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Abstract: Epstein–Barr virus (EBV) is one of eight known herpesviruses with the potential to infect
humans. Globally, it is estimated that between 90–95% of the population has been infected with EBV.
EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as
nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer.
Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we
discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and
establish which treatments and therapies are most recommended for each cancer associated with EBV.
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1. Introduction

Epstein–Barr Virus (EBV) is a highly prevalent gamma herpesvirus that has infected
more than 90% of the population worldwide [1]. In addition to being the causative agent of
infectious mononucleosis, EBV was the first human oncogenic virus to be discovered and
has been linked to numerous malignancies, including various epithelial and mesenchymal
cancers and lymphomas [2]. EBV-associated cancers are known to affect both immune-
competent hosts and immunocompromised patients [3]. Globally, it is believed that EBV is
responsible for approximately 1.5% of all human cancers [4]. EBV transmission primarily
occurs through saliva, with increased levels of viral DNA being found in salivary secretions
after the initial infection [5]. Other methods of transmission include blood transfusion
and allograft transplantation [6]. Socioeconomics influence the age at which primary EBV
infection occurs, as demonstrated by the cohort study performed by Gares et al. in the UK.
This study found that children who slept in overcrowded homes (OR = 1.14 (1.10–1.31))
were found to have a higher rate of infection with EBV by three years of age when compared
to children who lived in better conditions [7].

EBV is a member of the Herpesviridae family; more specifically, the Gammaherpesvirinae
subfamily. It is also known as Human herpesvirus 4 (HHV4). Its genome is composed of linear
double-stranded DNA that is approximately 170 kb in length and includes approximately
85 genes [8]. Traditionally, EBV strains have been classified into type 1 and type 2 (also
known as types A and B, respectively) primarily based on the sequence of their EBV nuclear
antigen (EBNA), specifically EBNA2 and EBNA3A/B/C latency genes [9]. Type 1 EBV strains
are more prevalent worldwide, with type 2 being more prevalent in Alaska, Papua New
Guinea and Central Africa [10]. The main phenotypic difference in vitro between these two
strains is that type 1 EBV transforms human B lymphocytes into lymphoblastoid cell lines
(LCL) more efficiently than type 2 [9]. In a retrospective study conducted by Monteiro et al.,
EBV2 was shown to have a longer clinical course than EBV1, with an average duration of
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17.6 days of fever (range of 1–90 days), while EBV1 had an average range of 14.8 days (range
of 1–30 days) [11]. Interestingly, this study also noted that the levels of hepatic enzymes were
significantly higher, on average, in EBV1-infected patients aged 14 years and older when
compared to those infected with EBV2 or coinfected with EBV1 and EBV2 [11].

B lymphocytes are the primary targets of EBV infection due to their expression of com-
plement receptor type 2 (CR2), also known as the complement C3d receptor or CD21 [12].
EBV first infects B cells through the binding of the viral envelope protein gp350 with
CR2 [13]. The ensuing interaction of viral envelope proteins gp42, gH/gL and gB with
the human leukocyte antigen (HLA) class II protein on the B cell surface results in the
fusion of the viral envelope with the host cell membrane and allows for EBV to enter the
cell [14]. Another target of EBV is epithelial cells. While EBV enters B cells by fusion with an
endocytic membrane after endocytosis, EBV enters epithelial cells by fusion at the plasma
membrane [15]. The glycoproteins used by EBV to enter epithelial cells depend on both
the cell type and the expression of CR2. EBV uses gp350 for attachment to CR2-positive
epithelial cells [16]. For CR2-negative epithelial cells, EBV can use the multi-spanning
transmembrane envelope protein BMRF-2 to bind to integrin αvβ1, or it can use gH/gL to
bind to integrin αvβ5, αvβ6 or αvβ8 [17–19].

After the initial infection, EBV establishes and maintains an episome in the nucleus of the
host cell. It predominantly establishes latency that cannot be eradicated in B cells [20]. In a
recent study performed by Wang et al., EBV episomes were found to specifically target host
“super enhancers” that have a strong affinity for the binding of transcriptional coactivators in
order to facilitate greater EBV gene expression and cancer proliferation [21]. Similar to other
herpesviruses, the EBV life cycle alternates between latent and lytic states [22]. In immuno-
competent individuals, EBV is typically found in a latent, asymptomatic state. Disturbances of
the host immune system can stimulate viral reactivation [23]. These includes stressors such as
oxidative stress, co-infection with viruses such as CMV or HPV, and immunosuppressive or
chemotherapeutic treatments and stem cell transplantation. A comprehensive review of factors
that can stimulate EBV reactivation was discussed by Sausen et al. in a separate review [23].

EBV is associated with a host of diseases, including but not limited to Sjögren’s
syndrome [24], systemic lupus erythematosus [24], rheumatoid arthritis [24], hairy leuko-
plakia [25], Alzheimer’s [26], Parkinson’s [26], and acute cerebellar ataxia [26]. Additionally,
a recent study of greater than 10 million young adults demonstrated that EBV infection
resulted in a 32-fold increased risk of developing multiple sclerosis (MS) [27]. In this study,
neurofilament light chain, a marker of neuroaxonal degeneration, increased following EBV
infection, indicating that EBV may be a driving factor in the pathogenesis of MS [27]. This
is reminiscent of virus-induced animal models (e.g., Theiler’s murine encephalomyelitis
virus model) of demyelinating diseases including MS. [28]

Since Epstein and Barr first discovered EBV in Burkitt lymphoma (BL) cells in 1964,
a myriad of other malignancies have been both strongly and causally linked to EBV [29].
These malignancies can be categorized as those which are lymphoproliferative and those
which are epithelial in nature [30]. In addition to BL, lymphoproliferative diseases associ-
ated with EBV include Hodgkin lymphoma (HL), diffuse large B cell lymphoma (DLBCL),
and extranodal T/NK cell lymphoma, as well as the rarer plasmablastic lymphoma (PBL)
and primary effusion lymphoma (PEL) [31]. Epithelial malignancies with a well-known
association with EBV include gastric cancer (GC) and nasopharyngeal cancer (NPC) [32].
Additionally, a recent systematic review and meta-analysis found that there is a strong
statistical relationship between EBV infection and the risk of developing breast cancer [33].
Other epithelial malignancies with a weaker correlation to EBV include lymphoepithelial
carcinoma of the salivary glands (LECSG), lymphoepithelioma-like carcinoma of the lung
(LELC), renal cell carcinoma, thyroid cancer, cervical cancer, bladder cancer and leiomy-
omas/leiomyosarcomas in immunocompromised patients [34–46]. Figure 1 below lists
these epithelial malignancies associated with EBV. It is important to note that EBV infection
does not lead to malignant transformation of normal epithelial cells, raising uncertainty
about the causal role of EBV in the oncogenesis of these cancers [47].



