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Abstract: Chemotherapy regimens and radiotherapy are common strategies to fight cancer. In
women, these therapies may cause side effects such as premature ovarian insufficiency (POI) and
infertility. Clinical strategies to protect the ovarian reserve from the lethal effect of cancer therapies
needs better understanding of the mechanisms underlying iatrogenic loss of follicle reserve. Recent
reports demonstrate a critical role for p53 and CHK2 in the oocyte response to different DNA stressors,
which are commonly used to treat cancer. Here we review the molecular mechanisms underlying the
DNA damage stress response (DDR) and discuss crosstalk between DDR and signaling pathways
implicated in primordial follicle activation.
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1. Introduction

The mammalian ovary is the primary female reproductive organ involved in oocyte
maturation and in the synthesis and secretion of sex steroid hormones, estrogens and
progesterone, which are crucial for female fertility [1]. The cortex region of the human
ovary possesses a finite pool of primordial follicles, the ovarian reserve [2], whose number
is set before birth. Each primordial follicle contains only one immature and quiescent
oocyte, surrounded by a layer of flattened pre-granulosa cells. Quiescence is a state of
reversible growth arrest at diplotene of the meiotic prophase I. Primordial oocytes produced
at birth can remain quiescent for the entire female reproductive life. The maintenance of
the quiescent state is essential for chromosomal stability of oocytes and for preservation of
the primordial follicles during reproductive life.

The activation of mammalian primordial follicles consists in an irreversible mechanism
where a primordial follicle leaves the quiescence status and starts oocyte growth [3]. Follicle
activation implies several changes of granulosa cells (from flat to cuboidal shape, marking
the beginning of the primary follicle), an increase in cell number in tandem with a strict
reorganization within the follicle. All these modifications are crucial for the development
and release of a mature egg competent for fertilization [4]. Strategically positioned around
the oocyte, granulosa cells are able to communicate through a bidirectional somatic cell–
oocyte signaling pathway [5]. Such a bidirectional exchange guides the primordial follicle
into a cohort of growing follicles from which only one antral follicle, called the “dominant
follicle”, is chosen to ovulate in a competent cumulus-oocyte complex (COC) into the
Fallopian tube. Of note, the competence of the oocyte is defined as the capability of
the oocyte to conclude meiosis and go through fertilization, embryogenesis, and final
development [6]. Yet, the rest of the growing follicle pool degenerates and dies in a process
called “atresia”, which means that a woman, every month, loses many immature eggs (6–8)
per menstrual cycle.

Recent studies have demonstrated the adverse effects of cancer therapies on the
reproductive potential of young women [7]. Exposure to chemotherapeutic agents is
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responsible for the degeneration of the ovarian reserve, resulting in premature ovarian
insufficiency (POI) [8] and increased risk of infertility. In recent years, the increase in the
survival rate of female patients undergoing chemotherapy treatments boosts the need to
clarify the molecular mechanisms underlying POI. In this regard, many studies concerning
the complex signaling pathways involved in follicular quiescence and in survival are
emerging. These involve a multidisciplinary area of investigations, also including the
implementation of biomaterials for tissue engineering [9].

Chemotherapy drugs can damage the ovary through different mechanisms [10]. In
mice, compelling evidence indicates that genotoxic drugs induce ovarian reserve depletion.
However, it is still debated whether this loss is due to an accelerated follicle activation, to a
direct execution of DDR in reserve oocytes, or, most likely, to a crosstalk between the two
signaling cascades. In this article, we focus on these two key pathways in the maintenance
of the primordial follicle pool.

2. Primordial Follicle Activation

PI3K-PTEN-AKT-FOXO3-mTOR and the Hippo signaling pathways are considered
two primary regulators of primordial follicle activation at the time of the recruitment
into the growing follicle pool (both pathways are represented in Figure 1). Specifically,
the protein-kinase B (Akt) pathway intercedes between the primordial follicle activation
through the phosphoinositide 3-kinase-phosphatase and the tensin homolog (PI3K-PTEN)
signaling cascade. In particular, the PI3K pathway controls cellular proliferation, cell cycle
entrance, and cell survival in the human ovary, while the PTEN protein negatively regulates
PI3K [11,12]; the Hippo pathway is mainly involved in the conservation of the optimal size
of organs through growth inhibition [13].

