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Abstract: Silk fibroin (SF), an organic material obtained from the cocoons of a silkworm Bombyx mori,
is used in several applications and has a proven track record in biomedicine owing to its superior
compatibility with the human body, superb mechanical characteristics, and its controllable propensity
to decay. Due to its robust biocompatibility, less immunogenic, non-toxic, non-carcinogenic, and
biodegradable properties, it has been widely used in biological and biomedical fields, including
wound healing. The key strategies for building diverse SF-based drug delivery systems are discussed
in this review, as well as the most recent ways for developing functionalized SF for controlled or
redirected medicines, gene therapy, and wound healing. Understanding the features of SF and the
various ways to manipulate its physicochemical and mechanical properties enables the development
of more effective drug delivery devices. Drugs are encapsulated in SF-based drug delivery systems to
extend their shelf life and control their release, allowing them to travel further across the bloodstream
and thus extend their range of operation. Furthermore, due to their tunable properties, SF-based
drug delivery systems open up new possibilities for drug delivery, gene therapy, and wound healing.

Keywords: silk fibroin; biopolymers; biomaterials; drug delivery applications; wound healing;
gene therapy

1. Introduction

Polymeric formulations have developed as a modern alternative to conventional for-
mulations of maintaining a supply of active pharmaceutical ingredients (APIs), optimizing
their physicochemical properties, maximizing their effectiveness, and resolving many
crucial issues in drug delivery, such as unique intracellular targeting transportation and
biocompatibility in the process of optimizing therapeutic efficacy and patient quality of
life [1–4]. In the case of incredibly harmful medications such as anti-cancer drugs, an
optimal drug delivery mechanism would soothe the loaded drug, allowing it to regulate
its kinetic releases, and reduce its unfavorable effects through tissue-specific targeting.
For decades, silk has been recognized as an important natural material for fabric produc-
tion; but in recent years, it piqued interest as a possible biopolymer for biomedical and
pharmaceutical applications [5–7].
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Several attempts have been made in recent years to develop and build different forms
of nano-scale drug carriers to encapsulate corrective particles and thus unleash the drug
under controlled conditions [8–10]. The development, as well as the formulation of new
systems of drug delivery, is an exciting and rapidly growing area. The ease of access to ap-
propriate material, the material’s complete safety to the host, and the material’s important
physic-chemical and biomedical characteristics, as well as the ability to a breakdown in
biological environments, are all important requirements for an outstanding drug delivery
method. For drug distribution, a variety of processing materials, such as synthetic and
natural polymers, have been used. So many synthesized polymers that are widely used
are made with one or two monomers and have a low deterioration speed. Biodegradation
in vivo can be predicted by factors such as the mass of molecules or the composition of
monomers. In contrast to synthetic fibers, organic polymers have outstanding biocompati-
bilities as well. Numerous types of nano-particles made from artificial or organic polymers
have been confirmed to be in initial clinical trials for the diagnosis of diabetes, tumor, and
other sicknesses. Silk fibroin (SF) is a naturally occurring protein derived mostly from
cocoons of the silkworm, Bombyx mori, and successfully utilized in biomedicine because of
its supreme biocompatibility, mechanical behavior, and tunable biodegradability [11–18].
The rate of SF degradation is being managed by adjusting its molecular mass, crystalline
size, or cross-linking [19–21].

A growing number of systems focused on SF are being used to store and distribute
medicines in recent years [22–28]. The efficiency of drug distribution and loading in such
silk drug systems is determined by its hydrophobic nature and charge, which point to
several drug-release contours. Furthermore, diverse forms of delivery mechanisms such
as films, hydrogels, microspheres, nanoparticles, and scaffolds may be made from silk
fibroin (SF) solutions using various techniques [29]. Silk I, Silk II, and Silk III are the three
structural forms of SF. Silk I is a hydrophilic protein that contains a great proportion of
domains of α-helix as well as random coils [30]. Silk II, on the other hand, has a structure
of β-sheet mostly that is extra stable and not water soluble, whereas Silk III dominates only
at the water–air interface [31]. As a result, natural and artificial polymers can be used to
develop and fabricate new therapeutics. Li and his colleagues used electrospray to build
cisplatin-encapsulated SF nanostructures without utilizing organic solvents [32]. The drug
particles were inserted into nanomaterials using a metal-polymer arrangement of bond
sharing, as well as the drug could be released at slow speed and sustainably for fifteen
days and more, according to the in vitro release studies.

The coupling of chemicals and the genomic alteration of silk-protein through chaining
the amino acid sequence or inserting a segment to achieve a certain feature are the two
major techniques for functionalizing silk proteins [33]. A huge number of antitumor dosage
forms are formulated for parenteral delivery, resulting in close interaction with blood
products. The therapeutic agents used in these preparations must not cause hematological
poisoning or immune reactions [3], as a result, biocompatible polymers must be used in
the preparation. Besides that, developing delivery mechanisms for therapeutic products
including vaccines and antibodies necessitates ensuring both their physical integrity and
biological activity, which is especially important for controlled-release mechanisms [34].
Utilizing non-modified or engineered SF protein production and formulating techniques,
a broad variety of therapeutic agents of varying sizes and morphologies can be prepared
(Figure 1). SF transports that have not been changed have been used to carry antitumor
drugs such as doxorubicin [35], paclitaxel [36], curcumin [9,37], and cisplatin [38]. In
the present review, the key techniques for developing various SF-based drug delivery
systems, as well as the most recent methods for developing functionalized SF for managed
or redirected drugs, gene therapy, and wound healing, are addressed.
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Figure 1. For pharmaceutical and biomedical implementations, a versatile range of functional ar-
rangements and chemical treatment for manufacturing a variety of silk fibroin (SF) formats are 
available. Image reproduced from reference [39] which was published under a CC BY license. 

