenerative
disorders and developmental impairments (reviewed in Dörfel et al., 2015). Not only
NatA deficiency, but also the presence of excess NatA has harmful effects on cells. The
overexpression of NatA is linked to various types of tumour diseases, such as breast, colon,
liver, lung, and prostate cancer [64–67]. A knockdown of any of the two NatA subunits
leads to cell cycle arrest and apoptosis in HeLa cells, underscoring the importance of proper
NatA regulation [68–70].

3.3. Global Proteome Stability Is Controlled by NatA in Humans and Plants, but Not Yeast

A recent study uncovered a possible molecular mechanism for the above-described
inhibitory effect of NatA on apoptosis. In humans, E3 ligases named ‘inhibitor of apoptosis
proteins’ (IAPs) sequester caspases and thereby impede the premature assembly of pro-
apoptotic complexes. To interact with caspases, IAPs recognize IAP binding motifs (IBMs)
present at the N-terminus of mitochondrial proteins. Since mitochondria have no NTA
machinery, one hallmark of the IBMs is an unmodified N-terminus. Remarkably, numerous
cytosolic NatA substrates harbour IBM-like sequences at their N-termini, which are masked
by NTA. Upon NatA depletion, these cryptic IBMs are activated and generate a multitude
of efficient IAP binders. These displace the caspases from IAPs, ultimately triggering
apoptosis [71]. Whether this NatA-triggered safeguarding mechanism is conserved in
plants is still uncertain. Firstly, it is currently unclear whether apoptosis exists in plants [72].
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Secondly, the only IAP-like protein in Arabidopsis (AT4G19700) lacks the domain crucial
for recognizing non-acetylated N-termini [73]. Nevertheless, there is evidence for the
existence of non-AcN degrons in plants. Linster et al. (2022) report that in NatA-depleted
mutants, proteins are degraded via the ubiquitin–proteasome system (UPS) at four times
the rate observed in wildtype plants (Figure 5). This increased degradation mainly af-
fects non-acetylated NatA substrates and is compensated by a concomitant increase in
protein biosynthesis, orchestrated by the target of rapamycin, suggesting the existence of
a feedback mechanism [74]. In contrast to the protective role of NatA-facilitated NTA in
higher eukaryotes, the depletion of NatA has minimal effects on protein stability in yeast,
suggesting that there is no widespread role for NTA in the regulation of protein turnover
in this single-celled microorganism [75,76]. However, individual proteins are known to be
degraded in response to their NTA status also in yeast [77].
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Figure 5. Hypothesis of phytohormone-regulated proteome destabilization via depletion of NatA
in A. thaliana. In the presence of abscisic acid, NatA is depleted [20]. In consequence, less proteins are
N-terminally acetylated. NatA substrates with free N-termini are recognized by up-to-date unknown
E3 ubiquitin ligases, which target these proteins for degradation via the proteasome. Altogether, the
depletion of NatA activity results in an increased overall protein turnover, as the degraded NatA
substrates are replaced by newly synthesized proteins.

3.4. NatA Is Indispensable for Plants and Regulates Biotic and Abiotic Stress Responses

Several independent studies confirmed the essentiality of both NatA subunits in
Arabidopsis thaliana and revealed that naa10-1 (AT5G13780) and naa15-1 (AT1G80410)
T-DNA knock-in mutants arrest development at the dermatogen to the early globular
stage [20,50,51,78]. This defect can be attributed to an abnormal distribution of the growth-
regulatory phytohormone auxin. In NatA mutants, no quiescent center progenitor cells are
generated, underscoring the importance of NatA for early embryonic patterning [50].

