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Abstract: Human B cell adaptor for phosphoinositide 3-kinase (BCAP) is identified as an adaptor
protein expressed in B cells and plays a critical immunomodulatory role in B cell receptor signaling
and humoral immune response. In the current study, a homolog of BCAP (Lja-BCAP) was identified
in Lampetra japonica. The open reading frame of Lja-BCAP contains 2181bp nucleotides and encodes
a protein of 726 amino acids. After being stimulated by mixed bacteria, the mRNA and protein
expression levels of Lja-BCAP and the activation levels of tyrosine kinases increased significantly in
peripheral blood lymphocytes, gills and supraneural myeloid bodies, respectively. However, after
the knockdown of Lja-BCAP by RNAi in vivo, the activation of tyrosine kinases was inhibited in the
above tissues, which indicated that Lja-BCAP participated in the anti-bacterial immune response
of lampreys. After lipopolysaccharide (LPS) stimulation, the expression of Lja-BCAP in peripheral
blood lymphocytes, gills and supraneural myeloid bodies were significantly up-regulated 2.5, 2.2,
and 11.1 times (p < 0.05) compared to the control group, respectively; while after phytohemagglutinin
(PHA) stimulation, the up-regulation of Lja-BCAP was only detected in peripheral blood lymphocytes.
The above results show that Lja-BCAP mainly participates in the LPS-mediated immune response
of lampreys.

Keywords: Lampetra japonica; BCAP; Lipopolysaccharide; lymphocyte; immune response

1. Introduction

Adaptor protein is a type of protein that is very important in cell signal transduction.
It can specifically interact with other signal proteins and activate downstream signal path-
ways, thereby activating transcription factors in the nucleus to regulate the transcription
and expression of functional genes [1]. Human B cell adaptor for phosphoinositide 3-kinase
(PI3K) (BCAP) was first characterized as an adaptor protein in B cells. Studies have found
that in mice with BCAP deletion mutations, the amount of mature B cells is reduced, B1
cells are defective, the concentrations of serum immunoglobulin (Ig) M and IgG3 become
low and the immune response to lipopolysaccharide (LPS) is weakened [2]. After the B cell
receptor (BCR) binds to the ligand, BCAP-deficient B cells in mice showed reduced Ca2+

mobilization and a weakened proliferation response. These findings indicate that BCAP
is a critical immunomodulatory molecule in B cell development and humoral immune
response [3]. The BCAP protein sequence has five conserved domains (a Dof/BCAP/BANK
(DBB) domain, an ankyrin repeat-like domain, a coiled-coil domain and two proline-rich
domains) and an immunoreceptor tyrosine activation motif (ITAM) between the ankyrin
repeat-like and the proline-rich domains [4]. The phosphorylation of tyrosine residues on
ITAM of BCAP is mediated by Bruton’s tyrosine kinase (Btk) and spleen tyrosine kinase
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(Syk), thereby providing a binding site for the p85 subunit of PI3K [5]. When the BCR
signaling is triggered, the ITAMs of Igα (CD79a) and Igβ (CD79b) of the BCR complex were
phosphorylated by Lck/Yes-related novel protein tyrosine kinase (Lyn). The phosphory-
lated Igα and Igβ recruit and activate Syk, which further activates the B cell linker (Blnk)
and Btk to initiate cascade reactions downstream of nuclear factor kappa B (NF-κB) and
mitogen-activated protein kinase (MAPK) signaling pathways, respectively [6]. In addition,
Castello et al. found that a non-ITAM tyrosine residue (Tyr204) of Igα was also phospho-
rylated by Syk, which induces the binding of Igα C-terminal with the Src homology (SH)
2 domain of an SH2-domain containing noncatalytic region of tyrosine kinase (Nck) [7].
The SH3 domains of activated Nck could interact with the proline-rich domains of BCAP.
Then, the tyrosine phosphorylation on YxxM of the ITAM of BCAP can recruit the p85
subunit of PI3K, by activating its downstream protein kinase B (Akt), which participates in
regulating B cell development, proliferation and differentiation [8,9].

In addition to being proven to play an important role in the BCR signaling pathway,
recent studies have also revealed that BCAP seems to be involved in T cell receptor (TCR)
signaling through the recruitment and activation of PI3K. Deason et al. found that BCAP
was a key factor in the IL-1R-activated T cells by activation of PI3K/Akt signaling, which
plays a key regulatory role in the differentiation of inflammatory Th17 cells [10]. Another
study found that, after T cell activation BCAP was up-regulated with the initiation of PI3K
signaling pathway, which continued to enhance PI3K signaling and promote the continuous
transformation of cluster of differentiation 8 (CD8) positive T cells into memory and effector
T cells. Whereas, the knockout of BCAP in CD8+ T cells will weaken the proliferation and
development of effector and memory T cells after infection with Listeria monocytogenes [11].
BCAP is expressed after CD4+ T cell activation and is rapidly phosphorylated and interacts
with the p85 subunit of PI3K during early TCR signaling, indicating that BCAP is involved
in the recruitment and activation of PI3K in CD4+ T cell primordial cells, similar to its role in
BCR signal pathway [12]. There is evidence that BCAP has also shown divergent activities
in the maturation or transition of several innate immune cell lines such as macrophages
and dendritic cells, etc. [13–15].