Int. J. Mol. Sci. 2022, 23, 14389 3 of 22

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 23 
 

 

the lung (LELC), renal cell carcinoma, thyroid cancer, cervical cancer, bladder cancer and 

leiomyomas/leiomyosarcomas in immunocompromised patients [34–46]. Figure 1 below 

lists these epithelial malignancies associated with EBV. It is important to note that EBV 

infection does not lead to malignant transformation of normal epithelial cells, raising un-

certainty about the causal role of EBV in the oncogenesis of these cancers [47]. 

 

Figure 1. EBV-associated epithelial malignancies. EBV is associated with numerous malignancies 

with varying degrees of evidence. There is numerous evidence linking EBV to both nasopharyngeal 

carcinoma and gastric carcinoma. With regard to breast cancer, some studies provide strong evi-

dence that EBV plays a role in the pathogenesis of breast cancer, while some studies call for more 

definitive evidence to be published. EBV has been less definitively associated with numerous other 

epithelial malignancies, including cervical cancer, lymphoepithelial carcinoma of the salivary 

glands, lymphoepithelioma-like carcinoma of the lung, thyroid cancer, bladder cancer, uterine can-

cer, and renal cell carcinoma [34–46]. The role of EBV in the pathogenesis of these cancers should be 

further explored and definitively established. 

This review begins with a brief discussion on the latency and reactivation of EBV. 

Then, we discuss the major epithelial malignancies associated with EBV as well as the 

latest methods of treatment for these conditions. We also mention several epithelial ma-

lignancies that are believed to be associated with EBV but need further studies to confirm 

the relationship. 

2. EBV Latency 

EBV latency, and more particularly the proteins expressed during this phase of the 

viral cycle, is heavily implicated in EBV-mediated oncogenesis [48,49]. The proteins ulti-

mately expressed during latent infection varies based on the latency type. In type I latency, 

infected cells express EBNA1, EBV-encoded small RNA (EBER), and BamHI fragment A 

rightward transcripts (BART) transcripts. In type IIa latency, infected cells express every-

thing seen in type I latency as well as latent membrane proteins (LMP) 1 and 2. Type IIb 

latency resembles type IIa latency, but features the expression of EBNA2, EBNA3, and 

EBNA-leader protein (LP) instead of LMP 1 and 2. Type III latency includes the expression 

of EBNA1, 2, 3A, 3B, and 3C, EBNA-LP, LMP 1 and 2, EBER 1 and 2, and the microRNAs 

(miRNA) miR-BHRF1 and miR-BART3. A type 0 latency has also been described in which 

only EBERs are expressed. 

  

Figure 1. EBV-associated epithelial malignancies. EBV is associated with numerous malignancies
with varying degrees of evidence. There is numerous evidence linking EBV to both nasopharyn-
geal carcinoma and gastric carcinoma. With regard to breast cancer, some studies provide strong
evidence that EBV plays a role in the pathogenesis of breast cancer, while some studies call for more
definitive evidence to be published. EBV has been less definitively associated with numerous other
epithelial malignancies, including cervical cancer, lymphoepithelial carcinoma of the salivary glands,
lymphoepithelioma-like carcinoma of the lung, thyroid cancer, bladder cancer, uterine cancer, and
renal cell carcinoma [34–46]. The role of EBV in the pathogenesis of these cancers should be further
explored and definitively established.

This review begins with a brief discussion on the latency and reactivation of EBV. Then,
we discuss the major epithelial malignancies associated with EBV as well as the latest methods
of treatment for these conditions. We also mention several epithelial malignancies that are
believed to be associated with EBV but need further studies to confirm the relationship.

2. EBV Latency

EBV latency, and more particularly the proteins expressed during this phase of the viral
cycle, is heavily implicated in EBV-mediated oncogenesis [48,49]. The proteins ultimately
expressed during latent infection varies based on the latency type. In type I latency, infected
cells express EBNA1, EBV-encoded small RNA (EBER), and BamHI fragment A rightward
transcripts (BART) transcripts. In type IIa latency, infected cells express everything seen
in type I latency as well as latent membrane proteins (LMP) 1 and 2. Type IIb latency
resembles type IIa latency, but features the expression of EBNA2, EBNA3, and EBNA-
leader protein (LP) instead of LMP 1 and 2. Type III latency includes the expression of
EBNA1, 2, 3A, 3B, and 3C, EBNA-LP, LMP 1 and 2, EBER 1 and 2, and the microRNAs
(miRNA) miR-BHRF1 and miR-BART3. A type 0 latency has also been described in which
only EBERs are expressed.

EBV-related cancers are associated with specific latency patterns [50]. For example,
EBVaGC is associated with latency type I or II [51] while nasopharyngeal cancer is associ-
ated with type II latency [52]. Among the EBV-associated hematologic malignancies, Burkitt
lymphoma is typically characterized by type I latency [50], diffuse large B cell lymphoma
most frequently expresses a type II latency (although it is less often associated with type III
latency) [50], and both classic [53] and nodular lymphocyte-predominant (NLPHL) [54]
Hodgkin lymphoma typically express type II latency. Notably, there is some evidence to
suggest that certain cancers can express non-canonical latency patterns ([55,56]).
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More details about these patterns can be found elsewhere [57,58]. Table 1 summa-
rizes EBV latency expression patterns and Table 2 reviews which patterns of latency are
associated with which malignancy.

Table 1. Patterns of EBV protein expression during latency.

Latency 0 Latency I Latency IIa Latency IIb Latency III

EBNA1 − + + + +

EBNA2 − − − + +

EBNA3 − − − + +

EBNA-LP − − − + +

LMP1 − − + − +

LMP2 − − + − +

BARTs − + + + +

EBERs + + + + +
Table 1 summarizes the EBV protein expression seen in each type of latency. “+” indicates the protein is expressed,
while “−” indicates that the protein is not expressed.

Table 2. EBV latency patterns and associated malignancies.

Latency Type Associated Malignancies

Latency I EBVaGC, Burkitt lymphoma

Latency II EBVaGC, NPC, DLCBL, classic Hodgkin’s lymphoma, NLPHL

Latency III DLBCL
Table 2 provides an overview of which malignancies are associated with which patterns of EBV latent gene
expression.