NatA knockdown mutants generated with an artificial microRNA approach still
display a significant reduction of growth (Figure 6). Despite the growth retardation, the
transgenic lines are fertile and remarkably drought-tolerant. This tolerance might be
partially explained by the increased root-to-shoot ratio and permanently decreased stomata
aperture of the NatA depleted mutants. Both traits are controlled by the drought stress-
related phytohormone abscisic acid (ABA). Interestingly, endogenous ABA levels are not
elevated in the NatA mutants, suggesting that the plants mimic the drought stress response
independent of ABA biosynthesis. In wildtype plants, exogenous ABA administration
decreases the transcription and abundance of both NatA subunits, providing the first
evidence for hormonal control of NTA [20]. The enhanced turnover of non-acetylated NatA
substrates upon ABA exposure might constitute an adaptation to drought as it allows for
the efficient removal of stress damaged proteins (Figure 5). While the molecular connection
between NatA and drought tolerance remains unclear in NatA depleted Arabidopsis
mutants, differential degradation of acetylated and non-acetylated proteoforms upon
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desiccation has been demonstrated for the ε-subunit of the plastid-localized ATP synthase
in wild watermelons [79].
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Figure 6. Phenotype of A. thaliana mutants impaired in different components of the NTA ma-
chinery. Mutants impaired in Nat machinery components (amiNAA10 #23, amiNAA15 #8, hypk-3
= SALK_080671, naa20-1 = SALK_027687, naa25-1 = GK-819A05, pam21 (photosyntheis affected
mutant21 = SALK_119000, naa60-1 = SALK_016406C, naa70 = SALK_072318) were grown on soil for
four weeks under short-day conditions, except for the naa50 mutant (SAIL_1210_A02) which was
germinated on 1

2 MS medium and transferred to soil after four weeks of growth. Photographs were
taken by the authors and represent phenotypes of mutants previously described in independent
studies cited in the main body text.

Similarly, NatA-mediated NTA controls the stability of Nod-like receptors (NLRs)
involved in plant immunity. The NatA-depleted mutant muse6 accumulates both RPM1
(AT3G07040) and SNC1 (AT4G16890) and was identified in a forward genetic screen for
negative regulators of NLR-mediated autoimmunity [80,81]. In line with this finding,
muse6 displays an increased resistance towards the bacterium Pseudomonas syringae and the
virulent oomycete Hyaloperonospora arabidopsidis. While RPM1 is a typical NatA substrate,
alternative translation initiation generates two distinct SNC1 isoforms: a non-canonical
NatA substrate (Met–Met–Asp) and a NatB substrate (Met–Asp). Remarkably, acetylation
via NatA or NatB impacts SNC1 stability antagonistically. Whereas acetylation by NatB
stabilizes SNC1, acetylation via NatA creates an Ac/N-degron that destabilizes the immune
receptor [81]. These findings suggest that environmental stimuli control protein abundance
via differential NTA of specific proteoforms.

3.5. HYPK—A Species-Specific Modifier of NatA Activity

In most eukaryotes, the core NatA complex interacts with the auxiliary subunit
HYPK [6,52,82,83]. Curiously, HYPK (Huntington Yeast Two-Hybrid Protein K) is absent in
baker’s yeast [82,84]. HYPK is an intrinsically unstructured Huntingtin (HTT)-interacting
protein with chaperone-like activities [85]. Mutated, aggregation-prone HTT is the cause of
the incurable neurodegenerative Huntington’s disease [86]. HYPK prevents the aggregation
of HTT and isolates toxic HTT aggregates in sequestration complexes [87,88]. In human cell
lines, the knockdown of HYPK results in reduced cell growth, cell cycle arrest and induction
of apoptosis [82,89]. These defects resemble the phenotypes observed after the knockdown
of the NatA core subunits, indicating that the presence of HYPK might be required for
proper NatA function. Indeed, the canonical NatA substrate PCNP is acetylated less fre-
quently upon HYPK depletion in vivo [82]. Surprisingly, HYPK inhibits NatA activity
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against several substrates in vitro, which is consistent with blocking of the NatA active site
by the N-terminus of HYPK in NatA/HYPK crystals from different organisms [19,83,90].