Based upon BCR, TCR, and the major histocompatibility complex, lampreys (jawless
vertebrates) do not have an adaptive immune response. However, lampreys have been found
to form an alternative adaptive immune system in another way. Pancer et al. found a new
class of variable lymphocyte receptors (VLR) in the sea lamprey (Petromyzon marinus) [16].
The amino acid sequence of each type of VLR molecule is highly conserved at their N-
terminal and C-terminal, but there are highly variable regions in its middle part, which
are composed of leucine-rich repeat (LRR) modules [17]. Due to the rich diversity of
LRR module sequences, after permutation and combination, a huge diversity of antigen
recognition receptor molecules required by the adaptive immune system can be generated,
thereby forming an alternative type of adaptive immune system [18]. Thus, for different
types of antigens, each lymphocyte can produce only one kind of VLR molecule with
specific structure [19–21].

There are three kinds of VLRs in lamprey; they are VLRA, VLRB and VLRC, which
specifically express on three lymphocyte subsets, respectively [16,22]. VLRA+ and VLRC+

lymphocyte subsets develop and mature in the thymus-like tissue at the tip of the gills, and
have immune responses to T cell mitogen stimulation [23]; the VLRB+ lymphocyte subsets
(accounting for 90% of the total number of peripheral blood lymphocytes) develop in the
supraneural myeloid bodies on the upper part of the spine, and have an immune response
to B cell mitogen stimulation, and differentiate into plasmacytoid large lymphocytes,
which can produce VLRB multimeric antibodies [24]. According to their immune response
characteristics, VLRA+, VLRB+ and VLRC+ lymphocyte subsets are considered to be similar
to the αβ T cell, B cell and γδ T cell subsets in higher vertebrates [23,24].

In recent years, although the VLRB antibody structure [25] and the assembly mecha-
nism [26] of lamprey and hagfish have been deeply understood, the molecular mechanism
of the adaptive immune response mediated by lymphocytes against pathogen infection in
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the lamprey immune system, and the molecular mechanism of VLRs’ signal transduction
has not been clarified. In this study, we described the cloning, recombinant expression,
antibody preparation and functional analysis of a BCAP homolog in Lampetra japonica
(Lja-BCAP). This project is the preliminary analysis of the functional characterization of the
role that Lja-BCAP plays in the immune response.

2. Results
2.1. Identification of Lja-BCAP and Sequence Similarity Analysis

The cDNA sequence of the Lja-BCAP was successfully cloned by the Nested PCR
method using the primers listed in Table S3. It contains an open reading frame (ORF) of
2181 bp, encoding a protein of 726 amino acids (aa) with a molecular weight of about 98 kDa.
The multiple sequence alignment of Lja-BCAP and BCAPs of human, chicken, alligator,
chimaera fish and sea lamprey were analyzed by using BioEdit7.0 software (Figure 1).
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Figure 1. Sequence alignment of lamprey BCAP homologs with several typical BCAP molecules of
higher vertebrates by using Clustal X program. The accession numbers of the sequences are listed in
Table S1. The identical amino acid residues among BCAP sequences are marked in light blue. The
functional domains such as Dof, BCAP, and BANK (DBB) motif, anchor protein repeat motif, proline
rich domain and coiled-coil domain are marked by red, blue, green and purple frames, respectively.
The conserved immunoreceptor tyrosine-based activation motifs are indicated by pink letters.

The results showed that the amino acid sequence of Lja-BCAP shares as high as a 90.6%
identity with that of the sea lamprey, but two lamprey homologs are about 35.2–36.8%
identical to BCAP sequences of those higher vertebrates. Though the overall sequence
identities among them are not high, lamprey BCAP homologs also possess all five conserved
functional domains and an ITAM motif which are the typical characteristics of BCAP family,
which indicated that BCAP homologs exist in lampreys.
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2.2. Phylogenetic and Conserved Motif Analyses of BCAP and BANK1 Families

