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Abstract: Congenital cataract is the leading cause of blindness among children worldwide. Patients
with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening
vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear.
This study aims to explore the functional regulation and mechanism of HTRA1 in human lens
epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children
with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth
factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed
that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1
on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the
downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the
TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream
target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via
adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can
significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in
abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence
of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC,
and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating
the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.
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1. Introduction

Congenital cataract is among the most common eye diseases causing blindness in
children [1–3], accounting for 5–20% of cases [4–6]. Worldwide, about 200,000 children
with blindness caused by congenital cataract, and approximately 20,000–40,000 children
with congenital cataract are born every year [7–9]. Regional differences are significant in
the incidence of congenital cataract, with the incidence in Asia being higher compared to
other parts of the world at 7.43/1,000,000 [7]. Therefore, early prevention and treatment of
congenital cataract are critical to reducing the burden on children, their families and society.

At present, surgery is the only effective way to treat congenital cataract. However,
such surgery is difficult and expensive, and postoperative complications cannot be com-
pletely avoided. These complications can include visual axis opacification, secondary
glaucoma, iris injury, and refractive error. Retinal detachment and endophthalmitis may
even occur [10]. Therefore, it is crucial to clarify the pathogenesis of congenital cataract to
prevent and predict the occurrence and development of this condition.
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Different types of cataracts can lead to different degrees of visual impairment. Posterior
subcapsular congenital cataract (PSC) is one of the most common types of congenital
cataract. PSCs seriously affect visual development and account for 26.8% of congenital
cataracts worldwide [7]. PSC is characterized by mass opacity under the posterior capsule
without other ocular developmental abnormalities and is the simplest subtype of posterior
polar cataract; however, the mechanism remains unknown. Therefore, the purpose of this
study is to explore the potential mechanism of its occurrence and development. Previously,
we performed transcriptome sequencing of capsules from patients with PSC and normal
controls and found that HTRA1 was the most significant candidate pathogenic gene in lens
epithelial cells [11]. HTRA1 has been previously detected in the lenses of mice [12]. Results
based on the iSyTE2.0 database showed that the expression of HTRA1 in the lens of mice
increased gradually with increasing gestational age, and the expression in the lenses was
significantly higher than that in other tissues [13]. This indicates that HTRA1 may play an
important role in lens development and cataract formation.

HTRA1 is a serine protease, and an important regulator of the TGF-β signalling path-
way. GST pulldown experiments show that HTRA1 binds to many proteins of the TGF-β
family and inhibits its function [14,15]. The relationship between HTRA1 and the TGF-β
signalling pathway has been confirmed in a variety of diseases [16–19]. However, the
function, expression characteristics and mechanism of HTRA1 in the lens have not been
elucidated. Changes in the TGF-β signalling pathway represent an important pathogenesis
in the formation of fibrous cataract [20]. Fibrous cataract mainly includes posterior cataract,
anterior polar cataract and posterior polar cataract. The TGF-β superfamily members
regulate important processes of lens development and promote the differentiation of lens
fibre cells [21,22]. It has been considered that the TGF-β signalling pathway is key to the
terminal differentiation of lens fibre cells [23]. TGF-β1 can induce rapid elongation of lens
cells, abnormal accumulation of extracellular matrix, deposition of smooth muscle actin and
apoptosis. TGF-β can affect the structure of the lens in the late stage of lens development,
thus causing pathological changes in subcapsular opacification [24,25]. Transgenic mice
with specific overexpression of lens TGF-β1 showed subcapsular plaque formation, poste-
rior subcapsular nucleation and vacuole formation, which are similar to the pathological
features of PSC [26–28]. However, whether changes in the TGF-β signalling pathway play
a key role in the formation of PSC remains to be verified.