The ability of EBV to transform B cells has long been known [59,60], and latent gene
products have been implicated in the transformation process [60–62]. B cell transformation
results in significant differences in B cell gene organization and expression. For example,
Hernando et al. found that B cells transformed by EBV displayed altered methylation
markings and endonuclease activity when compared to non-transformed cells [63]. These
changes were noted to affect thousands of genes and were not seen in B cells whose
proliferation was induced with CD40/IL4 [63]. Of particular note, EBV infection leads to
hypermethylation, and therefore decreased expression, of tumor suppressor genes when
compared to naïve B cells [64]. An RNA sequencing analysis of gene expression in primary
human resting B lymphocytes infected with the EBV strain B95.8 revealed changes in
gene expression in nearly 3700 genes, including changes in 94% of the genes required for
lymphoblastoid cell line (LCL) growth and survival [65].

EBV Latent Proteins and Oncogenesis

Gene products expressed during EBV latency play key roles in oncogenesis. LMP1 is a
highly oncogenic protein that mimics CD40 signaling, leading to stimulation of multiple
pathways [66], including nuclear factor kappa beta (NF-κB) [66,67]. It exerts its oncogenic
properties through multiple mechanisms in a variety of tumor types. For example, LMP1-
mediated p53 degradation and subsequent enhanced tumorigenesis [68] has been noted in
several cancer lines [69]. LMP1 also activates PI3K/AKT, and the combination of PI3K/AKT
and NF-κB activation has been shown to inhibit apoptosis in lymphoma patients [70,71]. In
nasopharyngeal cancer cells, LMP1 alters miRNA expression, which may promote tumor
formation [48]. In addition to its role as a B cell receptor mimic, LMP2A impairs apoptosis
and cell cycle checkpoints and works synergistically with oncogenes to enhance survival
and proliferation [49].

EBNA1 is another latent protein implicated in tumor formation. In B cell lymphoma, it
has been shown to upregulate an anti-apoptotic protein named survivin [72,73]. In nasopha-
ryngeal carcinoma, ENBA1 can inhibit NF-κB through inhibition of IKKα and β, which
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promotes development of squamous cell carcinoma by stimulating tissue hyperplasia [74].
EBNA1 interacts with ubiquitin-specific protease 7 (USP7) to decrease P53 levels [75]. In
addition, it was recently shown that some EBNA1 variants, particularly those with the
amino acid substitution T85A, can more easily bind the cellular protein Procollagen-lysine,
2-oxoglutarate 5-dioxygenase 1 (PLOD1) [76], which is associated with gastric cancer [77].
Moreover, PLOD1 overexpression carries a poorer prognosis in gastric cancer [78]. The
EBNA3 family of latent genes, including EBNAs3A, 3B, and 3C, are intriguing in that they
play opposing roles in oncogenesis, with EBNA3A and 3C promoting cancer formation
and EBNA3B suppressing it [79]. EBNA3A and 3C interact to induce tumor formation
through a variety of mechanisms, including interfering with the BCL2/apoptosis and cyclin
dependent kinase (CDK) pathways [80]. As was mentioned above, EBNA3B acts as a tumor
suppressor; indeed, murine infection by EBV strains lacking EBNA3B result in aggressive,
immuno-evasive diffuse large B cell lymphoma (DLBCL) [81]. Infected cells secreted lower
levels of the T cell chemoattractant CXCL10, which inhibited T cell recruitment and killing
of infected cells. Notably, human B cell lymphomas were shown to have altered EBNA3B
expression [81]. The role of selected EBV proteins has been summarized in Figure 2 below.
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Figure 2. EBV latent proteins and oncogenesis. EBV latent proteins play numerous roles in facilitating
oncogenesis. For example, LMP1 degrades p53, alters mRNA expression and stimulates multiple
pathways through mimicking CD40 signaling. EBNA1 upregulates survivin, downregulates p53,
and interacts with PLOD1. EBNA3A/3C interferes w/BCL2/apoptosis and interferes with the CDK
pathway. LMP2 interferes with the cell cycle, inhibits apoptosis, and enhances survival/proliferation.
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3. EBV and Epithelial Malignancies

In addition to infection of lymphoid cells, EBV can also infect epithelial cells as
discussed throughout this review. While EBV readily infects B cells in vitro and transforms
them into proliferative lymphoblastoid cell lines, EBV does not as readily infect human
epithelial cells in vitro [82]. This discrepancy has made studying the interaction between
EBV and epithelial cell lines more difficult and has hindered past research efforts [82].
However, recent successes, such as EBV being replicated in stratified tissues, have allowed
better understanding of the mechanism by which EBV infects epithelial cells [83]. Indeed,
this model was used by Yu et al. to study EBV epithelial cells from the nasopharynx to
better understand how NPC develops [83]. This study demonstrated that EBV disrupted
epithelial integrity and that noncancerous stratified pharyngeal epithelia were susceptible
to EBV infection with their differentiation leading to lytic replication [83]. Although
infection with EBV may not be the initiating factor for epithelial cell tumors, it has been
shown to change host gene expression to better facilitate cancer growth by promoting cell
survival, proliferation, invasion, epithelial–mesenchymal transition (EMT), angiogenesis
and immune evasion [84]. In a recent study by Xiang et al., EBV infection was associated
with the expression of endothelial phenotypes promote a vasculogenic-like network that
could promote growth in EBV-infected epithelial malignancies [84]. Additionally, EBV
infection was found to induce F3-mediated platelet aggregation, which inhibits the ability
of NK cells to suppress tumors [85].

EBV entry into epithelial cells is governed by a slightly different mechanism than its
entry into B cells. In B cells, a complex composed of gp42/gH/gL is required for entry. In
epithelial cells, the gH/gL complex is thought to be essential, but gp42 is not necessary
because epithelial cells lack HLA class II molecules [61,62]. Interestingly, it has been shown
that the cell type in which EBV is grown impacts its future tropism [14]. Viruses grown in
HLA class II positive cells, such as B lymphocytes, have a relatively greater proportion of
EBV virions expressing the gH/gL complex lacking gp42 and have a subsequent increase
in their affinity for epithelial cells. This occurs because gp42-containing trimers interact
with HLA class II molecules that are en route to the cell membrane. Transportation occurs
in vesicles containing cysteine proteases, which degrade the gp42/gH/gL complexes and
shift the ratio to favor gH/gL complexes [62].