2. Processing of SF Biomaterials or Silk Cocoon Processing—Generating Silk for  
Biomedical Applications 

Degumming of the silk cocoon of Bombyx mori to extract sericin is one of the most 
important steps in producing silk appropriate for biomedical application. Enzymatic ap-
proaches (digestive process sericin not silk) or production of chemicals may be used to 
isolate sericin (example- treatment of alkaline). The latter process is generally utilized, and 
sodium bicarbonate is used to boil silk thread over 20–60 min [40]. 

Degumming periods as limited as five minutes are also adequate to eliminate sericin 
while mitigating silk destruction, which is typically caused by the disulfide’s cleavage 
connection between the heavy as well as light chains and separation of a sequence of 
amorphous silk throughout the heavy chain, resulting in polydispersed silk [41]. By dis-
solving the degummed cotton thread in such a chaotropic agent’s large concentration (for 
say, lithium bromide 9.3 M) over 60 °C for numerous hours, the silk framework of higher 
level can be completely reverse engineered. The resultant regenerated silk fibroin liquid 
is therefore dialyzed with water vigorously to create a silk aqueous solution which is 
steady at room temperature over half a month as well as at 4 °C over months (Figure 2) 
[40]. The whole reverse modified silk fibroin formulation has a lower solution confor-
mation than native silk feedstock [42] and rheological properties are altered [43]. Novel 
silk materials, such as scaffolds, films, fibers, and (self-assembling) silk hydrogels, as well 
as (nano) fragments and (nano) abrasives, are frequently created using a reverse-opti-
mized aqueous-regenerated silk fibroin solution within ambient circumstances. This gen-
tle processing environment is perfect for maintaining biological function. 

Figure 1. For pharmaceutical and biomedical implementations, a versatile range of functional
arrangements and chemical treatment for manufacturing a variety of silk fibroin (SF) formats are
available. Image reproduced from reference [39] which was published under a CC BY license.

2. Processing of SF Biomaterials or Silk Cocoon Processing—Generating Silk for
Biomedical Applications

Degumming of the silk cocoon of Bombyx mori to extract sericin is one of the most
important steps in producing silk appropriate for biomedical application. Enzymatic
approaches (digestive process sericin not silk) or production of chemicals may be used to
isolate sericin (example- treatment of alkaline). The latter process is generally utilized, and
sodium bicarbonate is used to boil silk thread over 20–60 min [40].

Degumming periods as limited as five minutes are also adequate to eliminate sericin
while mitigating silk destruction, which is typically caused by the disulfide’s cleavage
connection between the heavy as well as light chains and separation of a sequence of
amorphous silk throughout the heavy chain, resulting in polydispersed silk [41]. By
dissolving the degummed cotton thread in such a chaotropic agent’s large concentration
(for say, lithium bromide 9.3 M) over 60 ◦C for numerous hours, the silk framework of
higher level can be completely reverse engineered. The resultant regenerated silk fibroin
liquid is therefore dialyzed with water vigorously to create a silk aqueous solution which is
steady at room temperature over half a month as well as at 4 ◦C over months (Figure 2) [40].
The whole reverse modified silk fibroin formulation has a lower solution conformation than
native silk feedstock [42] and rheological properties are altered [43]. Novel silk materials,
such as scaffolds, films, fibers, and (self-assembling) silk hydrogels, as well as (nano)
fragments and (nano) abrasives, are frequently created using a reverse-optimized aqueous-
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regenerated silk fibroin solution within ambient circumstances. This gentle processing
environment is perfect for maintaining biological function.
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Figure 2. Processing of SF.

3. Properties of SF

SF has a rare balance of mechanical and biological attributes, due to its natural polymer-
like characteristics [44,45]. Silk is often associated with a soft texture in the garment
industry, but its tensile capacity and modulus make this one of the most durable natural
biomaterials [46]. This property is crucial for polymers used in bone tissue reconstruction
since the polymer’s mechanical efficiency is critical in such implementations [47]. Under
the thermal stress (less than that of 250 ◦C), SF is highly stable. Lu et al. reported that
differential scanning calorimetry results revealed that Silk I crystals had stable thermal
properties up to 250 ◦C, without crystallization above the Tg, but degraded at lower
temperatures than Silk II structure [48].

3.1. Physiochemical Characteristics of SF

SF has a one-of-a-kind blend of mechanical as well as biological characteristics, as
well as unusual characteristics of both artificial and natural polymers [49,50]. While silk’s
tensile strength and modulus make it one of nature’s most durable biomaterials, it is also
synonymous with a soft texture in the garment industry [51]. This ability is essential for
polymers used in bone tissue regeneration because mechanical performance is important
in such implementations [52,53].

3.2. Mechanical Properties

For pharmaceutical and biomedical uses, mechanical toughness is an essential char-
acteristic of SF-based formulations. For example, the strength of the SF product use for
tissue engineering must equal that of the specific tissue. The hardness of the SF polymer
will also influence its durability and degradability [54]. Numerous polymers used within
drug distribution systems such as PLGA and collagen, are not solid enough mechanically.
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Cross-linking is a common technique for the mechanical properties of biopolymers such as
collagen. The cross-linking interaction, on the other hand, may have unfavorable effects,
such as immunogenicity and mitochondrial toxicity [55]. SF has a solid β-sheet construction
that allows it to have outstanding mechanical characteristics without having any severe
crosslinking procedures. SF can be transformed into a variety of formats, comprising liquid,
hydrogels, and scaffolds depending on the material of the β-sheet [5]. Young’s modulus
is commonly used to measure mechanical strength using nanoindentation strategies [56].
Because of its strong tensile strength and compressive force resistance, SF is an excellent
material for drug delivery and tissue engineering [57]. Furthermore, extracting sericin
during the degumming process increases the tensile strength of SF by 50% [58], rendering
it more durable during physical pharmaceutical manufacturing.