In order to further understand the phylogenetic relationship of BCAP molecules,
the phylogenetic tree was reconstructed by Neighbor-Joining (NJ) method with 45 BCAP
and B cell scaffold protein with ankyrin repeats 1 (BANK1) sequences from 25 species
which are representatives of six vertebrate classes and three invertebrate classes (Figure 2A,
Table S1). The results showed that the vertebrates’ BCAPs and BANK1s were grouped
into two distinct large clusters; Lja-BCAP and BCAP of sea lamprey were clustered into
the same cluster with those BCAP molecules of jawed vertebrates. An uncharacterized
protein LOC116950877 from the sea lamprey which is about 17% identical to sea lamprey
BCAP but possesses a DBB motif was clustered between BCAP and BANK1 groups. The
genetic distance between protein LOC116950877 and BANK1s’ ancestor was closer than
that between protein LOC116950877 and BCAPs’ ancestor. The BCAP-like from the echin-
oderms (Acanthaster planci) and the mollusks (Crassostrea gigas) and the BANK1-like of
the coelenterates (Hydra vulgaris) are grouped as outgroups in a single clade, respectively
(Figure 2).

The conserved motif analysis revealed that among the total predicted 20 conserved
motifs (Table S2), 10 motifs (1, 2, 3, 5, 6, 7, 8, 9, 13 and 17) are shared by BCAPs and
BANK1s, two motifs (15 and 16) are unique to BANK1 and six motifs (4, 10, 11, 12, 14, 18)
are unique to BCAP. Lamprey BCAPs share only one unique motif (15) with BANK1s, but
share three unique motifs (4, 11 and 12) with BCAPs. In addition, Lamprey BCAPs share a
motif combination (13-3-4-1-12) which is only conserved in the BCAP family, while protein
LOC116950877 possesses another motif combination (13-3-1) that is only conserved in the
BANK1 family. The results of phylogenetic and conserved motif analyses suggest that
BCAP and BANK1 molecules have a common ancestral gene and diverged at least after the
emergence of jawless vertebrates.

2.3. Induced Expression of Recombinant Protein and Preparation of Its Rabbit Polyclonal Antibody

The 200 aa at the C-terminal of Lja-BCAP was predicted to be an epitope rich fragment
(Figure S1, Table S4). The recombinant expression plasmid of truncated Lja-BCAP was con-
structed and transformed into E. coli Rosstta (DE3) competent cells, induced by Isopropyl
β-D-thiogalactoside (IPTG), and then detected by sodium dodecylsulphate polyacrylamide
gel electrophoresis (SDS-PAGE) (Figure S2A). The results showed that the specific target
band appeared at 40kD, which was consistent with the expected target protein size, and 90%
of rLja-BCAP was expressed in the supernatant, indicating that the solubility of rLja-BCAP
was high (Figure S2A). The rLja-BCAP was purified by His-tag affinity chromatography to
obtain a single-band pure recombinant protein (Figure S2B).

The purified rLja-BCAP was used as the antigen, and the rabbits were immunized
according to the immunization method described in Materials and Methods. After four
booster immunizations, the rabbit anti-rLja-BCAP polyclonal antibody was successfully
prepared. After the antibody was purified by affinity chromatography, the antibody titer
was measured to reach 1:128,000 by ELISA detection (Figure S3). The specificity of the
antibody was detected by WB analysis. The results showed that the rabbit anti-Lja-BCAP
polyclonal antibody can specifically detect the rLja-BCAP induced by IPTG (Figure S2C).

2.4. Functional Characterization of Lja-BCAP in Response to Mixed Bacteria Stimulation by
RNAi Technique

To verify the function of Lja-BCAP in immune response, the RNA interference (RNAi)
method was used to knockdown Lja-BCAP mRNA expression as described in Materials
and Methods. The transcription and protein expression of Lja-BCAP were examined by
quantitative real-time PCR (qPCR) and Western blotting methods, respectively.
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Figure 2. The phylogeny and conserved motif analysis of BCAP and BANK1 protein families.
(A). The phylogenetical tree was reconstructed using the Neighbor-Joining method. The percentage
of replicated trees in which the associated taxa clustered together in the bootstrap test (1000 replicates)
is shown next to the branches. The tree is drawn to scale, with branch lengths in the same units
as those of the evolutionary distances used to infer the phylogenetic tree. The BCAP and BANK1
clusters are shaded with light blue and yellow colors, respectively. The accession numbers of protein
sequences are listed in Table S1. (B). The conserved motif analysis was conducted by using an online
tool Multiple Em for Motif Elicitation (https://meme-suite.org/meme/index.html, accessed on
20 April 2022). The 20 conserved motifs searched among 45 sequences are indicated with different
colors and their sequences are shown in Table S4. The unique conserved motif combination in BCAPs
is marked by a dotted line, while in BANK1 it is marked by a dashed line.