No specific treatments are associated with EBV-positive gastric cancers [86]; however,
there have been recent advances in targeting LMP1 in EBV-positive NPC using DNAzymes
that specifically target the LMP1 mRNA [87]. Additional methods of targeting EBV-positive
NPC include methods such as targeting the DNA binding/dimerization site of EBNA1
and inhibition of LMP1 [88]. Understanding the interplay between EBV and epithelial
cancers is of critical importance to further promote the development of treatments targeting
malignancies that are positive for EBV.

4. EBV and Gastric Carcinoma

According to a recent meta-analysis, EBV is associated with 8.77% of gastric carcino-
mas, including 10.83% of cases in males and 5.72% of cases in females [89]. EBV-associated
gastric cancer (EBVaGC) expresses type I and II latency patterns [63]. Genetic analysis
showed that EBNA1 was the most commonly expressed protein, and LMP1 and LMP2A
were also detected. Interestingly, 18 lytic genes were also expressed in these cancers, in-
cluding both early and late EBV lytic proteins. This expression pattern is not consistent
with either lytic or abortive lytic gene expression [64]. A meta-analysis demonstrated that
EBNA1 was detected in greater than 98% of EBVaGC and that LMP2A was expressed in
53.8% of tumors. LMP1 and LMP2B were only noted in 10% of cases [65].

Despite its near ubiquitous expression in EBVaGC, little is known about EBNA1′s
role in oncogenesis [34]. However, EBNA1 expression in EBV-negative gastric carcinoma
resulted in increased tumorigenicity and growth rate as well as worsened histopathologic
grading in xenograft-negative mice [90]. SCM1 gastric carcinoma cells expressing EBNA1
were also rendered less susceptible to cisplatin therapy [90]. These findings were not
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reproduced in TMC1 gastric carcinoma cells, which have a mutant form of P53 [90]. Cheng
et al. found these findings to be consistent with a model in which EBNA1 competitively
reduces p53 binding to USP7. This ultimately lowers p53 levels [75].

Lower p53 levels are associated with tumorigenesis [68]. EBNA1 has long been known
to interact with USP7 [69]; indeed, EBNA1 occupies the same binding pocket as p53 and
makes more extensive contact with USP7 [21]. In addition to confirming that EBNA1
reduces p53 activation and apoptosis, Sivachandran et al. demonstrated that EBNA1
interferes with promyelocytic leukemia nuclear bodies, which are important in apoptosis,
p53 activation, and tumor suppression in AGS GC cells [70].

More is known about LMP2A’s role in gastric carcinogenesis. The Ras association
domain family (RASSF) is a group of proteins that function as tumor suppressors [91].
Notably, it is a target of epigenetic silencing in multiple tumor lines [48], including gastric
cancer [49]. RASSF10 promoter hypermethylation and subsequent downregulation of
RASSF10 expression was noted in 6 of 8 GC cell lines examined [49]. Mechanistically, it was
shown that LMP1 facilitates hypermethylation of the RASSF10 gene by recruiting DNA
methyltransferase (DNMT1) [3]. Both sets of experiments demonstrated that overexpression
of RASSF10 inhibited tumor formation [3,49].

Vasculogenic mimicry is a mechanism by which tumor cells secure a blood supply
in the absence of angiogenesis or endothelial cells (reviewed in [72]). Recently, it was
discovered that EBV promotes vasculogenic mimicry in epithelial cancers, including NPC
and GC [84]. Specifically, LMP2A overexpression resulted in increased activation of the
AKT/HIF-1α signaling pathway in NPC cell lines [84]. When examined in the context
of GC, the EBV+ GC cell lines GT38 and GT39 formed tubes on 3D Matrigel culture,
unlike EBV− AGS cells. Like the NPC cells, GT38 and GT39 demonstrated increased
flux through the nuclear HIF-1α pathway, indicating EBV promotes vasculogenic mimicry
in GC [74]. Another mechanism through which EBV promotes vasculogenic mimicry is
through upregulation of the chemokine CXCL8. Addition of recombinant CXCL8 to GC
cells led to vasculogenic mimicry and increased cell migration, while knockdown reduced
tube formation on Matrigel culture. This effect is mediated via NF-κB signaling [75].

EBV is known to encode a wide array of miRNAs. While many of their actions
are poorly understood, studies have examined their contributions to oncogenesis [76].
Microarray analysis demonstrated that 40 miRNAs were expressed in EBVaGC, all coming
from miR-BART cluster 1 or cluster 2 [92]. Yoon et al. further examined the role of one such
miRNA, miR-BART-5p, in GC [92]. This miRNA was inversely associated with levels of
the PIAS3 protein in multiple GC cell lines. Reduced PIAS3 augments signaling through
signal transducer and activator of transcription 3 (STAT3), which ultimately leads to the
upregulation of programmed death-ligand 1 (PD-L1) [92]. Removing PD-L1 expression in
SNU601 cells transfected with miR-BART5-5p via small interfering RNA (siRNA) resulted
in significantly increased apoptotic levels. In addition, abrogation of PD-L1 upregulation
resulted in decreased cell proliferation, invasion, and migration [77]. Decreased levels of
AT-rich interaction domain 1A (ARID1A) are associated with the initiation of oncogenesis in
EBVaGC, although this loss precedes EBV infection [78]. MiR-BART11-3p and miR-BART-12
were found to decrease ARID1A levels as shown by Western blotting [93]. ARID1A mRNA
was not changed, consistent with posttranscriptional regulation. Notably, the ARID1A
promotor was not hypermethylated [93].

While it is clear that EBV-encoded miRNAs play a role in EBVaGC oncogenesis,
they have anti-oncogenic properties as well [94]. For example, EBV-encoded miRNAs
manipulate the cell cycle by interfering with eukaryotic translation initiation factor 4E
(eIF4E) signaling, which decreases cell proliferation [94]. When miR-BART11-p3 mimics
were utilized, they increased the luciferase activity of wild-type but not mutant eIF4E
3′-UTR, and transfection of the miR-BART11-p3 mimic resulted in decreased eIF4E 3 ex-
pression [94]. miR-BART11-p3 mimic transfection reduced cell proliferation [94]. Wang
et al. suggested that this inhibition of eIF4E 3 may partially explain the better prognosis
given to EBVaGC [94].
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Interestingly, when EBV-negative AGS GC cells were transfected with LMP2A, expres-
sion of HLA class I was inhibited [95]. This effect was eliminated when a mutated variant
of LMP2A was expressed in place of wild-type LMP2A. Further analysis demonstrated that
this effect was mediated through the sonic hedgehog pathway, and specifically through
Gli1 [95]. Deb Pal et al. postulated that this may be one mechanism that allows EBVaGC to
evade the immune system, thus promoting tumor survival [95]. PD-L1 expression is an-
other mechanism through which EBVaGC evades the immune system. Indeed, analysis of
the gastric cancer cell lines NCC24, SNU719, AGS, NUGC3, and YCCEL1 revealed elevated
PD-L1 expression [96]. EBVaGC cells expressing PD-L1 suppressed T cell proliferation [96].