In Arabidopsis thaliana, the knockout of HYPK (AT3G06610) results in reduced growth
as well as delayed bolting and flowering, thereby closely recapitulating the phenotype of the
core NatA-depleted mutants (Figure 6). Plant HYPK also interacts with NAA10 and NAA15
and facilitates NatA activity in vivo. Hence, the loss of HYPK decreases NatA-mediated
NTA, causing substantially faster turnover of NatA substrates carrying a nonAc/N-degron
in Arabidopsis [91]. Similarly, in rice, the knockout of HYPK results in lowered NTA
of diverse NatA substrates and induces protein translation and degradation [52]. These
studies demonstrate that HYPK promotes NatA activity in planta and strongly suggest
that HYPK modulates proteome stability by facilitating NatA activity at the ribosome.
Moreover, HYPK was shown to act as an autophagy receptor in tobacco plants and as such
is involved in the clearance of protein aggregates formed during proteotoxic stress [92,93].
Whether Arabidopsis HYPK also regulates autophagy independently of its role as a NatA
modifier remains an open question.

3.6. NAA50—NatA Regulator or Independent Acetyltransferase?

The human core NatA complex can bind a second catalytic subunit termed NAA50 and
thereby form the ternary NatA/E complex [19,69]. Unlike HYPK, NAA50 is present among
all eukaryotes [6]. In humans, HYPK and NAA50 can bind simultaneously to the core NatA
complex [10], but interaction of NatA with one of the two subunits weakens the affinity to
the other [10,19]. The majority of human NAA50 is available as free monomers, whereas,
in yeast, NAA50 localizes exclusively to the ribosome-bound NatA complex [59,94]. In the
filamentous fungus Chaetomium thermophilum, NAA50 does not interact with NatA/HYPK
due to its extended C-terminus which enables it to bind to the ribosome independent
of NatA [95]. These species-specific differences might be explained by the diverging
roles of NAA50 and the absence of HYPK in yeast. While human NAA50 is an active
acetyltransferase, yeast NAA50 is catalytically dead and thought to serve as a scaffolding
protein, which positions the core NatA complex above the ribosome exit tunnel [54,56,96].

The different roles of human and yeast NAA50 are also reflected in the phenotypes
of knockout mutants. While the loss of ScNAA50 leads to no particular phenotype except
for the decreased acetylation of six NatA substrates [96], human cell lines exhibit im-
paired sister chromatid cohesion and chromosome condensation in response to HsNAA50
depletion [94,97]. In Arabidopsis thaliana, the knockout of NAA50 (AT5G11340) results in
severe dwarfism and infertility. Unlike naa10 or naa15 mutants, which fail to pass em-
bryogenesis, naa50 mutants develop like the wildtype until the formation of the first few
leaves (Figure 6). From this time point on, naa50 is severely growth retarded and displays
premature leaf senescence, defective root cell patterning and infertility [44,50,98,99].

Like human NAA50, AtNAA50 displays a rather broad substrate specificity covering
N-termini starting with Met–Ser, Met–Thr, Met–Ala, Met–Val, Met–Leu, Met–Ile, Met–Phe,
Met–Tyr and Met–Lys [44,54,90,100]. Despite this promiscuity, the enzyme is estimated
to acetylate less than 4% of the plant proteome [53]. This might be due to the potential
competition between NAA50 with MetAP, which usually removes the iMet of many in vitro
NAA50 substrates rendering them susceptible to NTA by NatA in vivo [101]. Up to now,
no in vivo substrates of AtNAA50 have been identified [44]. However, loss of NAA50
function results in substantial growth retardation (Figure 6, and [44,99]).

The failure to identify NAA50 substrates in plants led to the hypothesis that AtNAA50
might serve as a NatA regulator as previously shown for AtHYPK [91]. Indeed, in humans,
HsNAA50 impacts the activity of HsNAA10 within the NatA/E complex in vitro [19].
However, up to date, it is unclear whether NAA50 associates with the core NatA complex in
Arabidopsis [44,99]. Contrary to observations made in yeast, a knockout of AtNAA50 does
not induce significant shifts in the acetylation yields of NatA substrates [44,96]. Moreover,
the fact that the enzymatically active HsNAA50 but not the catalytically dead ScNAA50
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rescues the dwarfism of naa50 mutants hints toward a vital role of NAA50 activity in
plants [44].