According to the experimental results in Figure 3A,C, Lja-BCAP mRNA is constitu-
tively expressed in immune related tissues, and the background expression of Lja-BCAP

https://meme-suite.org/meme/index.html
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mRNA in peripheral blood lymphocytes and gills is higher than that in supraneural myeloid
bodies. In the negative control group that was treated with scrambled Lja-BCAP small
interfering RNA (siRNA), the transcription levels of Lja-BCAP increased significantly in the
peripheral blood lymphocytes and gills but not significantly in the supraneural myeloid
bodies after the mixed bacteria stimulation relative to the control group. In the RNAi group
that was treated with Lja-BCAP siRNAs, the expression levels of Lja-BCAP mRNA were
significantly depressed in peripheral blood lymphocytes and the supraneural myeloid
bodies and slightly depressed in the gills relative to the negative control group after the
mixed bacteria stimulation (Figure 3A).
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Figure 3. Investigation of the differential expression patterns of Lja-BCAP mRNA and protein after
immune stimulation in immune-related tissues through RNA interference. (A). The differential
expression patterns of Lja-BCAP mRNA after stimulation in immune-related tissues of lamprey
treated with small interference RNA or not. Lampreys treated with Engleen transfection reagent,
Lja-BCAP siRNAs transfection solution and scramble siRNAs transfection solution were set as control,
RNAi and negative control groups, respectively. After 24 h interference, lampreys were stimulated
by normal saline (control) or mixed bacteria, respectively. After 24 h stimulation, immune-related
tissues such as peripheral blood lymphocytes (lymphocytes), gills and supraneural myeloid bodies
(myeloid bodies) were isolated as described in Materials and Methods. (B). Western blotting method
was used to detect the expression of Lja-BCAP and the tyrosine phosphorylation in immune-related
tissues interfered with siRNA or not after mixed bacteria stimulation. (C,D). The statistical graphs of
the relative expression of Lja-BCAP and the tyrosine phosphorylation levels calculated according to
densitometry data generated from (B). The data shown in the figure are all carried out in three sets of
parallel experiments for each group (n = 3). The experimental results are expressed as “mean ± SD”.
All data are tested by t-test, * means significant difference (p < 0.05), ** means extremely significant
difference (p < 0.01).

The Western blotting (WB) results clearly showed that the Lja-BCAP expressions after
mixed bacteria stimulation were all significantly knocked down in the immune-related
tissues of the RNAi group relative to their corresponding control or negative control groups.
However, in the negative control group, the Lja-BCAP expression levels after mixed bacteria



Int. J. Mol. Sci. 2022, 23, 14449 7 of 14

stimulation were slightly up-regulated in the gills but significantly in the peripheral blood
lymphocytes and the supraneural myeloid bodies relative to those of the control group
(Figure 3B,C). Further, an anti-phosphotyrosine monoclonal antibody 4G10 was used to
check the tyrosine phosphorylation levels in these immune-related tissues after mixed
bacteria stimulation. It can be seen in Figure 3B that the tyrosine phosphorylation levels
after mixed bacteria stimulation were up-regulated in all these immune-related tissues in
the negative control group compared to the control group. However, after the knockdown
of Lja-BCAP, the tyrosine phosphorylation levels were all blocked in these tissues after
mixed bacteria stimulation compared to the control and negative control groups. The
above results all prove that Lja-BCAP participates in the anti-bacterial immune response
of lamprey.

2.5. Lja-BCAP Mainly Participates in the LPS-Mediated Immune Response of Lampreys

In order to further find out what kind of lymphocyte mitogen has an effect on Lja-
BCAP expression, B cell mitogen LPS and T cell mitogen phytohemagglutinin (PHA) were
used to stimulate the lamprey and the differential expressions of Lja-BCAP were examined
in the immune-related tissues. The WB results showed that after 24 h of LPS stimulation,
the expressions of Lja-BCAP in the peripheral blood lymphocytes, gills and supraneural
myeloid bodies were 2.5, 2.2 and 11.1 times higher than that of the control group (p < 0.05),
respectively. After PHA stimulation, the significant up-regulation of Lja-BCAP was only
detected in peripheral blood lymphocytes by 3.5 times that of the control group, respectively.
No differential expression was detected in the supraneural myeloid bodies, but the Lja-
BCAP was significantly down-regulated in the gills (p < 0.05) (Figure 4A,B). The above
results indicate that Lja-BCAP mainly participates in the LPS-mediated immune response
of lampreys.
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Figure 4. Relative expression levels of Lja-BCAP in immune-related tissues after LPS and PHA
stimulation. (A) Western blotting method was used to detect the expression of Lja-BCAP in immune-
related tissues after LPS and PHA stimulation, respectively. Lampreys were stimulated by normal
saline, LPS or PHA for 24 h, respectively, as described in Materials and Methods; (B) The statistical
graph of the results of Western blotting. The data shown in the figure are all carried out in 3 sets of
parallel experiments for each group (n = 3). The experimental results are expressed as “mean ± SD”.
All data are tested by t-test, * means significant difference (p < 0.05), ** means extremely significant
difference (p < 0.01).
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3. Discussion