HTRA1 plays a key regulatory role in a variety of cell processes, such as cell prolifera-
tion, migration and apoptosis [29–31]. Previous nervous system studies have shown that
the inhibition of HTRA1 protease activity activates the TGF-β signalling pathway, resulting
in the upregulation of downstream target protein PAI-1 and eventually leading to neuronal
apoptosis [16]. The expression of HTRA1 is downregulated in a variety of tumours, such as
ovarian tumours [32], thyroid tumours [33] and non-small cell lung tumours [34], which
activates the TGF-β signalling pathway to promote tumour cell proliferation [19]. However,
the function of HTRA1 in lens epithelial cells needs to be further studied.

In the present study, we investigate the roles of HTRA1 and the TGF-β signalling
pathway in the formation of PSC and lens epithelial cells.

2. Results
2.1. Downregulation of HTRA1 in Human Lens Epithelial Cells of Subjects with PSC

To verify the HTRA1 expression in human lens epithelial cells (HLECs), the anterior
lens capsules of 36 eyes with PSC and 29 eyes with normal controls were analysed. Age
(48.77 ± 29.35 months in the PSC group vs. 54.58 ± 36.65 months in the control group,
p > 0.05) and sex (p > 0.05) were comparable for the two groups. Downregulation of HTRA1
was validated using human lens epithelial samples by RT-qPCR (p < 0.001, Figure 1A),
Western blotting (p < 0.001, Figure 1B), and immunofluorescence staining (Figure 1C).
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Figure 1. HTRA1 expression downregulated in PSC patients. (A) The mRNA level of HTRA1 in
anterior lens capsules based on RT-qPCR analyses (p < 0.01). (B) The protein levels of HTRA1 in
anterior lens capsules based on Western blotting (p < 0.001). (C) Immunofluorescence images of
HTRA1 staining in anterior lens capsules (n = 3). *** p < 0.001, Scale bar: 20 µm.

2.2. HTRA1 Expression Levels in the Normal Human Lens at Different Layers and in Different
Age Groups

The expression levels of HTRA1 were measured in central lens epithelial cells, equato-
rial epithelial cells and fibre cells in normal controls. The level was highest in fibre cells and
lowest in central lens epithelial cells (Figure 2A). Furthermore, HTRA1 decreased with age
before 40 years of age in normal HLECs and was stable after 40 years of age (Figure 2B).
The immunofluorescence staining of frozen sections showed that HTRA1 was expressed in
both the cytoplasm and the nucleus of HLEC from normal controls (Figure 2C).

2.3. TGF-β/Smad Signalling Pathway Was Activated in HLECs of PSC Patients

To establish whether TGF-β/Smad signalling contributed to the formation of PSC,
the RNA and protein expression of the key signalling molecules were determined. RT-
qPCR results showed that TGF-β1 (p = 0.015) and TGF-β2 (p = 0.014) were upregulated
in the lens epithelia of PSC patients. The key signalling molecules, including TGF-βR1
(p = 0.023), PAI-1 (p = 0.027) and CTGF (p = 0.002), were also significantly upregulated in
PSC patients (Figure 3A). The protein levels of TGF-β2 (p = 0.008), TGF-βR1 (p = 0.040),
p-Smad2/3 (p = 0.017) and PAI-1 (p = 0.040), the key signalling molecules, were significantly
upregulated in lens epithelia of PSC patients (Figure 3B).
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Figure 2. HTRA1 expression levels in normal human lenses at different layers and for different age
groups. (A) The mRNA levels of HTRA1 expressed in central lens epithelial cells, equatorial epithelial
cells and fibre cells in normal human lenses. (B) The mRNA levels of HTRA1 expressed in different
age groups. (C) Immunofluorescence images of HTRA1 staining in HLECs (n = 3). Scale bar: 10 µm.
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Figure 3. TGF-β/Smads signalling activated in lens of PSC patients. (A) The mRNA levels of TGF-
β1, TGF-β2, TGF-βR1, CTGF and PAI-1 in human lens epithelial cells based on RT-qPCR analyses
(p = 0.015, 0.014, 0.023, 0.002 and 0.027, respectively). (B) The protein expression of TGF-β1, TGF-β2,
TGF-βR1, CTGF, PAI-1, Smad2/3 and p-Smad2/3 (p = 0.261, 0.008, 0.040, 0.321, 0.040, 0.487 and 0.017,
respectively) based on Western blotting. * p < 0.05, ** p < 0.01.