Gastric Cancer Therapies

Treatment for EBVaGC can include chemotherapy, radiation, and surgical resection,
with the latter being necessary to effectuate a cure [97]. In patients for whom systemic ther-
apy is warranted, the current standard chemotherapy is the FLOT (fluorouracil, leucovorin,
oxaliplatin, and docetaxel) regimen [98].

EBVaGC overexpresses PD-L1 [99]. A recent clinical trial assessed the efficacy of the
humanized monoclonal anti-PD-1 antibody pembrolizumab compared to pembrolizumab
with chemotherapy, and to chemotherapy alone. Pembrolizumab was found to be noninfe-
rior to chemotherapy in terms of overall survival, as patients treated with pembrolizumab
had an average survival of 10.6 months vs. chemotherapy, which had an average survival
of 11.1 months [100]. In patients with high PD-L1 expression, defined as a PD-L1 com-
bined positive score of >10, survival with pembrolizumab increased to 17.4 months [100].
Chemotherapy survival in this cohort was 10.8 months, although this difference was not
significant enough to demonstrate superiority to chemotherapy [100]. Patients treated with
pembrolizumab plus chemotherapy had a median survival of 12.5 months [100]. Patients
in this group with high PD-L1 expression had a median survival of 12.8 months [100]. No-
tably, patients treated with pembrolizumab alone (54.3%) experienced fewer adverse events
than patients receiving chemotherapy (91.8%) or both pembrolizumab and chemotherapy
(94.0%) [101]. Nivolumab is another PD-1 inhibitor that has been examined in gastric cancer.
A comparison between nivolumab and nivolumab + chemotherapy showed improvements
in both overall survival and progression free survival in patients treated with nivolumab
and chemotherapy when compared to chemotherapy alone [102]. There was a higher rate
of severe adverse events in the dual therapy group, with 59% of patients treated with
nivolumab + chemotherapy experiencing a grade 3-to-4 adverse event when compared to
only 44% of patients treated with chemotherapy alone [102]. Interestingly, patients who
were treated with anti-PD-1 therapy responded better to chemotherapy with the antimicro-
tubular class of drug known as taxanes, taxanes with ramucirumab, or the alkaloid known
as irinotecan than patients who did not have prior treatment targeting PD-1 [103]. Overall
response rates to chemotherapy were 44.6% in those previously treated with anti-PD-1
treatment and 19.6% in anti-PD-1 naïve patients [103].

ARID1A expression is frequently lost in EBVaGC. While this loss of expression pre-
cedes EBV infection [104], it does facilitate EBVaGC carcinogenesis [78]. Research has
examined the potential of targeting ARID1A mutations in gastric cancer. Treating gastric
organoids with the epigenetic inhibitor TP064 and the p53 agonist Nutlin-3 decreased
organoid viability significantly more than organoids with retained ARID1A expression,
potentially through synergistic activation of p53 signaling [105]. Enhancer of zeste homolog
2 (EZH2) is a subunit of polycomb repressive complex 2 (PRC2) that regulates gene expres-
sion, at least in part by trimethylation of Lys-27 in histone 3 (H3K27me3). It has recently
gained attention as a treatment target in cancer therapy [106]. Treating ARID1A-WT MKN7
and ARID1A-MUT NUGC-3 cells with EZH2 inhibitors resulted in a more significant de-
crease in viability in the ARID1A mutated cells, potentially due to a decrease in PI3K/AKT
signaling [107].
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5. EBV and Nasopharyngeal Cancer

NPC is a type of malignancy that originates from the epithelium of the nasopharynx,
with 5-year survival rates of 83.7% for localized NPC, 75% for regional NPC and 62.2%
for distant NPC. [108]. NPC is an uncommon epithelial tumor that has a unique ethnic
and geographical distribution. The World Health Organization (WHO) estimated that
there were approximately 129,000 new NPC cases reported worldwide in 2018 [109]. NPC
is endemic in indigenous populations in East and Southeast Asia, the Arctic, and North
Africa and the Middle East [110]. In Asia, NPC is most commonly observed in people of
Chinese descent, specifically the Cantonese [111]. In the Arctic, persons of Innuit origin
experience higher rates of NPC, while those of Arab descent experience higher rates
in North Africa [112,113]. Interestingly, studies following trends of NPC development
in immigrants found that overall rates of NPC were higher in people emigrating from
areas of high risk compared to native populations. This elevated risk compared to the
native population was still present in second- and third-generation immigrants [114]. In
addition to ethnic and geographical factors, EBV infection is heavily associated with NPC
development, with over 95% of tumors being EBV-positive in areas of high incidence [115].
Other factors that play a role in development of NPC include dietary habits, lifestyle, host
immunity and environmental factors [116].

The association between EBV infection and NPC was first established through the
detection of high concentrations of serum antibodies against EBV antigens, including viral
capsid antigen (VCA) and early antigen diffuse component (EAd/BMRF1) [117]. Later,
elevated levels of circulating cell-free EBV DNA were detected in patients with NPC and
subsequentially shown to have a strong correlation with NPC tumor stage and overall
survival rates. To date, circulating EBV DNA has been shown to be of clinical value in
screening, prognostication, and surveillance for recurrent NPC [118]. In NPC, EBV exists in
a latent state that is exclusively found in the tumor cells but absent from the surrounding
lymphoid infiltrate. However, it should be noted that the malignant NPC cells are highly
dependent on the adjacent carcinoma cells and prominent lymphoid stroma found in
undifferentiated NPC [119].