3.3. Stability

Amongst the very important considerations in the manufacture of pharmaceutical
formulations is the stability of polymeric products. Biopolymers are favored over synthetic
alternatives for therapeutic uses because of their biocompatibility and biodegradability
but they should also follow such durability requirements to be accepted for use in the
pharmaceutical companies. Accumulation or gelation through extended preservation is
among the most common issues with pure SF solutions. SF comes in two varieties: insoluble
(high β-sheet content) and soluble (high α-helix and random coil content). Either type
should be utilized and preserved, based on the medication preparation. As soluble SF is
processed in extremely humid circumstances, it undergoes a transition from α-helix and
random coil to β-film, that can result in gel formation and a reduction in the SF solution’s
stability [59,60]. In comparison to other proteins, SF has superior heat durability. The
temperature at which glass transitions (Tg), which is influenced by the β-sheet content of
silk fiber, is the best measure of protein heat stability. SF film’s Tg is about 175 degrees
Celsius, and the protein stays steady up to 250 degrees Celsius, which is ideal for product
manufacturing. The Tg of frozen SF solution, on the other hand, is about −34~−20 ◦C [61],
which is also advantageous in medication manufacturing at low temperatures.

3.4. Degradability and Biocompatibility

The FDA has formally approved silk fiber as a biocompatible substance for the ap-
plication of a variety of nanotechnological instruments [62]. Silk’s biocompatibility has
been thoroughly researched over the last two decades. In contrast to other commonly
used biological polymers that degrade within the industry of pharmaceuticals, including
collagen, poly(lactic-co-glycolic acid) (PLGA), and polylactide (PLA), the vast majority
of researches have indicated a less immunogenic response and outstanding biocompat-
ibility [63–65]. Mesenchymal stem cells, fibroblasts, hepatocytes, endothelial cells, and
osteoblasts were shown to be highly compatible with SF configurations in cytocompatibility
studies (MSCs) [66,67]. Methanol and hexafluoroisopropanol (HFIP) are used as organic
solvents in SF manufacturing to cross-link SF by causing structural modification (α-helix
to β-sheet), that linked to the SF formulations’ inflammatory ability [68]. To stop these
inflammatory reactions, however, slightly different manufacturing methods have been
used to avoid the use of organic solvents [69].

The capacity of biological materials to degrade is an essential attribute. Even though
biodegradability is a key benefit of SF in medicinal implementations it also makes pure
silk fiber particles susceptible to enzymes that break down proteins. The pace at which
SF deteriorates can also be managed by adjusting the molecular mass, crystalline nature,
morphological characteristics, or cross–linking [70]; however, cross-linking and the level of
the crystalline phase is not the only option to consider to prevent SF from deteriorating.
When SF sheets were subjected to collagenase IA in an in vitro enzymatic destruction test,
the crystalline shape of the sheets changed from Silk II to Silk I. While the protease XIV
enzyme was used, however, the bulk of the SF films were converted to Silk I, resulting in
stronger crystallinity. Although both enzymes took 15 days to degrade, the degradation
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rate of protease XIV was slightly lower than that of collagenase IA [71]. Another research
showed that SF deterioration induces a predictable loss of mechanical integrity [72].

4. SF-Based Biomaterial for Drug Delivery Systems

Many therapeutic applications need active pharmaceutical ingredients (APIs) to be
delivered in continuous and managed release modes. The scale, composition, and other
characteristics of the particles are determined by the form of the distribution device and
the administration path. Furthermore, in such distribution systems, using polymers that
are biocompatible and mechanically robust with moderate conditions of fabrication and
manufacturing is beneficial for maintaining the loaded API’s bioactivity. As previously
mentioned, SF fits both of these conditions, making it a successful candidate for drug
delivery [5,73]. Nanofibers, films, lyophilized sponges, SF-coated polymeric particles,
hydrogels, and micro-and nanoparticles are only some of the SF-based delivery systems of
drugs that have been created. Many of the most commonly researched drug delivery of
SF-based mechanisms are discussed in the following section.

4.1. Hydrogels

The SF aqueous phase was used in a variety of ways to make hydrogels. Physiochem-
ical or chemical methods involving organic polymers or artificial reagents may initiate
the conversion from solution to gel [74]. Water evaporation or osmotic stress, shearing
(spinning), electric field, and warming are some of the physicochemical operations. The gel
shape is stabilized by the stability in terms of thermodynamics β-sheets, which create a
stable gel-type under physiological circumstances before enzymes or oxidative processes
destroy it extensively [75]. Gel scaffolds containing curcumin designed by electro-gelation
were used in a recent analysis for wound healing. Not only did the formulated gel for-
mulation boosts protein adsorption and curcumin release, but it also boosted the bacterial
inhibitory effect six-fold against S. aureus [76]. Protein adsorption on substrates has been
known for a long time to have a vital factor in cell development and regeneration; SF gel
scaffolds may help in tissue repair by encouraging cell proliferation.

4.2. Silk Films

As a biomaterial, SF has massive potential in medication formulations, tissue engineer-
ing, and in the processing of films from SF [77]. Casting an aqueous SF solution is a simple
way to make SF films [78]. Certain SF film preparing strategies have been published such as
a vertical deposition [79], spin coating [80], and spin-assisted layer-by-layer assembly [81].
Rather than binding independently to the hydrogel base, fibroblasts are aggregated on the
rigid surface. Terada et al. [71] looked at how spin-coated SF films acted when subjected
to varying ethanol concentrations. A jelly-like hydrogel coating was created with alcohol
concentrations of less than 80%, while a solid film surface was created with alcohol concen-
trations of more than 90%. The binding of fibroblast cells to SF films was influenced by this
shift in morphology [80].