Adaptive immunity is the specific response of lymphocytes to antigens under stim-
ulation, which can produce immune memory effects and play a key role in completely
eradicating pathogens and preventing re-infection [27]. Although jawless vertebrates do
not have an adaptive immune system mediated by TCR, BCR and MHC such as in higher
vertebrates [28], they have been found to use three types of VLR receptors to form another
type of adaptive immune system. This has provided us with a key clue to reveal the origin
and evolution of the vertebrate adaptive immune system [18]. In recent years, we have
conducted in-depth explorations on the molecular mechanism of immune response in the
immune system of L. japonica. We have discovered that some molecules related to the early
events of the BCR signaling pathway in higher vertebrates are also involved in the immune
response of lamprey. These molecules include Btk [29], Blnk [30], Syk [31], Vav guanine nu-
cleotide exchange factor 3 (VAV3) [32] and Lyn [33]. These findings indicate that although
the lamprey lymphocyte receptors and their possible coupling transmembrane molecules
are different from higher vertebrate B cells, those molecules involved in intracellular signal
transduction have a common genetic basis compared with higher vertebrate B cells.

In the present work, a homologous molecule of BCAP was also cloned in the lam-
prey. By searching through several genome databases, it was found that there are two
BCAP homologous sequences in the sea lamprey (P. marinus). One (accession number:
AY152674 [34]) is highly identical (>90%) to Lja-BCAP; though the identities among lamprey
BCAPs and several typical BCAPs of high vertebrates are not high in their full sequence,
their sequences are highly conserved in five domains that are typical characteristics of BCAP
family. Another one named uncharacterized protein LOC116950877 (accession number:
XM_032969002) is only 17% identical to sea lamprey BCAP (Figure S4). The sequence align-
ment result showed that protein LOC116950877 shares a little bit higher sequence similarity
with BCAPs than with BANK1s of high vertebrates (Figure S4). However, the conserved
motif analysis revealed that protein LOC116950877 shares a conserved motif combination
(13-4-1) that only exists in the BANK1 family of jawed vertebrates (Figure 2). Given that
no sequence could be found in the lamprey genome with high homology to vertebrates’
BANK1 in these genomic databases available, we deduced that protein LOC116950877
should be a BANK1 homolog in lamprey. Our results suggest that the divergence of BCAP
and BANK1 molecules might have happened already in jawless vertebrates.

Because BCAP is an adaptor protein that can couple upstream BCR or TCR signaling
to the downstream PI3K/AKT signaling in the immune reaction of higher vertebrates,
our functional characterization of Lja-BCAP was first carried out to investigate what will
happen after Lja-BCAP was knocked down by RNAi. After 48h Lja-BCAP siRNAs treatment
and 24 h mixed bacteria stimulation, although there are no significant repressive effects on
Lja-BCAP transcription in peripheral blood lymphocytes and gills in RNAi group relative to
the control group (Figure 3A), the expression levels of Lja-BCAP were all down-regulated
significantly (p < 0.01) in these three immune-related tissues of RNAi group compared with
those of control group (Figure 3B,C). In addition, after 48 h of scrambled siRNA treatment
and 24 h of mixed bacteria stimulation, the expression levels of Lja-BCAP mRNA and
protein were nearly all up-regulated significantly in these immune-related tissues of the
negative control group compared with those of the control group (Figure 3A–C). These
results indicate that Lja-BCAP was successfully knocked down by the RNAi method.

The successful knockdown of Lja-BCAP expression provides the possibility for further
exploring its function in the lamprey immune response. The significant up-regulation
of Lja-BCAP protein was detected in the peripheral blood lymphocytes (p < 0.01), gills
(p < 0.05) and supraneural myeloid bodies (p < 0.05) after mixed bacteria stimulation in the
negative control group, and these up-regulations were blocked after Lja-BCAP knockdown
(Figure 3B,C). Our findings at protein level were coincident with the results of Hirano
et al. at the transcriptional level. They performed transcriptomics on VLRA+, VLRB+,
TN and VLRC+ lymphocytes and found that BCAP is expressed in all of them, with the
strongest expression found in VLRB+ lymphocytes [35]. In higher vertebrates, the early
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events after BCR and TCR activation are associated with tyrosine phosphorylation and
dephosphorylation of Src-family protein tyrosine kinases [36]. The phosphorylation of
two tyrosine residues on ITAM of BCAP is also critical for the activation of the PI3K p85
subunit [9]. Therefore, tyrosine phosphorylation is considered one of the key steps in
BCR or TCR signal transduction in vertebrates [37]. Thus, a Mouse Monoclonal Antibody
4G10 was applied to check the tyrosine phosphorylation levels after the knockdown of Lja-
BCAP [38]. In the negative control group, the tyrosine phosphorylation levels in peripheral
blood lymphocytes, gills and supraneural myeloid bodies after mixed bacteria stimulation
are obviously higher than those in the control group, and they were all attenuated after
knockdown of Lja-BCAP (Figure 3B). Thus, it can be concluded that Lja-BCAP is functionally
involved in the lamprey anti-bacterial immune response.