On the molecular level, naa50 mutants suffer an accumulation of proteins involved in
plant immunity as well as a constitutively activated ER-stress response [44,99]. In line with
the upregulation of salicylic acid and ethylene signaling in the mutants, Neubauer and Innes
(2020) report that NAA50 interacts with the ER-localized kinase ENHANCED DISEASE RE-
SISTANCE1 (EDR1), which negatively regulates salicylic and ethylene signaling [102,103].
Taken together, these findings suggest that NAA50, possibly in liaison with EDR1, regulates
the trade-off between plant development and defense signaling.

3.7. NatB—The Most Conserved Ribosome-Tethered Nat Complex

The NatB complex acetylates approximately 20% of the human and the plant proteome,
and is composed of the catalytic subunit NAA20 and the auxiliary subunit
NAA25 [48,104,105]. Unlike NatA, NatB is not required for vitality in humans [106]. Albeit,
free NAA20 can acetylate N-termini in vitro, and the interaction of NAA20 with NAA25 is
critical for in vivo NatB activity in humans, yeast and plants [48,107–109]. NatB preferen-
tially acetylates nascent chains displaying an iMet followed by the acidic amino acids Glu
and Asp, or their amides Asn and Gln at position two [48,81,108]. The substrate specificity
and three-dimensional structure of the enzyme is conserved among animals [25,110].

Missense mutations in human NAA20 result in developmental delay, intellectual
disability, and microencephaly [111]. In cell cultures, silencing of any of the two NatB
subunits arrests growth, indicating that NatB is critical for cell cycle progression [105,112].
Since NatB overexpression has been linked to tumorigenesis, the complex is a promising
drug target [113,114].

In yeast, the knockout of NAA20 (Nat3p) or NAA25 (Mdm20p) results in a variety
of deleterious phenotypes, including slower growth, sensitivity to elevated temperatures
or osmotic stress, reduced mating, defects in mitochondrial and vacuolar inheritance, as
well as abnormal actin cable formation [107,108]. These phenotypes can at least partially
be attributed to absent acetylation of actin in ScNatB mutants [108,115]. In addition,
∆ScNatB strains accumulate protein aggregates enriched for components of the cytoplasmic
translation machinery. This aggregation hampers protein biosynthesis and triggers the
activation of the stress-induced protein refolding machinery [116]. In agreement with
the finding of aggregated proteins in NatB mutants, NatB is essential for the induction
of autophagy, clearing protein aggregates in yeast [117]. Expression of HsNAA20 fails to
complement yeast ∆ScNAA20. However, expression of both HsNatB subunits partially
rescues the phenotype of yeast NatB mutants, strongly suggesting differences in NatB
complex assembly [115]. The differential maturation of the NAA20 N-terminus in humans
and yeast might contribute to the observed differences in NatB assembly. While in humans,
the NatB formation depends on iMet removal on the NAA20 N-terminus via MetAP, this is
not the case in yeast [118].

In the model plant A. thaliana, orthologs of the NatB subunits NAA20 (AT1G03150)
and NAA25 (AT5G58450) have been characterized. The so far known T-DNA insertions in
genes encoding for NatB subunits do not entirely inhibit NTA of canonical NatB substrates
but substantially decrease it [48]. These lowered NatB acetylation levels cause indistin-
guishable defects in embryo development and vegetative growth in the naa20 and naa25
mutants (Figure 6, [47,48]). Remarkably, HsNAA20 but not ScNAA20 rescues the naa20
phenotype, suggesting substantial conservation of NatB complex formation between plants
and humans [48]. Based on these results, the formation of a heterodimeric complex is criti-
cal for NTA of canonical NatB substrates in planta [7,47,48]. Since the so far available naa20
and naa25 mutants still display low levels of NTA on NatB substrates, it is controversially
discussed whether NatB is essential in Arabidopsis [47,48].

The function of AtNatB is predominantly linked to the regulation of immunity [48,81].
Acetylation via NatB stabilizes the immune receptor SNC1 as well as the immune-activating
protein SIB1 [81,119]. In line with these findings, the depletion of AtNatB results in a



Int. J. Mol. Sci. 2022, 23, 14492 11 of 22

general downregulation of defence-related processes on the transcript level and a decreased
resistance against oomycetes [48,81]. In addition, NatB mediates the stabilization of various
aminocyclopropane-1-carboxylate oxidases catalyzing the rate-limiting step of ethylene
biosynthesis [120].