4.3. Silk Particles

Nanoparticle drug delivery mechanisms have been researched the most, particularly
for chemotherapeutic agents, among systems based on SF that are utilized for enclosing
APIs and completing drug distribution modulation. The SF nanoparticles of lysosomotropic
engineered by Seib et al. [23] for pH-dependent activation of the antitumor agent’s dox-
orubicin in sequence to counteract drug resistance are one example of such structures.
SF nanomaterials are primarily used to deliver the primed drug to the target site in a
controlled manner. SF nanoparticles can be made using a variety of processes, such as
polyvinyl alcohol (PVA) blends, that can be designed to make silk fiber spheres of new
shapes and sizes [81] (Table 1). The charge and lipophilicity of such systems are deciding
factors for drug delivery and encapsulation quality. Different drug release profiles result
from changing these conditions [82]. Furthermore, the inclusion of PVA greatly increases
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the morphology of the SF particles [83]. The salting-out process is one of the most common
ways to make SF particles. Lammel et al., for example, used a salting-out agent potassium
phosphate to create particles of SF with manageable sizes from 500 nm to 2 µm [84]. Tian
et al. used the salting-out process to make SF nanoparticles, which were then filled with
Fe3O4 magnetic nanomaterials and doxorubicin and guided to the tissue of interest uti-
lizing an additional magnetic field to achieve tissue-specific guided delivery [85]. It was
discovered that modifying the concentration of Fe3O4 in the formulation would affect the
doxorubicin entrapment performance [85]. Moreover, current research on microfluidics
used a desolvation approach to generate tinier SF spheres (150–300 nm) using a microfluidic
setup (nano-assembler) [86]. The characteristics of SF nanoparticles were discovered to be
influenced by two major factors: rate of flow and percentage of flow rate [87]. The use of a
microfluidic device allowed for the development of SF nanomaterials with desired sizes for
drug delivery that was fast, repeatable, and monitored. Monitoring the particle size and
zeta potential allows for fine tuning of drug delivery.

Table 1. Preparation method of silk fibroin (SF) micro- and nanoparticles.

S. N. Preparation
Technique Advantages Disadvantages Particle Size Ref.

01 Freeze drying Porous particles Temperature dependent 490–940 nm [14]

02 Self-assembly Simple and safe technique
Avoidance of toxic solvents Prevent intermolecular 100–200 nm [30]

03 PVA Blending method Time and energy efficient
No use of organic solvent PVA filtrate 300–400 nm [81]

04 Salting out
Economical technique

The drug can be encapsulated at the
time of particle formation

Salting out agents filtrate 500 nm–2 µm [84]

05 Microfluidic methods
Rapid technique

Mild operation procedures
Controlled particle size

Complex process 150–300 nm [86]

06 Emulsification Controllable particle size
Low-cost method Residual surfactant 170 nm [88]

07 Desolvation
Simple and quick method

Small particle size
Reproduceable technique

Easy to amassed;
low drug load 35–170 nm [89]

08 Electrospraying High-purity particles
Very good monodispersity

Requires post handling to
make insolubility of SF 59–80 nm [90]

5. SF-Based Biomaterials for Biomedical Applications

Minute particles of medicine [3], biological API drugs [91], and genes [91] have all been
distributed via silk. Various silk production methods have been used to create numerous
compositions for each category of therapeutic agents [92]. Stabilizing the formulated API
and adjusting its circulation period to produce the desired therapeutic result are important
key requirements of delivery systems based on SF. Furthermore, engineered formulations
are often tailored for a specific use of drug distribution, such as preloaded drug stabilization,
monitoring drug discharge, or optimizing cell adhesion [93]. The following section will
include a description of SF implementations in the delivery of drugs and genes, with the
review given in (Tables 2 and 3).
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Table 2. SF-based drug delivery systems.

Form of Drug
Delivery System Linked API Outcome Ref.

SF sponges Erythromycin Sustained drug release and extended
antimicrobial effects against S. Aureus [3]

SF nanoparticles Curcumin Modified drug release pattern and increased
cellular uptake [68]

Modified the release profile Ibuprofen Increased adhesion and tunable drug release [93]

SF films Epirubicin Controlled drug release [94]

SF microspheres Horseradish peroxidase (HRP) Modified the release profile [95]

Table 3. SF-based formulations for gene delivery.

Formulation Gene Cell line Outcome Ref.

Bioengineered silk films pDNA (GFP) Human HEK cells
Beneficial for refining together
the transfection efficiency and

cell viability
[96]

SF layer-by-layer assembled
microcapsules pDNA-Cy5 NIH/3T3 fibroblasts Uniting low cyto-toxicity and

high transfection effectiveness [97]

Bioengineered
silk–polylysine–ppTG1

nanoparticles
pDNA Human HEK and

MDA-MB-435 cells Improves transfection efficiency [98]

Magnetic-
SF/polyethyleneimine
core-shell nanoparticles

c-Myc12 antisense
ODNs MDA-MB-231 cells Meaningfully advanced

inhibition effect [99]

3D porous scaffold Adenovirus Ad-BMP7 Human BMSCs Extended term compatibility for
growth factor [100]

Abbreviations: GFP = green fluorescent protein, ODN = oligodeoxynucleotides, BMP = bone morphogenic protein.

5.1. SF Helps to Keep Drugs Stable

The primary aim of integrating active compounds such as minute particles or peptides
into SF-based reservoirs is to stabilize them through a range of processes such as covalent
interaction, adsorption, and/or enslavement [101]. Sustained drug release is difficult to per-
form without a safe relationship between the SF-based reservoir and drug to hold the drug
active. Away from minute cases, such as the majority of stabilization and growth factors
strategies focus on uniformly spreading the substance inside the SF-matrix/particles [26].
Temperature [102], humidity [103], and pH [104] all affect the stability of SF-based biomate-
rials. As a result, they have been extensively researched for improving the durability of
other compounds, such as the encapsulation of antibiotics such as erythromycin, which has
poor water stability.