LMP1 is expressed in NPC and is known to trigger several important signal trans-
duction pathways such as NF-κB, ERK-MAPK, PI3K/AKT, JNK, JAK/STAT, and others
involved in the growth and metastasis of tumor cells [66,120]. LMP1 has been shown
to demonstrate oncogenic properties both in vivo and in vitro [121]. It regulates the ex-
pression of several downstream targets associated with cell growth, survival, epithelial-
mesenchymal transition (EMT), migration, invasion and aerobic glycolysis, and immune
evasion [122]. LMP1 suppresses NK and T cells and can be considered a critical therapeutic
target due to its multiple oncogenic properties [122]. LMP1 is variably expressed in NPC tis-
sues, with immunohistochemical (IHC) methods estimating expression rates to be between
20–60%. However, LMP1 is heavily implicated in contributing to the early stages of NPC
pathogenesis as it is found in most premalignant or preinvasive NPC tissue samples [122].
NPC tumors expressing LMP1 were found to be more aggressive and invade lymph nodes
more easily than those which were LMP1-negative [123]. Moreover, LMP1 was shown to
contribute to radioresistance in NPC by promoting cell protective autophagy, thus leading
to poorer rates of survival [124].

The LMP2 proteins (LMP2A and LMP2B) are another set of hydrophobic integral
membrane proteins that are consistently detected in NPC [125]. While the role of LMP2B is
less defined, LMP2A has been shown to play a key role in maintaining EBV latency [126].
LMP2A has been demonstrated to promote various oncogenic phenotypes by regulat-
ing multiple signaling pathways, such as PI3K/AKT, ERK and RhoA [88]. Additionally,
LMP2A is known to support the function of LMP1 and contribute to malignant trans-
formation of host cells by intervening with signaling pathways at multiple points and
promoting proliferation, anti-apoptosis, and angiogenesis, as well as cell invasion and
metastasis [127,128]. LMP2A also blocks BCR-mediated intracellular release of calcium and
PTK cascades, resulting in inhibition of B-cell differentiation [129].
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BamHI-A rightward frame 1 (BARF1) is a protein encoded by Bam H1-A that is
secreted during latency in EBV-associated NPC [130]. BARF1 shares homology with the
human colony stimulating factor 1 (hCSF-1) receptor (c-fms oncogene) and competes for its
ligand, macrophage colony-stimulating factor (M-CSF) [131]. It plays a role in modulating
immune cell growth and function by acting as an allosteric decoy receptor for hCSF1 and
interfering with macrophage activation and the immune response [132,133]. Moreover,
BARF1 was shown to play a role in suppression of apoptosis via activation of BCL-2
and upregulation of NF-κB, RelA, and cyclin D1 expression in NPC cells [127]. BARF1-
negative EBV cells that were engineered to express BARF1 showed increased growth and
tumorgenicity, thus supporting the role of BARF1 in NPC pathogenesis [132].

EBER1 and EBER2 are a set of two small non-polyadenylated, double-stranded RNAs
that are the most abundant viral transcripts in latent EBV-infected cells [134]. EBERs
contribute to EBV associated oncogenesis by modulating innate immunity in patients with
NPC [135]. EBERs play a role in the regulation of LMP1 and LMP2, and therefore play a role
in promoting latent EBV infection in cells [136]. EBERs may also interact with TLR3 and
induce tumor cells to produce cytokines and recruit macrophages to promote the growth of
NPC cells [137].

Alternatively spliced BARTs code for several oncogenic long noncoding RNAs (lncR-
NAs) and are highly expressed in NPC. BART lncRNAs localize within the nucleus of
EBV-infected cells; however, their role in EBV latency and NPC has yet to be clarified [138].
Interestingly, EBV-encoded microRNAs, miR-BARTs, play a role in promoting cellular
growth and proliferation, inhibiting cell apoptosis, and maintaining virus latency, as well
promoting tumor metastasis and immune evasion [139]. Numerous miR-BARTs have been
identified, and they compose 26–38% of the total cellular microRNAs in NPC tumors [140].

Nasopharyngeal Cancer Therapies

NPC can have a 91–94% survival rate when diagnosed in its earliest stages (stages
I–IIB) [140]. However, early-stage NPC is often asymptomatic; therefore, biomarkers such
as circulating cell-free EBV DNA are used to detect NPC in high risk populations [141].
In a study performed by Chan et al., post-radiotherapy plasma EBV levels were found to
be significantly correlated with hazards such as distant metastasis and death [142]. Chan
et al. suggested that post-radiotherapy plasma EBV DNA be measured to determine risk
clarification and treatment selection for adjuvant therapy in NPC [142]. Another method of
detecting NPC involves the detection of EBV DNA in nasopharyngeal brush cytology. This
method was found to have a sensitivity of 98.9%, a specificity of 99.3%, a positive predictive
value (PPV) of 96.9% and a negative predictive value (NPV) of 99.7% for detecting NPC.
Overall, this yielded better results than endoscopy [143]. Individuals with elevated plasma
biomarkers are then evaluated via nasopharyngeal endoscopic exam. An abnormal finding
or suspicion for NPC based on the endoscopic exam is followed by endoscopic-guided
biopsy to confirm NPC [144].

Previously, platinum-based concurrent chemoradiotherapy was considered to be the
standard of care for locoregionally advanced NPC [145]. The addition of the nucleoside
analog known as gemcitabine in combination with the platinum analog known as cisplatin
forms what is known as GP induction chemotherapy. In a study conducted by Zhang
et al., GP induction therapy added to a standard chemoradiotherapy regimen was found to
significantly improve recurrence-free survival as well as overall survival when compared
to chemoradiotherapy alone in patients with locoregionally advanced NPC [145]. Patients
in the Zhang et al. study who received the induction chemotherapy benefited from a
higher rate of 3-year recurrence-free survival (85.3% compared to 76.5% for the standard-
therapy group) [145]. In recent years, GP therapy has become the preferred first line
treatment for patients with recurrent or metastatic NPC [146]. Recent studies have yielded
promising results when comparing toripalimab (an antibody against PD-1) versus placebo
in addition to gemcitabine and cisplatin therapy [147]. The addition of toripalimab to
standard gemcitabine and cisplatin therapy increased progression-free survival as well as
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overall survival when compared to the addition of placebo to gemcitabine and cisplatin
therapy [148]. In a study performed by Zhou et al., the cellular protein coding gene
AKR1C1 was identified as a good prognostic factor for advanced-stage NPC [149]. Zhou
et al. discovered that cisplatin sensitivity was increased in ARK1C1-silenced NPC cells
and advocated for further studies to validate AKR1C1 as a marker for predicting response
to cisplatin in patients with NPC [149]. In another study by Gao et al., the role of Brain-
expressed X-linked 3 (BEX3), a CD271-receptor-associated protein, in NPC was investigated
due to its upregulation in this disease [150]. Gao et al. also discovered that BEX3 was
upregulated in response to cisplatin treatment and was also implicated in mediating
cisplatin resistance in NPC cells [150].