2.4. Downregulation of HTRA1 and Activated TGF-β/Smad Signalling Promotes HLEC
Proliferation and Migration

HLEC were transfected with LV-HTRA1-RNAi lentivirus to downregulate the expres-
sion of HTRA1. After transfection, RT-qPCR and Western blotting were performed to verify
the downregulation of HTRA1 (Figure 4A,B). A CCK-8 assay was used to explore the role of
HTRA1 in the regulation of HLEC growth. The results showed that downregulated expres-
sion of HTRA1 significantly promotes the growth ability of HLEC (p < 0.001, Figure 5A).
Moreover, a scratch healing assay showed that the knockdown of HTRA1 promoted the
migration of HLEC (p = 0.022, Figure 5D). However, the ectopic expression of HTRA1 did
not influence the apoptosis of HLEC (p > 0.05, Figure 5B,C).
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Figure 4. Downregulation of HTRA1 directly activated the TGF-β/Smad signalling in primary
HLECs. (A) Primary HLECs after LV-HTRA1-RNAi lentivirus transfection, the middle image showed
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the GFP expression, and the right image showed the mRNA levels of HTRA1 after transfection.
(B,C) Changes of HTRA1, Smad2/3, p-Smad2/3, TGF-β1 and TGF-β2 gene expression detected by
Western blotting (Smad2/3 p > 0.05, p-Smad2/3 p = 0.014, TGF-β1 p = 0.021, TGF-β2 p = 0.039) in pri-
mary HLECs collected from PSC eyes after treatment of HTRA1 knockdown (Htra1 KD). (D) Changes
of p-Smad2/3 expression detected by Western blotting with HTRA1 knockdown ± TGF-βR1/2 in-
hibitor treatment (10 ng/mL for 24 h) in primary HLECs (p-Smad2/3 p = 0.042, 0.027, respectively).
(E) The mRNA levels of α-SMA, PAI-1 and CTGF elevated in HLECs after treatment of HTRA1 knock-
down (p = 0.022, 0.005, and 0.038, respectively). (F) The protein levels of FN-1, and α-SMA in HLECs
after treatment of HTRA1 knockdown (p = 0.017 and 0.031, respectively). * p < 0.05, *** p < 0.001.
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Figure 5. The proliferation, migration and apoptosis changes of HLECs (SRA 01/04) after treatment
of HTRA1 knockdown. (A) CCK-8 assay showed promoted growth ability of HLECs after downregu-
lated expression of HTRA1 (p < 0.001) and was attenuated after treatment of HTRA1 knockdown
and the TGF-βR1/2 inhibitor (p < 0.001). (B) Annexin V/7-AAD staining and flow cytometry did
not show significant apoptotic cell changes after treatment of HTRA1 knockdown. (C) The protein
levels of BAX, Bcl2 and cleaved Caspase-3 in HLECs after treatment of HTRA1 knockdown (p > 0.05).
(D) The scratch healing assay showed knockdown of HTRA1 promoted the migration of HLECs
(p = 0.022), and was attenuated after treatment of HTRA1 knockdown and the TGF-βR1/2 inhibitor.
* p < 0.05, *** p < 0.001.
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Furthermore, HLECs were treated with 5 ng/mL TGF-β1 for 24 h. TGF-β1 treatment
significantly promoted HLEC proliferation and migration, based on a CCK-8 assay and a
scratch healing assay (Figure 6A,B).
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Figure 6. Elevated proliferation and migration of lens epithelial cells by TGF-β1 and the colocalization
between HTRA1 and TGF-β1, as well as TGF-β2. (A) CCK-8 assay of human lens epithelial cells
after TGF-β1 treatment (p < 0.001). (B) Scratch healing assay of human lens epithelial cells after
TGF-β1 treatment (24 h, p = 0.007). (C) Anterior lens capsules were obtained via capsulorhexis during
cataract surgery. (D) Cultured primary lens epithelial cells showed migration from the rim of lens
capsules. (E) Immunofluorescence images of HTRA1, TGF-β1, and TGF-β2 staining. The amount of
colocalization was analysed. ** p < 0.01, *** p < 0.001, Scale bar: 20 µm.