Recently, NatB mutants were found to be hypersensitive to the reductive agent dithio-
threitol as a result of a constitutive over-reduction of their cytosol [121]. In summary,
NatB seems vital for stress responses in photosynthetic and non-photosynthetic organ-
isms [48,116,121].

3.8. NatC—A Cytosolic Modulator of Photosynthesis

In comparison with NatA- or NatB-type N-termini, NatC-type N-termini (Met–Leu,
Met–Ile, Met–Phe, Met–Trp, Met–Val, Met–Met, Met–His, or Met–Lys) are relatively
rare [23,104,122–125]. The ribosome-associated NatC is composed of one catalytic (NAA30)
and two auxiliary subunits (NAA35 and NAA38). Upon depletion of NAA30 in yeast, sev-
eral proteins lose their defined subcellular localization to membranous
compartments [126–129]. However, this is only true for individual proteins and NatC-
mediated NTA has no general function in determining the subcellular localization of its
substrates [130].

In human cell lines, the overexpression of HsNAA30 has an anti-apoptotic effect
while the depletion of NatC leads to growth arrest and cell death [123,131]. In addition,
the knockdown of HsNAA30 results in a decreased expression of mitochondrial proteins,
a loss of mitochondrial membrane potential and mitochondrial fragmentation [132]. In
yeast, all three NatC subunits are essential for the enzymatic activity of the complex [124].
Mutants depleted in any of the three complex components grow slowly on non-fermentable
carbon sources, suggesting that NatC acetylates proteins involved in anaerobic energy
generation [122].

In silico searches identified putative orthologs of all three NatC subunits in A. thaliana.
While a mutation in AtNAA30 (AT2G38130) results in dwarfism, lowered chlorophyll
content and a decreased effective quantum yield of photosystem II, a T-DNA insertion
in the NAA35 gene (AT2G11000) does not yield any observable phenotypes (Figure 6).
Remarkably, the ectopic expression of AtNAA30 alone rescues yeast NatC triple mutants,
suggesting that AtNAA30 activity is not dependent on NatC complex formation. Further-
more, AtNAA30 fails to interact with the two Arabidopsis NAA38 orthologues (AT2G23900
and AT3G11500). However, a weak interaction between AtNAA30 and AtNAA35 was
shown in a yeast two-hybrid approach [45,122].

3.9. NatD—A Highly Specialized Nat Targeting Histones

The monomeric NAA40 (NatD) is a ribosome-associated, highly selective Nat. Its
only known substrates are the N-termini of histones H4 and H2A. This narrow substrate
specificity is conserved among yeast and humans [61,133–135]. In addition to acetylating
histones, NAA40 displays auto-acetylation activity. In humans, NAA40 deregulation
and the resulting alterations in chromatin architecture are associated with various tumor
diseases, positioning NAA40 as a promising therapeutic target. In colorectal cancer cells,
for instance, the downregulation of NAA40 triggers growth inhibition [136–138]. Although
in yeast, NAA40-mediated NTA of histone H4 regulates the expression of specific genes
controlling cell growth, depletion of NAA40 leads to no observable phenotype on standard
culture medium except for an increased lifespan [133,139,140].

BLAST searches identified orthologues of NAA40 in red and green algae, liverworts,
mosses and vascular plants, suggesting conservation of NAA40 in plantae [141]. While
AtNAA40 (AT1G18335) has not been biochemically characterized yet, the function of NatD
seems to be conserved between humans and plants. Human NatD is tailored to recognize
the Ser–Gly–Arg–Gly N-termini of its only two substrates, histones H2A and H4. These
N-termini are conserved in A. thaliana H2A (AT1G51060) and H4 (AT2G28740), but their
acetylation status was not examined up to date.
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3.10. NatH—An Animal-Specific Actin Modifier

Recently the cytosolic NatH (NAA80) was identified in animals [18]. Contrary to
NatA–E, NatH does not associate with ribosomes and acts post-translationally. The only
identified substrates of the monomeric acetyltransferase are processed forms of ß- and
γ-actin. NatB initially acetylates both actins. Subsequently, their N-termini are cleaved by a
yet-to-be identified aminopeptidase so that NatH can acetylate the newly generated free
N-termini. The maturation pathway of actins is animal specific and up to date, no NatH
homolog has been identified in photosynthetic organisms [53,142].