Radiotherapy (RT) is considered the mainstay of treatment for non-disseminated
NPC [151]. Intensity-modulated RT (IMRT) has been shown to provide more accurate
dose delivery to targets and less toxicity to normal organs when compared to traditional
RT [152]. In addition, a significant reduction in late effects such as xerostomia, trismus, and
injury to the temporal lobe was reported in patients who underwent IMRT [153]. A recent
meta-analysis performed by Luo et al. found IMRT to have increased overall survival,
locoregional control rate, disease-free survival, and metastasis-free survival in comparison
with traditional RT [154]. Particle therapy, including the use of protons and carbon ions,
has also been recently used in the treatment of NPC. Proton therapy specifically is a
promising approach for targeting locally advanced NPC as it avoids damage to neurological
structures [154]. A systematic review by Lee et al. found that outcomes for patients
undergoing proton therapy were similar to those who underwent IMRT, with 2-year local
and regional progression-free survival rates between 84–100%, 2-year progression free
survival between 75–88.9% and 2-year overall survival between 88–95% [155]. This review
also noted that patients undergoing proton therapy required feeding tubes less frequently
when compared to IMRT (20% versus 65%) and experienced lower rates of mucositis (46%
versus 70%) [155].

Surgical options such as nasopharyngectomy represent another method of treating
locally recurrent NPC. Recently, minimally invasive techniques such as endoscopic surgery
have been utilized to help treat locally recurrent NPC. These results have yielded positive
5-year overall survival rates for recurrent type 1 (rT1) and recurrent type 2 (rT2) cases of
recurring NPC [156]. A recent clinical trial performed by Liu et al. found that patients
with locally recurring NPC had significantly improved survival rates when treated with
endoscopic surgery as opposed to IMRT [157]. These results were also confirmed by Peng
et al., who specifically compared IMRT with recurrent later-stage rT3 and rT4 NPC [158].
This meta-analysis added that endoscopic surgery was associated with higher rates of
survival and lower overall complications when compared with IMRT [158].

6. EBV and Other Malignancies

In addition to EBVaGC and NPC, other epithelial cancers have been associated with
EBV; however, their definitive association has not been confirmed. These malignan-
cies include breast cancer, lymphoepithelial carcinoma of the salivary glands (LECSG),
lymphoepithelioma-like carcinoma of the lung (LELC), renal cell carcinoma, thyroid cancer,
cervical cancer, bladder cancer and leiomyomas/leiomyosarcomas in immunocompro-
mised patients [34–46].

Worldwide, female breast cancer is the most commonly diagnosed cancer, with an
estimated 2.3 million new cases in 2020 [159]. In the United States, breast cancer is the
most commonly diagnosed cancer among women in the after skin cancer [160]. It is also
the second leading cause of cancer deaths among women in the United States after lung
cancer [160]. The link between EBV and breast cancer was first discussed by Labrecque
et al. in 1995 [161]. Since then, the association has yet to be definitively concluded, with
different studies suggesting different levels of association.

One meta-analysis of 4607 cases from 27 countries indicated a high pooled prevalence
of 26.37% among breast cancer patients [33]. Additionally, this meta-analysis attributed
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a 4.74-fold increase in breast cancer due to EBV infection [33]. Another meta-analysis
conducted by Jin Q et al. analyzed sixteen studies comprising 1279 cases and 814 controls
between 1995 and 2018. Their results determined that EBV infection had a significant
association with increased breast cancer risk with an odds ratio of 4.75 (p = 0.01) [162].
Overall, EBV infection is more prevalent in breast cancer tissue samples when compared to
controls.

Another recent study by Zhang et al. discussed a higher incidence of high-grade
invasive breast cancer in patients with EBV infection when compared to those who were
not previously infected [163]. This study also concluded that patients with EBV infection
were more likely to experience negative prognostic factors such as higher rates of lymph
node metastasis (59.7%), lymphovascular invasion (72.1%) and presentation with a worse
clinical stage of either stage III or IV breast cancer (90.5%) [163].

A paper by Hu et al. suggested that EBV may play a role in the early formation of
breast cancer via epithelial mesenchymal transition [164]. Their data suggested that EBV
LMP1 triggers the activation of NF-κB through the activation of c-MET. Moreover, the
authors suggested that EBV promotes oncogenesis via alteration of APOBEC3, which is an
antiviral enzyme [164]. Hu et al. also concluded that EBV infection was correlated with
adverse clinicopathological features [164]. Another proposed mechanism by which EBV
infection promotes breast cancer is via activation of the HER2/HER3 oncogenes [165].

While some studies highlight the connection between EBV and breast cancer, other
studies have failed to find traces of EBV in breast cancer tissue. In a study performed by
Dowran et al., 300 breast biopsy tissues from both malignant and benign tumors did not
show any positivity for EBV DNA fragments [166], while another study performed by Salih
et al. suggested that EBV does not play a vital role in the pathogenesis of breast cancer but
was associated with lymph node metastasis, age group and estrogen receptor presence.
The study also determines that a definitive link between EBV and breast cancer can not be
established [167].

The relationship between EBV and other rarer cancers is even more difficult to define
due to the limited number of published studies. LECSG is one such cancer. A study by
Whaley et al. examined the relationships between LECSG and EBV and found that while
LECSG may express EBER, LECSG was not associated with non-endemic patients [168].
With regard to renal cell carcinoma, few studies have been conducted to examine the role of
EBV in renal cell carcinoma pathogenesis. Shimakage et al. described the presence of EBV
in various types of renal cell carcinoma tissues [38]. However, an earlier study performed
by Kim et al. only found signs of EBV infection in 5/73 (6.8%) of RCC tissue samples [39].
More recently, a study conducted by Farhadi et al. concluded that EBV did in fact play a
role in the development of renal cell carcinoma through the activation of the NF-κB p65
signaling pathway [37]. The authors of these studies are in agreement that larger-scale
studies are needed to more clearly define the relationship between EBV infection and renal
cell carcinoma.