5.2. Drug Delivery

Several investigators have concentrated on silk as a model or developing novel ma-
terials with customized characteristics and exceptional efficiency for a wide range of
specialized applications such as tissue engineering techniques and drug delivery systems
(DDSs), owing to its organizational nature and flexibility [105–109]. Regulated DDSs have
piqued the attention of academic and industrial investigators since they were first autho-
rized by FDA in 1990 [110]. As opposed to conventional medicine, medication systems can
increase the bioavailability of the drug, maintain an adequate concentration of the drug,
and reduce adverse reactions. PEGylated, Liposomes medication complex, systems based
on PLGA, and protein-based mechanisms are all FDA-approved DDSs [111]. Because of
their outstanding biocompatibility and pharmacokinetics, naturally existing polymer-based
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DDSs have recently gained a lot of publicity. Because of their uncommon combination of
strong mechanical characteristics and manageable biodegradation ability, aqueous-based
purification/processing, and medicine stabilization effect, SF-based substances are great
options for the distribution of bioactive molecules among different groups of biopoly-
mers. Therapeutic substances are generally maintained shipped to target locations, and
distributed in a managed manner after being incorporated into the SF network [112].

Substances-based SF has been extensively studied for the delivery of antitumor sub-
stances that is the most significant title in biomedicine science, due to its drug stabilization
potential. Poorly soluble in water chemotherapeutic agents can be stabilized, their bioactiv-
ity maintained after release, and therapy results improved thanks to the water-insoluble
relationship with the fibroin network of β-sheet crystallites. Intratumoral and injectable
administration have also been made possible with SF-based devices [113] because of the
different formats that are available. For localized primary breast cancer treatment, Seib
et al. used hydrogel of a SF-based to deliver doxorubicin (DOX) [114]. After sonication,
aqueous SF fluids are combined with DOX and self-assembled into the thixotropic hydro-
gel. The packed DOX controllably discharged from the SF hydrogel after being infused
locally into rats bearing breast cancer and it showed excellent tumor regression and de-
creased metastatic propagation. To induce the creation of nanofibers, Wu et al. prepared a
DOX-loaded SF hydrogel and put it into a concentration–dilution cycle [115]. This device
released DOX in a pH-responsive and concentration-dependent fashion, indicating that
it may be a valuable method for regulating antitumor behavior. Phototherapy, over other
chemotherapy and antitumor medications, is thought to be an effective therapeutic tool for
removing tumors. Their photothermal effect and upconversion luminescence imaging out-
put should be mixed; hydrogels based on SF have filled nanographene oxide compounds
and lanthanide-doped special earth nanoparticles [116]. The theranostic hydrogels based
on fibroin significantly decreased the measurement of treated tumors when exposed to NIR
laser light. SF-based medicine carriers in the shape of nanomaterials are rapidly established
and looked into for their possible application in intravenous, tumor care with systemic
drug delivery, in contrast to hydrogel systems for cancer treatment on a local basis [117].
Furthermore, the capacity of anticancer drugs discharged from nanosized cargo to attack
tumors will be advantageous for improved retention and permeability. Qu et al. described
cisplatin-entrapped SF nanoparticles that were made by electrospraying [118]. Cisplatin
may be distributed over 15 days thanks to its tight metal–ligand coordinate bonds with the
SF matrix, and it had easy intracellular penetration and enhanced protective action on a
lung tumor cell model. Tian et al. have created SF-based nanoparticles with DOX attached
with the ability to target tumors magnetically [85]. The combined SF and superparamag-
netic Fe3O4 nanoparticle method were rendered using the one-pot salting-out technique.
DOX was delivered using external magnetic guides, resulting in good anticancer efficacy.
MCF-7/ADR is a multidrug-resistant cancer cell line tumor, with a 30-day level of survival
of up to 100 percent.

Nanoparticles from natural polymers, such as SF, stand out as ideal drug delivery
systems due to their flexible nanostructures, biocompatibility compatibility, and custom
degradation; however, the natural variability of polymers in the structure and release of
drugs may limit their performance in selected conditions [117].

Larger particles are associated with the gradual release of the drug as the synthetic
drug emanates from the nanoparticle area; in contrast, smaller particles indicate a faster
release as the drug is closer to the nanoparticle surface [29]. In addition, small particles
spread through tissues more easily than larger particles, leading to wider drug prolifer-
ation. Standing is also an important factor in the way nanoparticles behave. One study
showed that circular nanoparticles had a much more efficient absorption than rod-shaped
nanoparticles [23,119]. Chemical properties such as hydrophobicity and particle charge
can determine the end of a target cell. Hydrophobic particles have a high potential for
phagocytes, leading to targeted cell death [29].
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Although the behavior of therapeutic nanoparticles is clearly multifactorial and sound
conclusions cannot be drawn from in vitro therapeutic behavior, new research methods can
be clarified. SF nanoparticles should be tested as a novel, in vivo system for drug delivery
to wounds.

Investigators are particularly interested in using SF-based biomaterials to distribute
natural possible anticancer compounds such as curcumin, in contrast to chemotherapy
drugs such as DOX, paclitaxel, and cisplatin [69,120,121]. Apart from using hydrogels
and nanoparticles as DDSs, there has been a lot of work put into using other SF-based
biomaterials, such as medication distribution platforms. Coatings dependent on SF, for ex-
ample, have been investigated as possible DDSs for tiny molecule medicines and biological
agents. Bayraktar et al. coated theophylline tablets directly with a coating formulation for
SF [122]. Biomedical uses include the distribution of biological particles such as proteins cell
proliferation, genes, and peptides in contrast to the delivery of minute particles of drugs.
As a result of its attributes, especially its tunable insolubility and very mild processing, SF
may be a great member for immobilizing as well as the preservation of biological molecules.
Li et al. detailed the beneficial stabilization SF biomaterials’ effect and process on biologics,
such as enzymes, antibiotics, vaccines, and plasma molecules are only a few examples [94].