4. Organellar Nats
4.1. Getting to the Core of the Cell: Nuclear Acetyltransferases

The significance of NTA in the nucleus is underscored by an enrichment of N-terminally
acetylated proteins in the nucleus in comparison to whole cell lysates [143,144]. The cat-
alytic subunits of all ribosome-bound human Nats (NatA–E) are found in the cytosol as well
as the nucleus [14,60,82,105,135]. Even though it is unclear why Nats localize to the nucleus,
there are three main hypotheses regarding the function of Nats in this particular organelle.
Firstly, the enzymes might post-translationally acetylate nuclear proteins in addition to
their role as co-translational acetyltransferases. However, such an activity has yet to be
evidenced. Secondly, the N-acetyltransferases might act as lysine–acetyltransferases in
the nucleus. Observations of lysine–acetyltransferase activity for monomeric HsNAA10,
HsNAA40 and HsNAA50 support this idea [135,145,146]. For HsNAA10 and HsNAA50,
these findings have however been called into question since crystal structures suggest
that the active sites of these enzymes cannot accommodate lysine side chains [147,148].
Recent studies suggest that oligomerization or post-translational modifications of the Nats
themselves (e.g., hydroxylation) could determine whether the enzymes act as Kats [16,17].
Thirdly, acetyltransferases might act as transcriptional regulators in the nucleus. HsNAA10
for instance recruits the DNA methyltransferase DNMT1 to the non-methylated E-cadherin
promoter and thereby contributes to the silencing of the E-cadherin gene [149].

In plants, only AtNAA50 has been found in the nucleus so far. In analogy to HsNAA10,
AtNAA50 has been speculated to moonlight as transcriptional regulator [44]. Currently,
the subcellular localization of plant Nats and their potential functions in the nucleus are
understudied.

4.2. The Highly Diverse Family of Plastid Acetyltransferases

Only 88 of more than 3000 plastid-localized proteins are encoded in the plastome
of Arabidopsis. Out of those, at least ten were found to be N-terminally acetylated [22],
strongly suggesting that NTA also occurs co-translationally in the plastids of higher plants.
This view is supported by the identification of a plastid ribosome-associated Nat in the uni-
cellular green algae Chlamydomonas reinhardtii [150]. However, the majority of plastidic pro-
teins are imported from the cytosol, followed by cleavage of the N-terminally located transit
peptide by stromal processing peptidases. Additional peptidases subsequently remove
up to three residues from the N-terminus. Together, these maturation processes result in a
stunning variety of proteoforms with different N-termini that may or may not be acetylated.
In total, 20–30% of all plastid-localized proteins are N-terminally acetylated, including
RuBisCo, components of the light-harvesting complex and the ribosome [7,151–153].

Most of those N-termini are found in both an acetylated and non-acetylated form [151].
This distinguishes chloroplasts from the cytosol where the acetylation yield of individ-
ual Nat substrates amounts to >80% for the majority of analyzed proteins [20,48]. The
mechanisms that govern the partial acetylation of plastidic proteins remain to be investi-
gated. It has been proposed that the acetylation yield of individual proteins might change
in response to environmental factors [141]. As the cytosolic NatA complex is under the
control of the phytohormone ABA [20], similar regulatory mechanism can be conceived for
plastidic Nats.