In the mouse model, aberrant proliferation and migration of lens epithelial cells were
also observed after knocking down HTRA1 by recombinant adeno-associated virus (rAAV)
injection (Figure 7). Downregulation of HTRA1 induced the formation of subcapsular
cataract (Figure 8).
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Figure 7. Images of haematoxylin and eosin staining after knocking down HTRA1 by rAAV injection
in mouse eyes. Aberrant proliferation and migration of lens epithelial cells were observed in (A,A1)
(Arrow). (A,B): Scale bar: 200 µm, (A1,B1): Scale bar: 50 µm. A and A1, as well as B and B1, were
images from the same position.

2.5. Downregulation of HTRA1 Directly Activated TGF-β/Smad Signalling in Primary Lens
Epithelial Cells

We investigated the possible regulatory relationship between HTRA1 and TGF-β/Smad
signalling. In primary HLECs, the amount of colocalization between HTRA1 and TGF-
β1, as well as HTRA1 and TGF-β2 was analysed after immunofluorescence staining. The
Pearson’s correlation coefficient (PCC) was 0.62 for HTRA1 and TGF-β1 and 0.58 for HTRA1
and TGF-β2 (Figure 6E).

HTRA1 knockdown elevated the protein expression of p-Smad2/3, TGF-β1 and TGF-
β2 in primary HLECs (p = 0.014, 0.021 and 0.039, respectively, Figure 4B,C). In contrast,
the TGF-βR1/2 inhibitor attenuated the HTRA1-induced upregulation of p-Smad2/3 in
primary HLECs (Figure 4D). And the growth and migration of HLEC were also attenuated
by the TGF-βR1/2 inhibitor (Figure 5A,D), implying that the TGF-β/Smad pathway might
play a role in regulating the aberrant proliferation and migration of HLECs induced by
HTRA1. In addition, the downregulation of HTRA1 promoted the mRNA expression of
the downstream target of TGF-β/Smad signalling, including α-SMA, PAI-1 and CTGF
(p = 0.022, 0.005 and 0.038, respectively, Figure 4E). The protein expression of FN1 and
α-SMA was also upregulated (p = 0.017 and 0.031, respectively, Figure 4F).

In primary mouse lens epithelial cells, HTRA1 knockdown also elevated the pro-
tein expression of p-Smad2/3, FN1 and α-SMA (p = 0.024, 0.002 and 0.002, respectively,
Figure 9B,C).
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Figure 9. Downregulation of HTRA1 activated the TGF-β/Smad signalling in primary mouse lens
epithelial cells. (A) Changes of HTRA1, TGF-β1 and TGF-β2 gene expression detected by RT-qPCR
(HTRA1 p = 0.045) in primary mouse lens epithelial cells after treatment of HTRA1 knockdown.
(B) Changes of HTRA1, p-Smad2/3, TGF-β1 and TGF-β2 gene expression detected by Western
blotting (HTRA1 p = 0.029, p-Smad 2/3 p = 0.024) in primary mouse lens epithelial cells after
treatment of HTRA1 knockdown. (C) The protein levels of FN-1 and α-SMA in primary mouse lens
epithelial cells after treatment of HTRA1 knockdown (p = 0.002 and 0.002, respectively). * p < 0.05,
** p < 0.01.
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3. Discussion