It was found that VLRA+ and VLRC+ lymphocytes develop in the thymus-like tissue
distributed on the tip of lamprey gills and they can be activated by PHA [22]. LPS can
stimulate the proliferation of lymphocytes in the peripheral blood and supraneural myeloid
bodies [32]. Therefore, in order to find out what kind of mitogen Lja-BCAP is probably
associated with, the expression profiles of Lja-BCAP were tested in these immune-related
tissues under LPS and PHA stimulation. After LPS stimulation, the expression levels of Lja-
BCAP are up-regulated extremely significantly (p < 0.01) in peripheral blood lymphocytes,
gills and supraneural myeloid bodies (Figure 4A,B). Conversely, after PHA stimulation,
the expression levels of Lja-BCAP were significantly up-regulated only in peripheral blood
lymphocytes (p < 0.01), and did not change obviously in supraneural myeloid bodies but
were down-regulated significantly in gills (p < 0.05), respectively. Yamazaki et al. found
that mouse BCAP−/− B cells lost 50% of the ability to respond to LPS stimulation compared
to wild-type B cells [2]. From this point, it seems that Lja-BCAP is mainly associated with
LPS-mediated immune reactions as in its vertebrate homologs.

Nevertheless, there are still some questions that need to be addressed in future studies.
VLRB+ lymphocyte subsets (B-like cells) distribute in all of these immune-related tissues,
and it is easy to connect Lja-BCAP with VLRB signaling. So, in order to obtain some hints
between BCAP and VLRB signaling, VLRB positive or negative cells should be sorted out
by high-affinity antibody for comparison. Similarly, the relationships of Lja-BCAP with
VLRA or VLRC signaling should be verified as well.

4. Materials and Methods
4.1. Lamprey Immunization

Lamprey (L. japonica) were purchased from Tongjiang City, Heilongjiang Province,
and then reared at the Lamprey Research Center of Liaoning Normal University. The
healthy adults of lamprey were divided into a control group, mixed bacteria, LPS and
PHA (Sigma, St. Louis, MO, USA) stimulation groups. Two aquatic bacteria Streptococcus
agalactiae and Vibrio parahemolyticus were chosen as the representatives of Gram-positive
(G+) and Gram-negative (G−) bacteria for preparing inactivated antigens, respectively.
They were inactivated by acetaldehyde first and then mixed together in normal saline at a
concentration of 1 × 107 CFU/mL for each strain. LPS or PHA powder were dissolved in
phosphate-buffered saline (PBS) buffer (0.01 M, pH 7.4), respectively, at a concentration of
1 mg/mL. After 1 week of acclimatization in a constant temperature water tank, lampreys
in each group were immunized with a corresponding antigen solution (100 µL for each)
through intraperitoneal injection according to the previous description [30]. The peripheral
blood lymphocytes were separated from the blood according to Han et al. [30] by Mouse
Lymphocyte Separation Medium (Haoyang, Tianjin, China), and other immune-related
tissues such as gills, supraneural myeloid bodies were dissected and placed in RNA
protective agent (Solarbio, Beijing, China) or tissue cryopreservation solution [30], and
stored in ultra-low temperature refrigerator at −80 ◦C.
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4.2. PCR Amplification of the Target Gene

A human BCAP protein sequence was used as query to search aligned sequences
through BLASTP program against a lamprey database of our laboratory [39], a full-length
cDNA sequence of Lja-BCAP was obtained, and primers were designed using Primer 5.0
software (Table S3) for the next step of amplifying the ORF of Lja-BCAP. The supraneural
myeloid bodies of L. japonica were isolated and total RNA was extracted with RNAiso
Plus (Takara, Dalian, China). Using the extracted total RNA as a template, single-stranded
cDNA was synthesized through a reverse transcription kit (Takara). The prepared cDNA
was used as a template with the primers listed in Table S3 to perform a Nested PCR reaction
to amplify the ORF of Lja-BCAP. The amplification program was set as 94 ◦C for 5 min,
1 cycle; then 94 ◦C for 30 s, 49.6 ◦C for 30 s and 72 ◦C for 2.5 min, 30 cycles; finally, storage
at 4 ◦C. The PCR products were detected by 1.5% agarose gel electrophoresis, and the target
band was recovered from the gel and subcloned in the T vector (Takara), which was then
verified by sequencing (Takara).