Int. J. Mol. Sci. 2022, 23, 14492 13 of 22

The first plastidic Nat to be identified in Arabidopsis was the monomeric GNAT4, for
historical reasons, often referred to as NAA70 or NatG (AT2G39000). GNAT4 preferen-
tially acetylates N-termini starting with Met, Ala, Ser or Thr and shows strong structural
similarity to AtNAA50. Like AtNAA50, GNAT4 displays auto-Kat activity [22]. Later in
silico searches suggested the presence of nine additional organelle-targeted Nats in the
Arabidopsis proteome. Indeed, seven of those candidates (GNAT1: AT1G26220, GNAT2:
AT1G32070, GNAT3: AT4G19985, GNAT5: AT1G24040, GNAT6: AT2G06025, GNAT7:
AT4G28030, GNAT10: AT1G72030) localize to the chloroplasts and display dual Nat/Kat
activity in vitro. According to the endosymbiont theory, plastid Nats might have evolved
from prokaryotic Nats. Indeed, the closely related GNAT1-3 cluster together with the E. coli
Nats RimJ and RimL in a phylogenetic analysis. Interestingly, GNAT4-7 and GNAT10 form
a separate cluster, indicating the existence of two distinct GNAT subfamilies which have
previously been referred to as “NAA70” (GNAT4-7 and GNAT10) and “NAA90” (GNAT1-3)
subfamilies (Figure 2) [141]. Why plants express a whole plethora of plastid-localized Nats
with broad and largely overlapping substrate specificities to acetylate less than one third of
their chloroplast proteins remains an open question.

One possible explanation is that NTA is not the only function of these enzymes. This
view is supported by the fact that all of the plastid Nats identified so far in Arabidopsis
thaliana also display Kat activity [21]. Unfortunately, it is difficult to disentangle the
two enzymatic activities by generating exclusive Nats or Kats via mutagenesis, since
both activities are mediated by a single active site. These difficulties hamper the in vivo
characterization of the dual-acting enzymes. As a result of the relaxed peptide substrate-
binding pocket, the plastid-localized Nats have broad and largely overlapping substrate
specificities [21]. However, a knockout of GNAT2 results in a clear phenotype with defective
state transitions, indicating that it is required for the dynamic reorganization of thylakoid
protein complexes in fluctuating light conditions [154]. The biological relevance of the
other plastid GNATs is currently unclear.

Whether NTA contributes to protein turnover in the plastids has not been conclusively
verified. There is however a positive correlation between the half-life of plastidic proteins
and their NTA-frequency in Chlamydomonas reinhardtii [7]. The machinery which might or-
chestrate a targeted degradation of non-acetylated plastidic proteins has not been described
yet, but the CLP protease system is a potential candidate [155].

4.3. Membrane-Bound Acetyltransferases

As previously discussed, the frequency of NTA appears to correlate with organismal
complexity. Within the clade of eukaryotes, the presence of the membrane-associated
NAA60 can at least partially explain the significantly higher NTA frequency in multicellular
organisms such as the fruit fly, humans and Arabidopsis when compared to unicellular
yeast, which lacks NAA60 [6,15,46].

In humans, the monomeric NAA60 post-translationally acetylates N-termini start-
ing with Met–Leu, Met–Ile, Met–Phe, Met–Tyr or Met–Lys. The enzyme localizes to the
membranous compartments of the Golgi apparatus and is critical for Golgi ribbon forma-
tion [46,156,157].

Unlike its human counterpart, Arabidopsis NAA60 (AT5G16800) localizes to the
plasma membrane. The membrane association of both HsNAA60 and AtNAA60 is mainly
driven by type A amphipathic α-helixes at the C-terminus of the proteins [46,157]. The
difference in the localization of both enzymes might be mediated by the distinct lipid
makeup of the Golgi and the plasma membrane or the diverging number and amino acid
composition of the amphipathic α-helices in both Nats [46]. Instead of regulating Golgi
integrity, AtNAA60 is required for the adaptation to abiotic stress, as demonstrated by the
decreased germination rate of naa60-1 on high salt medium [46]. However, under optimal
growth conditions, naa60-1 mutants display a wildtype-like phenotype (Figure 6).

HsNAA50 and HsNAA60 display a high structural similarity and employ similar
catalytic mechanisms. Both enzymes display Kat activity, which is marginal compared
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to their Nat activity [46,156,158,159]. Although the in vitro substrate specificities of both
enzymes overlap, the distinct phenotypes of plant naa50-2 and naa60-1 mutants strongly
suggest that NAA60 fails to complement the absence of NAA50 and vice versa [44,98,99].
This might be a consequence of the diverging subcellular localization of the two enzymes,
which gives them access to distinct substrate pools.