5.3. Controlled Drug Release

The goal of managed-release drug delivery systems is to release the embedded API
in predetermined quantities over a predetermined period. Sustained-release rate is one
use of such devices, which allows for the preservation of therapeutic drug doses in the
bloodstream or at the action site for a prolonged period, which is important for the treatment
of serious illnesses. PEG and PLGA are examples of the synthetic polymers used in the
majority of presently available controlled-release formulations because they have attractive
pharmacodynamic and pharmacokinetic characteristics [123]. Various functionalized SF for
controlled or redirected medicines have been used (Table 4).

Table 4. Various functionalized SF for controlled or redirected medicines.

SF Biomaterial Applications References

SF nanofibers Drug delivery system [115,124]
SF spheres Controlled drug delivery [81,125]
SF matrices Drug delivery and controlled release [126]

SF Nanoparticles Drug delivery [127]

While the FDA has authorized PLGA as a safe ingredient in pharmaceuticals, pro-
cessing conditions can limit its use in several controlled-release formulations. As a result,
organic polymers such as SF, which provide kinetics of continuous release that can be
tweaked and stabilization APIs that have been loaded, have currently attracted more in-
terest for use in managed drug delivery systems. The capacity of SF to undergo various
structural changes only at a molecular scale is one of its distinguishing characteristics. The
increase in the ratio of alpha-helix to βeta-sheet material is the most studied structural
transition in SF. The percentage of β-sheet formation, for example, influences the SF films’
permeability and release kinetics [7]. Hines and Kaplan previously explored the process of
controlled release from science fiction films using numerous models [128]. The release of
SF nanomaterials and microparticles under controlled conditions has been widely studied
over the last decade. Song et al. [69] displayed curcumin release from SF nanoparticles is
pH-controlled for up to 20 days to monitor SF molecules features, with lower pH facilitating
the release. SF can be handled in aquatic conditions and crosslinked utilizing a variety of
ways as a biopolymer. As a result, the SF solution has been utilized to cover a wide range
of pharmaceutical formulations in single and multilayer coatings. The adenosine escape
from SF-embedded powder reservoirs was computed as a characteristic of the reservoir
coated layer, according to Pritchard et al. [129].
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5.4. Gene Therapy

Bioengineered silk-elastin-like polymers (SELPs) have been commonly utilized as
vectors for the transmission of plasmid DNA or adenoviral agents in modern genetic
engineering scientific studies. SELPs’ chemical structure is made up of silk-like (Gly–
Ala–Gly–Ala–Gly–Ser) and elastin-like (Gly–Val–Gly–Val–Pro) blocks that are tandemly
replicated. Since they mix mechanical and thermal energy resilience of SF semi-crystalline
frames with the solubility in water and durability of blocks of elastomeric elastin, silk-
elastin-like polymers have been proposed. Furthermore, the ability to manipulate the
monomer frames at the genomic level, as well as adenoviral viability is the unique feature
of the substance that makes it ideal for gene therapy. Li et al. [130], used SELP hydrogels to
distribute plasmid DNAs of various molecular weights and adeno-associated viral vector
models. The DNA’s molecular mass and conformation, as well as the geometry of the
hydrogel, regulated the drug release of encapsulated plasmid DNAs, and there was no
substantial loss of bioactivity after 28 days. In a breast cancer-bearing mouse model, SELP
hydrogel was used to deliver Renilla luciferase plasmid in vivo which resulted in a substan-
tial improvement in luciferase gene expression and the preservation of transfection potency,
which was the better option inside the tumor. Hatefi et al. [131] looked into adenoviral
delivery using SELPs in vitro and in vivo. The stabilization virus interaction with silk or
elastin units was due to the sustained release in vitro of imprisoned adenoviruses with
the retained operation of infection after 28 days. Green fluorescent expression (GFP) was
extended even 15 days after using virus-treated SELP samples after tumor treatments
in vivo in xenograft murine systems, while the GFP term was reduced 11 days later with
just the virus infusion, making this polymer helpful for localized adenovirus-mediated
cancer therapy delivery. In the next, in a head and neck cancer xenograft model in mice,
Ghandehari et al. [132] studied antitumors and the efficacy of an adenovirus-encoded SELP
hydrogel. The SELP hydrogel with adenovirus was marginally more effective than the
adenovirus/ganciclovir alone after 14 days of monitoring. The significant quantities of
recent studies on the subject of utility, alteration, and construction of various SELPs have
yielded promising results. Huang et al. studied the SELP-based patterned relationship of
biomaterials of for the creation of different stimuli-responsive structures, as well as their
present and future applications [133].

Pre- and post-loading is used to integrate pDNA into SF microcapsules to find the best
delivery mechanism in terms of the encapsulation of drugs, toxicity of cells, discharge of
drugs, and the transfection performance. Prior loading was performed by electrostatically
before SF deposition, adsorbing pDNA onto bPEI25-coated PS particles, resulting in nucleic
acid/bPEI25 complexes entangled within the microspheres, with the SF multi-layer shell
serving as both a defensive and a diffusion impediment (Figure 3A,B). In the post-loading
process, the cargo is loaded onto or into pre-fabricated capsules by adsorption and/or
diffusion through the capsule casing (Figure 3A,B) [134]. Several studies [135–137] have
successfully employed these techniques and the loading process and shell thickness is used
to customize drug release characteristics [138].