4.3. Homologous Sequence Comparison and Phylogenetic Analysis

The NCBI website was used to search the BCAP and BANK1 amino acid sequences
of representative species in each class of vertebrates and invertebrates (Table S1), and the
BioEdit7.0 software was used for multiple sequence alignment. The conserved domains
were predicted by the online tool SMART [40]. The NJ method was chosen to reconstruct
the phylogenetic tree by using MEGA7.0 software. The Poisson correction method was
used to calculate the evolutionary distance [41].

4.4. Conserved Motif Analysis

The conserved motifs of BCAP and BANK1 sequences mentioned above were analyzed
by using an online tool Multiple Em for Motif Elicitation (https://meme-suite.org/meme/
index.html, accessed on 20 April 2022). The parameters were set as follows: a single motif
width is from 7 to 50; the total number of the motifs for searching is 20; the total number of
sites in the primary sequence set where a single motif occurs is from 2 to 100 [42].

4.5. Recombinant Expression of Truncated Lja-BCAP

Primer 5.0 software was used to design primers with EcoRI and HindIII restriction sites
in the C-terminal of Lja-BCAP ORF that expresses relatively abundant epitopes (predicted
by an online tool at http://tools.immuneepitope.org/main/bcell/, accessed on 11 October
2017). The target fragment was obtained by PCR reaction and subcloned into the pET-32a
vector (Takara). The constructed recombinant expression vector was transformed into
E. coli DH5α competent cells (Takara), and the recombinant plasmid was extracted and
sequenced and verified by Takara. The verified truncated Lja-BCAP recombinant plasmid
was transformed into the E. coli Rosetta (DE3) strain, and cultured to the logarithmic phase
at 37 ◦C. Then the cultured strains were induced with IPTG (Shenggong, Shanghai, China)
at a concentration of 1 mmol/L or 0.1 mmol/L at 30 ◦C and cultured 120 r/min for 4 h,
and then the cells were collected. The bacterial cells were broken by ultrasound and then
subjected to SDS-PAGE to detect the expression of recombinant proteins of Lja-BCAP
(rLja-BCAP). The histidine tag (His-Tag) affinity gel chromatography method was used
for purification.

4.6. Preparation and Titer Detection of Lja-BCAP Antibody

Rabbits (Oryctolagus cuniculus) are bred in our laboratory. Rabbit serum was taken
as a negative control before immunization. During the first immunization, 600 µg of rLja-
BCAP was phacoemulsified with an equal volume of Fischer’s complete adjuvant (Sigma,
St. Louis, MO, USA), and then the rabbits were injected subcutaneously at multiple points
on the back. After that, booster immunizations were carried out every two weeks with a
half-dose of protein in Fischer’s incomplete adjuvant (Sigma, St. Louis, MO, USA). After
the booster immunization, blood was collected from the ear vein every other week, and the

https://meme-suite.org/meme/index.html
https://meme-suite.org/meme/index.html
http://tools.immuneepitope.org/main/bcell/


Int. J. Mol. Sci. 2022, 23, 14449 11 of 14

antibody titer was detected by enzyme-linked immunosorbent assay (ELISA). Finally, blood
was collected from the ear artery, incubated at 37 ◦C for 1 h, and centrifuged at 8000 r/min
for 15 min to separate the serum. Antibodies are purified by affinity chromatography
using Protein G gel columns (Beyotime, Shanghai, China). After the purified antibody was
dialyzed, an equal amount glycerol was added, and the antibody was stored at −20 ◦C.

4.7. RNA Interference

The knockdown of Lja-BCAP mRNA was performed by RNAi technology [43]. Three
pairs of siRNAs were designed and synthesized by Shanghai genepharma Co., Ltd. (Shang-
hai, China) as a siRNA pool for enhancing the interference effect (Table 1). The RNA in vivo
transfection reagent EntransterTM-in-vivo was purchased from Engleen Biosystem Ltd.
(Auckland, New Zealand). Lja-BCAP siRNA and Scrambled siRNA transfection complex
were prepared according to the manufacturer’s instructions. Two milliliters of transfection
complex contains 0.33 mg of siRNAs (0.11 mg for each), 0.25 mL of transfection reagent
and 0.2 g of glucose. Briefly, mixed bacteria (V. parahaemolyticus and S. agalactiae) were used
as antigens to immunize lampreys, and the first booster immunization was carried out
seven days later. Lampreys treated in the same way with normal saline were set as blank
control groups. Then after three days, each lamprey in control group was intraperitoneally
injected with 200 µL transfection complex without siRNA, and those immunized with
mixed-bacteria were injected with Lja-BCAP siRNA complex (set as RNAi group) and
Scrambled siRNA complex (set as the negative control group), respectively. After 24 h of
interference, lampreys were conducted second booster immunization with mixed bacteria
(RNAi and negative control groups) or normal saline (blank control group). After 24 h
stimulation, the lampreys were handled according to the method described in Section 4.1.