In this study, we found that HTRA1 is significantly downregulated in the lens capsules
of PSC patients. In HLECs, the downregulation of HTRA1 expression can significantly
promote cell proliferation and migration. The increase in the proliferation and migration of
lens epithelial cells is closely related to the formation of cataract [21,35]. However, the mech-
anism of the effect of HTRA1 on cell proliferation and migration remains unclear. Wang
et al. found that HTRA1 played an important role in regulating the stability and dynamics
of microtubule assembly through the binding of the PDZ domain to microtubule [36]. It
has also been found that the effect of HTRA1 on cell proliferation depends on the Notch-1
signalling pathway or the Wnt signalling pathway [37,38]. However, many studies have
also suggested that the process of cell proliferation and migration regulated by HTRA1
is mediated by the TGF-β signalling pathway. HTRA1 can bind to multiple molecules
of the TGF-β signalling pathway to inhibit its function, thus inhibiting cell proliferation,
migration and invasion [19,39,40]. HTRA1 is closely related to members of the TGF-β
family [39], and the TGF-β signalling pathway plays an important role in lens development
and fibroblast differentiation [23].

The TGF-β signalling pathway was activated in the anterior capsule of PSC. In primary
lens epithelial cells, downregulation of HTRA1 can promote the proliferation and migration
of lens epithelial cells by activating the TGF-β/Smad signalling pathway and inducing
significant activation of downstream FN1, α-SMA and other genes. Knockout of HTRA1 in
the eyes of mice can activate the TGF-β signalling pathway and can subsequently cause
subcapsular cataract. As a proteolytic enzyme, HTRA1 plays a role in protein quality
control by identifying abnormal proteins and cutting them into smaller fragments [41].
HTRA1 plays a key role in many signalling pathways through the degradation of specific
components. The results of in vitro experiments have shown that HTRA1 can bind to TGF-
β family members and decompose TGF-β1, TGF-βR1, TGF-βR2, BMP2, BMP4 and other
proteins [16,42]. When HTRA1 is downregulated, it causes the activation of TGF-β1 and
its receptor, which leads to the significant upregulation of downstream p-Smad2/3. Many
studies have obtained similar findings. For example, downregulation of HTRA1 leads to a
significant increase in the expression of TGF-β1 during odontoblast differentiation, and
the expression of downstream factors such as TGF-βR1, TGF-βR2, Smad2 and Smad4 are
also significantly increased in the late stage of mineralization induction [43]. HTRA1 can
inhibit bone formation by antagonizing the signal transduction mediated by TGF-β family
proteins, regulating the activity of the TGF-β/BMP pathway and inhibiting the expression
of downstream genes, such as RUNX2, CTGF and PAI-1 [39,42]. These results are consistent
with the results of this study.

In the animal experiment, after HTRA1 knockdown we found subcapsular cataract and
observed the abnormal proliferation of lens epithelial cells, with irregular cell arrangement
and cell morphology. In addition, the fibre cells under the anterior capsule became loose
and irregular. Robertson et al. injected an adenovirus vector carrying TGF-β1 into the
anterior chamber of mice and found that adenovirus can successfully mediate the action of
adenovirus on lens epithelial cells and cause abnormal proliferation of lens epithelial cells
and cataract under the anterior capsule; this is consistent with the results of this study [44].
Compared with the adenovirus vector, ocular injection of the AAV vector can reduce the
local and systemic immune response to the virus vector to the greatest extent and has
stability in long-term expression [45]. The results of RT-PCR and Western blotting showed
that AAV injection into the anterior chamber can successfully knock down the expression
of HTRA1 in lens epithelial cells and activate the TGF-β signalling pathway.