Sustained pDNA release was observed in both classes, as measured by the decrease
in Cy5-pDNA fluorescence associated with microcapsules, which was substantially in
the presence of Protease XIV, the concentration is greater than in pure PBS. In the case
of preloaded microcapsules, discharge is thought to occur as a result of absorption and
desorption, while pDNA release after post-loading desorption is believed to be the cause
(Figure 4A). According to Lu et al., the first hydrophilic blocks are damaged through
protease, blocks with high crystallinity are left behind, eventually move into the solution
as particles [139]. Since shell porosity, pDNA release, and desorption all increased as SF
depleted, the protease was significantly both preloaded and post-loaded microcapsule
improved. We also discovered that after pre- and post-loading, the transfection performance
of 1 mm microcapsules was slightly higher than that of 4 mm microcapsules. We believe
that the density of microcapsules on the cell surface causes this effect, which leads to a
greater likelihood of encounters and better touch with the surface of the cell as capsule
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size is reduced (Figure 4B). Although further research is needed, this result may be another
influence on capsule size in cytotoxicity. Even though it was less distinct than its effect
on transfection efficiency, it was a significant parameter for balancing cytotoxicity and
transfection quality.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 3. SF microcapsules of plasmid DNA are packaged. (A) A diagram depicting the initialization 
of pDNA before and after it has been loaded. Preloading: pDNA was adsorbed onto bPEI25 func-
tionalized PS particles; SF was mounted on the pDNA-coated particles using LbL; the SF was stabi-
lised, and the core was removed. PS particles were coated with bPEI25 after loading; SF was assem-
bled LbL onto bPEI25-coated PS particles; the center was removed after pDNA was adsorbed onto 
the bPEI25eSF casing after another bPEI25 coating. (B) Photos obtained with a fluorescence micro-
scope of 4 mm SF microcapsules that had been pre- or post-loaded with pDNA. FITC (green) was 
used to mark SF, and Cy5 was used to label pDNA (red). 10 mm scale bar. Reprinted with permis-
sion from reference [97]. 

Sustained pDNA release was observed in both classes, as measured by the decrease 
in Cy5-pDNA fluorescence associated with microcapsules, which was substantially in the 
presence of Protease XIV, the concentration is greater than in pure PBS. In the case of 
preloaded microcapsules, discharge is thought to occur as a result of absorption and de-
sorption, while pDNA release after post-loading desorption is believed to be the cause 
(Figure 4A). According to Lu et al., the first hydrophilic blocks are damaged through pro-
tease, blocks with high crystallinity are left behind, eventually move into the solution as 
particles [139]. Since shell porosity, pDNA release, and desorption all increased as SF de-
pleted, the protease was significantly both preloaded and post-loaded microcapsule im-
proved. We also discovered that after pre- and post-loading, the transfection performance 
of 1 mm microcapsules was slightly higher than that of 4 mm microcapsules. We believe 
that the density of microcapsules on the cell surface causes this effect, which leads to a 
greater likelihood of encounters and better touch with the surface of the cell as capsule 
size is reduced (Figure 4B). Although further research is needed, this result may be an-
other influence on capsule size in cytotoxicity. Even though it was less distinct than its 

Figure 3. SF microcapsules of plasmid DNA are packaged. (A) A diagram depicting the initialization
of pDNA before and after it has been loaded. Preloading: pDNA was adsorbed onto bPEI25
functionalized PS particles; SF was mounted on the pDNA-coated particles using LbL; the SF was
stabilised, and the core was removed. PS particles were coated with bPEI25 after loading; SF was
assembled LbL onto bPEI25-coated PS particles; the center was removed after pDNA was adsorbed
onto the bPEI25eSF casing after another bPEI25 coating. (B) Photos obtained with a fluorescence
microscope of 4 mm SF microcapsules that had been pre- or post-loaded with pDNA. FITC (green)
was used to mark SF, and Cy5 was used to label pDNA (red). 10 mm scale bar. Reprinted with
permission from reference [97].

When contrasted to pDNA/bPEI25 complexes, SF microcapsules filled with plasmid
DNA transduced NIH/3T3 fibroblasts successfully, eliminating cytotoxic effects. The
findings indicate that SF microcapsules have the potential to be a powerful carrier for
regulated, localized gene delivery.
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5.5. Wound Healing

Hemostasis, inflammation, replication, and remodeling are all part of the wound
healing process, which is a fluid and dynamic process. Weak mechanical efficiency, high
expense, collagen inconstancy, poor processability, restricted supply of elastins, soft silicons,
and polyurethanes being non-biodegradable are all disadvantages of the currently used
wound dressing products. Because of its availability, inherent biodegradation ability,
biocompatibility, mechanical robustness, signaling molecules stability ability, high synthesis
of water and oxygen, and poor immunogenicity, SF may be considered an outstanding
wound healing material (Table 5). SF facilitates regeneration by more complex pathways
and signaling pathways, which have been briefly summarised by Farokhi et al. in addition
to the above-mentioned properties [140].

Table 5. SF-based drug delivery systems for wound healing.

SF Biomaterial Applications References

SF solutions Skin wound repair [40,141]
SF hydrogels Wound healing drug delivery [142–144]

SF Nanoparticles Drug delivery [145–147]
SF biosensors Wound monitoring [148,149]

Injury covering matrices are normally filled with growth factors to facilitate epitheliza-
tion, in contrast to antimicrobial compounds to avoid the growth of bacteria. Schneider et al.
tested the tissue repair ability of epidermal growth factor-containing electrospun (EGF) silk
mats on human skin-equivalent models [150]. Gil et al. studied the impact of various silk
fiber content layouts and in related research, the effects of the drug loading approach on
wound healing in vivo were studied and aimed at evaluating the feasibility of EGF/silver
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sulfadiazine/SF systems on wound covering applications [151]. Woong et al. reportedly
immobilized a wound-healing antimicrobial peptide, Cys-KR12, onto an SF nanofiber
layer [152]. It has been reported that insulin-loaded SF microparticles embedded within SF
sponges are used to treat chronic cutaneous wounds [153]. Keratinocytes and endothelial
cells can experience enhanced multiplication and differentiation as a result of insulin’s
stimulatory impact. The use of SF-calcium alginate-carboxymethyl cellulose hydrogel,
an SF-based blending composite, for the treatment of burn wounds was stated by Kim
et al. [154]. Vasconcelos et al. also created a blending hydrogel device that merged elastin’s
durability, elasticity, and silk’s tunable biodegradation and high mechanical strength made
it ideal for use as a wound dressing medium [155]. Zhang et al. carried out a unique transla-
tional study in which clinically focused and extensive preclinical experiments were carried
out on full-thickness skin defect models in rabbits and porcines, as well as randomized
controlled clinical trials on human subjects [156].