The relationship between thyroid cancer and EBV was described in a review conducted
by Almeida et al. [169]. The authors discussed that the incidence of EBV in thyroid
specimens can widely vary depending on the method of detection used to examine tissues
and the populations the tissues are collected from. However, the authors concluded
that there was a relationship between EBV and thyroid cancer and that further studies
are needed to confirm this relationship [169]. With regard to cervical cancer, current
evidence proposes that a causal relationship may exist between EBV and cervical cancer
pathogenesis [43]. This is reiterated by a meta-analysis performed by de Lima et al. which
pointed to the a positive association between pooled EBV prevalence and lesion grade in
cervical epithelia, a high prevalence of EBV in malignant lesions, an increased odds ratio
associated with EBV as a risk factor (OR = 4.01 [1.87–8.58]; p < 0.001), and the existence
of EBV(+) HPV(−) carcinomas as reasons why EBV should be considered a risk factor for
cervical cancer [42]. The authors of this meta-analysis also discuss their findings that latent
oncoproteins such as EBNA1, EBNA2, LMP1 and EBERs were expressed in cervical tumors
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and that there was an association of EBV with the integration of high-risk HPV DNA in
malignant tissue samples [42].

Very few studies have examined the relationship between EBV and bladder cancer.
One such study is an investigation conducted by Abe et al. which detected EBER-expressing
lymphocytes in 26 out of 39 bladder cancer cases (66.7%) [45]. However, the limited amount
of data available led the authors to question the role EBV has in bladder cancer pathogene-
sis [45]. The first study linking leiomyomas/leiomyosarcomas in immunocompromised
patients to EBV was conducted by KL McClain et al. in 1995 [46]. Since then, few articles
have been written discussing the relationship. One such paper written by Magg et al.
discussed that smooth muscle tumors should be screened for the presence of EBV and
that patients presenting with EBV-positive smooth muscle tumors should be screened for
possible primary immunodeficiency disorders [170].

There is also an interesting association between EBV and hepatocellular carcinoma,
although supportive evidence is not conclusive [171]. Indeed, a meta-analysis of 918
patients showed that the prevalence of EBV was 9.35 times higher in hepatobiliary cancer
than in healthy liver and duct tissue. The authors concluded that EBV may be a risk
factor in the pathogenesis of hepatobiliary cancer [171]. Interestingly, EBV positivity was
much more strongly associated with hepatocellular carcinoma with immune cell stroma
than conventional hepatocellular carcinoma (74.5% vs. 4.6%, respectively) [172]. The
corresponding number of tumor-infiltrating lymphocytes (TILs) per high-powered field
were 10.5 ± 26.4, and 0.2 ± 1.0, respectively. Tumor PD-L1 expression was associated
with the number of EBV-positive TILs [172]. EBV positivity was associated with better
recurrence-free survival, although this trend was reversed in hepatocellular carcinoma
with higher numbers of EBV+ TILs. In addition, T cell exhaustion was more prevalent in
samples with high density EBV+ TILs [172]. The treatments for these cancers have been
summarized in Table 3.

Table 3. Cancers associated with EBV and their treatments.

Cancer Type Treatment Options References

EBV-associated gastric cancer
Chemotherapy, radiation, and surgical resection, fluorouracil, leucovorin,
oxaliplatin, and docetaxel or fluoropyrimidine and oxaliplatin,
pembrolizumab, enhancer of zeste homolog 2 (EZH2) inhibitors

[97,100,107]

Nasopharyngeal carcinoma
Surgery, platinum-based concurrent chemoradiotherapy, gemcitabine and
cisplatin induction chemotherapy + toripalimab, intensity-modulated
(IMRT), particle therapy

[145,148,152,154]

Breast cancer

Neoadjuvant chemotherapy, doxorubin and cyclophosphamide followed
by paclitaxel (AC-T), docetaxel, paclitaxel, selective estrogen receptor
modulators (SERMs), (tamoxifen, raloxifene, toremifene), aromatase
inhibitors (non-steroidal anastrozole and letrozole and steroidal
exemestane), (SERD), selective estrogen receptor degrader (fulvestrant),
cyclin D kinase 4/6 inhibitors (palbociclib, ribociclib and abemaciclib),
PI3K/Akt/mTOR pathway inhibitors, mTOR inhibitor (everolimus), PI3K
inhibitor (alpelisib), lumpectomy, whole breast irradiation, mastectomy

[173–175]

Lymphoepithelial carcinoma of
the salivary glands

Surgery (parotidectomy or submandibular gland excision) and induction
chemotherapy, concurrent therapy, postoperative radiotherapy [176–178]

Lymphoepithelioma-like
carcinoma of the lung

Surgery, cisplatin-based chemotherapy, pembrolizumab nivolumab,
arezolizumab, nivolumab and gemcitabine, other combination therapies [179–181]

Renal cell Pembrolizumab and axitinib, cabozantinib, pazopanib, bevacizumab,
temsirolimus, surgery, cytoreductive nephrectomy [182,183]

Thyroid
Surgical resection, TSH suppression, radioiodine therapy, pembrolizumab,
vemurafenib, dabrafenib, selumetinib, everolimus, sorafenib, lenvatinib,
pazopanib and treametinib

[184]
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Table 3. Cont.

Cancer Type Treatment Options References

Cervical Conization, hysterectomy, radiotherapy [185]

Bladder Trans-urethral resection of bladder tumor (TURBT), chemotherapy,
induction intravesical therapy, induction BCG [186]

Leiomyomas/leiomyosarcomas EBV-CTL therapy, antiretroviral therapy, reduction of immunosuppressive
treatment, surgery [170]

Hepatocellular carcinoma

Surgical resection, radiation therapy, chemo/immunotherapy (doxorubicin,
FOLFOX [folinic acid, fluorouracil, and oxaliplatin], sorafenib, regorafenib,
atezolizumab + bevacizumab, others), image-guided tumor ablation,
transcatheter arterial chemo/radioembolisation, combination therapies (ie
systemic + intra-arterial treatment),

[187–191]

7. Conclusions

EBV is an oncogenic virus that is ubiquitous in our society. Indeed, EBV and its asso-
ciated malignancies are responsible for a significant cancer burden worldwide [192]. It is
clear that more research is needed to develop better treatment approaches. Indeed, exciting
avenues of research are already being explored in the form of EBV-specific vaccines [193]. In
addition, new research is examining the therapeutic potential of immune therapy targeting
specific EBV antigens [194,195].

In this review, we discussed the latent stage of EBV and how it plays a role in the
progression of epithelial associated malignancies. Furthermore, we discussed the two main
epithelial cancers that have been strongly linked to EBV, EBVaGC and NPC, in addition to
the other weakly associated malignancies and the most recent treatments available. While
other malignancies may have a more causal link to EBV, these relationships must be further
explored to better understand their pathogenesis.
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