Table 1. The siRNA sequences used in this study.

Symbol Forward (5′-3′) Reverse (5′-3′)

Lja-BCAP-546 CCGCAUCAUGUGUGGGCAATT UUGCCCACACAUGAUGCGGTT
Scrambled-546 CCAAGCCUGGUGAUGGACUTT AGUCCAUCACCAGGUUUGGTT
Lja-BCAP-891 GCUGCUCGCAGAUUCCUUATT UAAGGAAUCUGCGAGCAGCTT
Scembled-891 CGAGACUCCGCAUAUUUCGTT CGAAAUAUGCGGAGUCUCGTT

Lja-BCAP-1148 GCAAAUUCAUGGACGACUATT UAGUCGUCCAUGAAUUUGCTT
Scembled-1148 CCAAGGAGGAUUUACCAUATT UAUGGUAAAUCCUCCUUGGTT

4.8. Quantitative Real-Time PCR (qPCR) Detection

The total RNA from peripheral blood lymphocytes, gills and supraneural myeloid
bodies was extracted by RNAiso reagent, and cDNA was synthesized by reverse transcrip-
tion with an AMV reverse transcription kit (TaKaRa). The Lja-BCAP primers designed in
Table S3 were used for qPCR reaction with a SYBR® Premix Ex TaqTM premix kit (TaKaRa),
and gapdh was used as an internal reference to analyze the differential expression of
Lja-BCAP mRNA in the above-mentioned immune tissues after antigens stimulation [32].
Amplification conditions: pre-denaturation at 94 ◦C for 5 min; denaturation at 94 ◦C for
30 s, annealing at 60 ◦C for 30 s, 30 cycles, and storage at 4 ◦C. The relative expression levels
of Lja-BCAP mRNA were calculated by using the 2−∆∆CT method [44].

4.9. Western Blotting Analysis

About 50 mg of lamprey tissue was homogenized in RIPA Lysis Buffer (Beyotime,
Shanghai, China) plus protease inhibitors (Beyotime) in an ice bath and then centrifuged.
The supernatant was added to the loading buffer and boiled for 8 min to prepare a protein
sample. The protein samples were first separated by SDS-PAGE, then transferred to
polyvinylidene fluoride (PVDF, Millipore) membrane for 75 min, and sealed with 5%
skimmed milk powder for 3 h. Then the Lja-BCAP antibody (1:1000 v/v) was applied and
incubated at 4 ◦C. After at least 4 h, the membrane was washed with 1 × TBST buffer
(Tris buffer plus 0.05% Tween-20) for 10 min each time, five times in total. The secondary
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antibody (Goat anti-rabbit, Beyotime) was added at a ratio of 1:5000 and incubated at
37 ◦C for 1 h. the membrane was washed with 1 × TBST buffer, 10 min each time, four
times in total. Finally, ECL luminescent solution (Beyotime) was added, and FluorChem Q
multicolor fluorescence chemiluminescence imaging system (ProteinSimple, San Jose, CA,
USA) was used to detect the fluorescence signal. The β-Actin Mouse mAb (ABclonal) was
used to identify lamprey β-actin as internal control [32]. Densitometry data generated for
WB to compare protein concentrations were analyzed with the software ImagePro 6.0.

4.10. Statistical Analysis

The obtained data were calculated by Graphpad prism 5.0 Software and the results
were shown by mean ± standard deviation (m ± SD). The statistical difference between
the two groups was analyzed by t-test, and p < 0.05 means significant, and p < 0.01 means
extremely significant.

5. Conclusions

This work preliminarily characterized a BCAP homolog, Lja-BCAP, from lamprey. It is
involved in anti-bacterial immunity by up-regulating expression and enhancing tyrosine
phosphorylation levels in response to antigen challenges. It was also demonstrated that
Lja-BCAP should mainly participate in the immune response of lamprey mediated by
LPS. Of course, in-depth research is still needed in the future to reveal the relationships of
Lja-BCAP with the signaling of lamprey VLRA+, VLRB+ and VLRC+ lymphocytes.
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