The results also showed that downregulation of HTRA1 can regulate the expression of
downstream FN1, α-SMA, PAI-1 and CTGF. FN1, α-SMA, PAI-1 and CTGF are the markers
of tissue fibrosis and epithelial–mesenchymal transition (EMT) [21,46–48], while EMT is the
key factor in organ fibrosis [49]. TGF-β has been shown to mediate EMT in lens epithelial
cells and to play a key role in lens fibrosis [50]. Anterior polar cataract is a kind of fibrous
cataract. The expression of PAI-1 and α-SMA can be observed in the anterior capsule
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of anterior polar cataract [47]. In the process of EMT, the proliferation and migration of
lens epithelial cells increase, which leads to the transformation of lens epithelial cells to
fibroblasts, the deposition of α-SMA and the production of extracellular matrix, such as
FN1, which eventually leads to the formation of plaques under the anterior capsule or
posterior capsule of the lens [51,52]. In cell experiments, TGF-β can induce the expression
of PAI-1 and mediate EMT induced by TGF-β1 [47,53]. At the same time, TGF-β2 can also
induce lens epithelial cells to express α-SMA, type I collagen, type IV collagen and FN1 [48].
HTRA1 can degrade a variety of extracellular matrix components, such as type I, II and
III procollagen peptides, fibronectin and proteoglycans, which play an important role in
extracellular matrix remodelling [54,55]. Therefore, the downregulation of HTRA1 may
mediate the expression of FN1, α-SMA and other proteins by activating the TGF-β/Smad
pathway, resulting in the increased proliferation and migration of lens epithelial cells, lens
fibrosis and PSC. However, the specific regulatory mechanism needs to be further studied.

There are some shortcomings in this study. One is that the specific regulation mecha-
nism of HTRA1 needs to be explored more deeply. In addition, there is a lack of research
on the ultrastructure of the lens in this animal experiment and on the effect of different
injection sites on the morphology of cataract. The next step is to conduct an electron
microscope examination on animal tissues and add the vitreous infection group to observe
the changes in the morphology and the molecular level more comprehensively.

4. Materials and Methods

This study was approved by the Eye, Ear, Nose and Throat (ENT) Ethics Committee.
Informed consent was obtained from each child’s guardian prior to surgery. All procedures
followed the Declaration of Helsinki, and animal experiments were approved by the Ethics
Committee for Animal Studies.

4.1. Patients and Tissue Sample Collection and Preservation

Patients under 10 diagnosed with bilateral or unilateral PSC and who were planning
to undergo congenital cataract surgery at the Eye & ENT hospital, Shanghai, China were
enrolled. The exclusion criteria were as follows: (1) ocular inflammation, (2) combined
persistent foetal vasculature (PFV), persistent hyperplastic primary vitreous (PHPV) or
pre-existing posterior capsule defect and (3) having a developmental disorder or a history
of ocular surgery or trauma. The congenital cataract surgery was performed by the same
surgeon (Y.L.). Anterior lens capsules of PSC patients were obtained using capsulorhexis
during cataract surgery. The normal control group consisted of transparent lenses of
children under 10 that were obtained from the Eye Bank. The anterior lens capsules were
obtained using Vannas scissors and micro-forceps. To verify HTRA1 expression changes
with age, normal adults without eye diseases were also included.

For RT-qPCR and Western blotting, samples were stored at −80 ◦C immediately
after collection until use. For immunofluorescence staining, samples were collected in 4%
paraformaldehyde (PFA). For primary culture, samples were kept in Dulbecco’s Modified
Eagle Medium (DMEM, #12430054, Gibco, Grand Island, NY, USA) supplemented with
20% foetal bovine serum (FBS, #10099141, Gibco, Grand Island, NY, USA).