According to Ju et al., [157] they used a modified electrospun device combined with a
mimetics (i.e., sodium chloride crystal) dispensing apparatus to fabricate SF nano matrix
with total density and wide holes, and we checked the burn tissue repair effect in rats
using a deep second-degree burned mouse model. Histological findings were used to
examine the wound recovery mechanism and an RT-PCR assay was used to establish the
healing process in contrast to a freely available market dressing (i.e., polyurethane foam
and Medifoam®). They looked at histological changes in damaged skin to see if the SF nano
matrix treatment affected wound healing (Figure 5). On day one, the presence of a blister
and edema indicated a second-degree burn without any tissue injury to the underlying
fascia and muscle tissue.

As contrasted to the medical gauze-treated community, the collagen array in the SF
nanomatrix and Medifoam®-treated groups was much thicker and far more constant [157].
Scar elimination, collagen and epithelialization, and PCNA expression are all factors to
consider both confirmed that the SF nanomatrix could speed up the recovery of severe
burns in rats (Figures 5–7).

The mechanism of re-epithelialization started seven days after operation in both
classes. The nano matrix party at SF, in particular, demonstrated quicker cell proliferation
in the burned area (S), whereas clots of fibrin existed on the wounded area’s surface in
the party that was treated with surgical gauze (C). Groups treated with SF nanomatrix
and Medifoam® (S and M) demonstrated quicker processes of re-epithelialization than the
surgical gauze-treated community over the entire healing cycle (C) (Figure 6).

The wounds managed with the SF nano matrix had morphogenesis and histology
compared to usual skin after 14 days, and the wound region had regenerated without
edema or granulation tissue. The medical gauze party, on the other hand, demonstrated
extreme neutrophil and lymphocyte infiltration. On day 28, collagen accumulation at the
injury site is seen in Figure 8.

Within 14 days after treatment, wound healing improved as the wounds were treated
with SF nanomatrix skin regeneration and cell aggregation relative to injury healing with
medical gauze, according to the wound size measurements (Figure 8). SF nanomatrix’s
rapid wound healing may be due to a variety of factors. Human fibroblasts and ker-
atinocytes have been shown to proliferate when exposed to SF [158], as well as collagen
deposition [159].
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(14 days), (B) SF nanomatrix (7 days), and (C) Medifoam® (7 days). (Scale: 50 µm, NT: necrosis tissue, 
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Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 6. Photos of burn wound tissues stained with H&E at 7, 14, and 21 days. (A) Hospital gauze 
(14 days), (B) SF nanomatrix (7 days), and (C) Medifoam® (7 days). (Scale: 50 µm, NT: necrosis tissue, 
nt: natural tissue, circle: Keratinocytes). Reprinted with permission from reference [157]. 

 
Figure 7. At 7 days, PCNA expression was observed in the tissue covering the infected region. Med-
ical gauze (A), SF nanomatrix (B), and Medifoam® (C) (scale: 50 µm). Reprinted with permission 
from reference [157]. 

 
Figure 8. (A) Burn wound area on rat skin right after the creation. (B) Residual wound area change 
with healing time (28 days). (C) Gross findings of wound area treated with different wound dressing 

Figure 7. At 7 days, PCNA expression was observed in the tissue covering the infected region.
Medical gauze (A), SF nanomatrix (B), and Medifoam® (C) (scale: 50 µm). Reprinted with permission
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Figure 8. (A) Burn wound area on rat skin right after the creation. (B) Residual wound area change
with healing time (28 days). (C) Gross findings of wound area treated with different wound dressing
materials (C: medical gauze, S: SF nanomatrix, and M: Medifoam®) (scale: 50 µm). Reprinted with
permission from reference [157].
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6. Conclusions

Silk is a flexible biomaterial with several promises in terms of gene and drug delivery.
SF has been used to make SF films, hydrogels, microparticles, and nanoparticles, among
other drug delivery methods, employing a variety of manufacturing procedures. Every
one of these SF-based frameworks has represented promise in a range of biomedical
applications. Curcumin, doxorubicin, and ibuprofen, as well as pDNA, have all been
delivered to different types of cells utilizing SF micro- and nanoparticles in a time and
site-specific way. Drugs such as dextran and epirubicin, as well as biological agents
such as IgG and HIV inhibitor 5P12-RANTES, have been controlled released using SF
films. Furthermore, they have been used to keep biomedical agents such as horseradish
peroxidase (HRP), oxidase of glucose, vaccines, and monoclonal antibodies fresh for longer.
SF has also been used to extend the release and biological role of biomolecules including
insulin and BMP-2. SF has been loaded with specific biological elements such as the RGD
sequence, folate, and Her2 for tissue-specific drug delivery. SF has been used to cover the
surfaces of polymer micro materials and liposomes to alter their release kinetics or improve
cell adhesion, in comparison to drug carriers that depend on it. Another area that requires
further study is changing the SF’s physicochemical and mechanical properties by mixing it
with other inorganic fillers to create engineered SF-based biomaterials. Furthermore, due
to their tunable properties, SF-based drug delivery systems open up new possibilities for
drug delivery, gene therapy, and wound healing.
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