5. Concluding Remarks

So far, the research has focused on Nats tethered to ribosomes. However, many
questions regarding substrate recognition at the ribosome and localization of Nats in
eukaryotes remain to be unaddressed so far (see Figure 7). The ribosome-associated
cytosolic Nat machinery is largely conserved among humans and plants, highlighting the
importance of this co-translational modification in photosynthetic and non-photosynthetic
eukaryotes. This conservation is in line with the hypothesis that eukaryotic co-translational
Nats evolved from one archaeal precursor with broad substrate specificity [41]. Recent
studies reveal differences between the post-translational Nat machineries of animals and
plants. These differences arise at least partially from the existence of plantae-specific
Nats in plastids, which evolved from cyanobacterial Nats acquired during endosymbiosis.
Remarkably, these enzymes were conserved by integrating the corresponding genes into the
plant nuclear genome and now function post-translationally on nuclear-encoded proteins,
which are imported into the stroma [21,141]. Apart from these differences between humans
and plants, there is also a clear distinction between the Nat machinery of fungi and animals.
Due to divergent trajectories in the evolution of fungi and animals, only fungi underwent
extensive gene loss and fission [160]. This is reflected in a reduced Nat machinery in this
branch of the opisthokonts, which do not possess NAA60, and in some instances lack an
enzymatically active NAA50 and the NTA facilitating protein HYPK [46,82,84].
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While 20–30% of plastidic proteins are N-terminally acetylated, little is known about
NTA in mitochondria [161]. Even though no Nats have been identified in this organelle so
far, NTA marks were found on several mitochondrial proteins. These proteins usually local-
ize to the outer mitochondrial membrane or intermembrane space and are co-translationally
acetylated by NatC before their import into the mitochondria [132,162]. Since the import of
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those particular set of proteins is independent of signal peptide cleavage, the acetylation
marks remain intact after the incorporation of the proteins into membranes. Considering
the endosymbiotic origin of both the mitochondria and the chloroplasts, it is interesting
that only cyanobacteria passed on their Nat machinery, while the GNAT-fold containing en-
zymes of the α-proteobacteria, which gave rise to mitochondria, apparently did not evolve
into functional mitochondrial Nats. Apparently, the evolutionary pressure to preserve NTA
in both organelles was different for so far unknown reasons.

Another driver of NTA diversification in different species is NatF, which is absent in
fungi and localizes to different membranous compartments in humans and Arabidopsis.
The C-terminal tail of the enzyme determines its localization to the Golgi apparatus in
humans and the plasma membrane in plants [46,157]. While the cause of this differential
localization is currently unknown, it has been speculated that HsNAA60 is required to
maintain the ribbon structure of the Golgi complex [14]. This ribbon structure is absent in
plants allowing for the evolution of other functions of NAA60 in plants.

6. Future Perspectives

The depletion of the major cytosolic Nats, NatA and NatB, as well as the membrane-
associated NatF results in an altered sensitivity to diverse biotic and
abiotic stresses [20,48,81,121]. This suggests a role of co-translationally imprinted NTA
in the rapid readjustment of the proteome to environmental cues. In this context, individual
Nats have specific roles during defined stresses [20,48].

While the impact of cytosolic NTA on plant stress responses is established [81,119], the
underlying molecular mechanisms remain to be identified and should be the focus of future
research. Given the evidence for the influence of NTA on protein turnover, we hypothesize
that altered protein stability contributes to the efficient bulk removal of stress-damaged
proteins and thereby improves stress resilience (Figure 5). Alternatively, stress resilience
in NatA depleted plants could be caused by affecting the stability of key regulators in the
response to these stresses.

The identification of acetylation-dependent N-degrons in plants allows engineering the
lifetime of individual proteins in planta by designing their N-terminus [74]. The application
of this approach to known key stress regulators paves the road for the genetic engineering of
plants with improved stress resilience, e.g., enhanced pathogen immunity by stabilization of
immune receptors. Currently, this approach is superior to the genetic modification of Nats
themselves since many Nats are critical for cell survival and their spatial-temporal protein
interaction network at the ribosome is essential for their function but almost unknown.
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