4.2. Construction of Recombinant Lentiviral Vectors and Adenoviral Vector

The GV493 vector (frame structure: hU6-CBh-gcGFP-IRES-puromycin, Genechem Co.,
Ltd., Shanghai, China) was used to construct the lentiviral vectors. Three recombinant
lentiviral vectors expressing HTRA1-RNAi were constructed for the human HTRA1 gene
knockdown: LV-HTRA1-RNAi (Lentivirus 1, 5′-GAAGTATATTGGTATCCGAAT-3′), LV-
HTRA1-RNAi (Lentivirus 2, 5′-CGCCATCATCAACTATGGAAA-3′) and LV-HTRA1-RNAi
(Lentivirus 3, 5′-CGTGGTTCATATCGAATTGTT-3′). A non-silencing targeting sequence
(negative control: 5′-TTCTCCGAACGTGTCACGT-3′) was also cloned into GV493 as
a control.
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Recombinant adenoviral GV478 vectors (frame structure: U6-MCS-CAG-EGFP, Shang-
hai Genechem Co., Ltd., Shanghai, China) were constructed to silence the mouse HTRA1
gene. The target sequence is 5′-GGTTCACATTGAACTATATCG-3′, and the negative con-
trol sequence is 5′-CGCTGAGTACTTCGAAATGTC-3′. The working solution was prepared
to 1 µL of the vehicle containing 2.0 × 1010 PFU.

4.3. Cell Line and Primary HLEC Culture

An HLEC line, SRA 01/04, was propagated in DMEM supplemented with 10% FBS
and cultured at 37 ◦C in a 5 % CO2 atmosphere. The SRA 01/04 was obtained from Dr.
Dan Li [56]. For the culture of primary paediatric HLECs, the lens capsules were attached
to 35 mm cell culture dishes (Sigma-Aldrich Corp., Darmstadt, Germany) after collection
during congenital cataract surgery, and 6 mm glass coverslips were used to cover the
sample to promote attachment. About 0.5 mL DMEM supplemented with 20% FBS was
carefully added to the surface of the samples. After 24 h, 0.5 mL culture medium was
added, and the medium was changed every 3 d. The cultural atmosphere was the same
as SRA 01/04. After reaching confluence, the cells were seeded on two or three culture
dishes. SRA 01/04 was used for cell proliferation assay, scratch healing assay, as well as
Annexin V/7-AAD staining and flow cytometry. And primary paediatric HLECs were
used for the RNA and protein expression changes by RT-qPCR, Western blotting and
immunofluorescence staining.

4.4. Lentivirus Transfection

A culture medium containing LV-HTRA1-RNAi was added to the cultured SRA 01/04
and primary HLEC. The cells were cultured for 72 h, and the expression of green fluorescent
protein (GFP) was observed. The cells were then selected with 1.0 µg/mL puromycin after
48 h of incubation. The suppression of HTRA1 expression was analysed using RT-qPCR.
The most efficient lentivirus was used for subsequent experiments.

4.5. Mouse Model and Sample Acquirement

Four-week-old male C57BL/6J mice obtained from JieSiJie Laboratory Animal Co., Ltd.
(Shanghai, China) were used for in vivo gene transfer. DMEM containing 2 × 1010 rAAV
was slowly delivered into the anterior chamber of the mice using a microinjector (Hamilton,
Reno, NV, USA) with a 33-gauge needle (Hamilton, Reno, NV, USA). Animals were sacri-
ficed and examined 4 weeks after rAAV administration. The lens capsules were obtained
using Vannas scissors and micro-forceps.

4.6. RT-qPCR

Total RNA from the anterior lens capsules was extracted using TRIzol reagent (Invitro-
gen, Waltham, MA, USA). cDNA was then synthesized using the PrimeScript™ RT Kit and
gDNA Eraser (TaKaRa, Tokyo, Japan). The mRNA expression levels were quantified by
RT-qPCR (Bio-Rad, Hercules, CA, USA). The primers for RT-qPCR are listed in Table S1.
The 2−∆∆Ct method was used to analyse the results.

4.7. Western Blotting and Immunofluorescence Staining

The protein levels of the samples were analysed using traditional Western blotting, the
Wes-Protein simple system (ProteinSimple, Santa Clara, CA, USA) and immunofluorescence
staining. The anterior lens capsules were lysed for total protein extraction by using radioim-
munoprecipitation assay (RIPA) lysis buffer (Beyotime, Shanghai, China) supplemented
with 1% cocktail protease inhibitors (MCE, Monmouth Junction, NJ, USA). The protein
samples were denaturalized at 95 ◦C for 5 min, separated with sodium dodecylsulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a polyvinylidene diflu-
oride (PVDF) membrane (Millipore, Burlington, MA, USA). The membrane was blocked
with 5% non-fat milk and incubated with primary and secondary antibodies (Table S2). It
was then rinsed three times with TBST and visualized using an electrochemical lumines-
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cence kit (Thermo Fisher Scientific, Waltham, MA, USA). Band density was normalized to
the loading control (β-actin) for further statistical analysis.

For immunofluorescence staining, anterior lens capsules or frozen sections were fixed
in 4% PFA for 30 min. They were then permeabilized and blocked with PBS containing 0.3%
Triton X-100 and 5% bovine serum albumin. Samples were then incubated with primary
antibodies overnight at 4 ◦C. Subsequently, the secondary antibody and DAPI were applied.
The samples were attached to the slides and observed using a confocal microscope (Leica,
Richmond, IL, USA). The amount of colocalization between HTRA1 and TGF-β1, as well
as HTRA1 and TGF-β2, was analysed using ImageJ processing software (v1.53c). The
antibodies and dilution information are listed in Table S2.

4.8. Cell Proliferation Assay

Cell proliferation was detected using Cell Counting Kit-8 (CCK8, Dojindo Laboratories,
Kumamoto, Japan). After lentivirus transfection, HLECs (SRA 01/04) were grown in 96-
well plates with 5 × 103 cells per well. After incubation for 24 h, a CCK8 assay was
performed at 37 ◦C. The optical density (OD) value at 450 nm was measured every 1 h and
three times.

4.9. Scratch Healing Assay

After lentivirus transfection, HLECs (SRA 01/04) were seeded into 6-well plates and
cultured until 90% confluent. The cells were then scratched carefully with 200 µL pipette
tips at multiple sites. The suspended cells were washed with PBS, and the culture medium
was changed to DMEM containing 1% FBS. The area of wound healing was observed and
photographed at 0 h and 24 h after scratching at the same area.

4.10. Annexin V/7-AAD Staining and Flow Cytometry

After lentivirus transfection, HLECs (SRA 01/04) were digested into cell suspen-
sions and adjusted to 1 × 106~3 × 106 cells/mL. The cells were washed with PBS, and
5 µL Annexin V-APC or 10 µL 7-AAD was added following the manufacturer’s protocol
(Multisciences Biotech Co., Ltd., Taiwan, China). A flow cytometer (Becton, Dickinson
and Company, Lake Franklin, NJ, USA) was used to test immediately after the reaction
was completed.

4.11. TGF-β1 and TGF-βR1/2 Inhibitor Treatment

Primary HLECs were treated with recombinant human TGF-β1 (7666-MB-005, R&D
Systems, Minneapolis, MN, USA) in a concentration gradient of 10 ng/mL for a duration
of 24 h.

The selective TGF-βR1/2 inhibitors (LY2109761, Selleck, Shangai, China) were added
to primary HLECs after lentivirus transfection at a working concentration of 10 µM for
24 h.

4.12. Haematoxylin and Eosin Staining

The eyeballs of mice were fixed in paraformaldehyde, and paraffin sections were
made for further staining. The sections were stained with standard haematoxylin–eosin
staining, and a microscope (Carl ZEISS, Oberkochen, Germany) was used to observe and
capture images.

5. Conclusions

HTRA1 is significantly downregulated in lens epithelial cells of PSC. HTRA1 can
promote the proliferation and migration of lens epithelial cells by activating the TGF-
β/Smad signalling pathway, which may play an important role in the pathogenesis of PSC.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232214431/s1.
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