2.1. The PI3K-PTEN-Akt Signaling Axis

The activation of the PI3K complex is triggered by the binding of receptor tyrosine
kinase (KITL) ligand, released by pre-granulosa cells (GCs), to its receptor (KIT) on the
oocyte. Once activated, PI3K modifies phosphatidylinositol-4,5-bisphosphate (PIP2) into
phosphatidylinositol-3,4,5-triphosphate (PIP3). The latter drives the recruitment of both
pyruvate dehydrogenase kinase 1 PDK1 and Akt at the membrane, where PDK1 phospho-
rylation activates Akt. In turn, Akt moves into the nucleus where it phosphorylates the
forkhead box O3 (FOXO3) transcription factor [14]. In primordial murine follicles, nuclear
FOXO3 preserves follicular dormancy [15], while Akt-mediated phosphorylation promotes
FOXO3 export into the cytoplasm. Indeed, in mice, p-FOXO3 (Akt-phosphorylated on resid-
ual Thr32) was detected in the cytoplasm of the growing oocyte [16]. Moreover, a mouse
model lacking FOXO3 (Foxo3-/-) presents an overall follicular activation, resulting in a
premature infertility [17]. The PTEN signaling cascade has a key role in the maintenance of
follicular dormancy [18]. PTEN, acting on PIP2, prevents follicular activation through inhi-
bition of the Akt–FOXO3 signaling axis. Compelling evidence indicates that lack of PTEN
or of 3-phosphoinositide-dependent protein kinase-1 (Pdk1) gene results in activation of the
whole pool of primordial follicles [19,20], suggesting that the PI3K–PTEN signaling cascade
deeply regulates the initial recruitment of primordial follicles [21]. In adult mice, lack of
PTEN has no effect on the primordial follicle pool, follicular development, ovulation, or
long-term fertility [22]. In addition, Liu and colleagues reported that PTEN inhibitor could
activate primordial follicles derived from human ovarian cortex strips. Such activated
follicles reached maturation following xenotransplantation into immunodeficient mice [23].
Again, McLaughlin and colleagues reported an increase in primordial follicle activation
after treatment with PTEN inhibitor, together with a compromised development of growing
follicles in the ovary [24].
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Figure 1. PI3K-PTEN-AKT-FOXO3-mTOR and the Hippo signaling pathways as primary regula-
tors of primordial follicle activation. At the top of the figure, the female reproductive system (ovary 
and follicle enlarged) is shown, as well as a schematic representation of follicle activation steps. In 
the PI3K/AKT pathway, PI3K is activated by the binding of the KIT ligand (KITL), released by pre-
granulosa cells (GCs) to the KIT/tyrosine kinase receptor on the oocyte. PI3K phosphorylates PIP2 
into PIP3, promoting PDK1 recruitment to the membrane. In turn, PDK1 activates Akt, which moves 
to the nucleus and phosphorylates the FOXO3 transcription factor. On the contrary, PTEN 
dephosphorylates PIP3 to PIP2 while preventing the activation of the follicle. (B) Hippo pathway: 
Internal stresses or ovarian tissue fragmentations lead to the polymerization of globular actin (G-
actin) to filamentous actin (F-Actin), causing disruption to the Hippo signaling pathway, which re-
sults in the expression of MTS1/2 and SAV1 complex. The latter is able to phosphorylate LATS1/2 
(large tumor suppressor 1 and 2). LATS1/2 prevent the phosphorylation of YAP and TAZ, promot-
ing their translocation into the nucleus. YAP/TAZ stimulate the transcription of downstream growth 
factors stimulators such as 1 CYR61/CCN1, CTGF/CCN2, and BIRC genes, resulting in primordial 
follicle activation and development. 

2.1. The PI3K-PTEN-Akt Signaling Axis 

Figure 1. PI3K-PTEN-AKT-FOXO3-mTOR and the Hippo signaling pathways as primary regula-
tors of primordial follicle activation. At the top of the figure, the female reproductive system (ovary
and follicle enlarged) is shown, as well as a schematic representation of follicle activation steps.
In the PI3K/AKT pathway, PI3K is activated by the binding of the KIT ligand (KITL), released by
pre-granulosa cells (GCs) to the KIT/tyrosine kinase receptor on the oocyte. PI3K phosphorylates
PIP2 into PIP3, promoting PDK1 recruitment to the membrane. In turn, PDK1 activates Akt, which
moves to the nucleus and phosphorylates the FOXO3 transcription factor. On the contrary, PTEN
dephosphorylates PIP3 to PIP2 while preventing the activation of the follicle. (B) Hippo pathway:
Internal stresses or ovarian tissue fragmentations lead to the polymerization of globular actin (G-actin)
to filamentous actin (F-Actin), causing disruption to the Hippo signaling pathway, which results in
the expression of MTS1/2 and SAV1 complex. The latter is able to phosphorylate LATS1/2 (large
tumor suppressor 1 and 2). LATS1/2 prevent the phosphorylation of YAP and TAZ, promoting their
translocation into the nucleus. YAP/TAZ stimulate the transcription of downstream growth factors
stimulators such as 1 CYR61/CCN1, CTGF/CCN2, and BIRC genes, resulting in primordial follicle
activation and development.
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Akt is also able to phosphorylate the tuberous sclerosis 2 protein (TSC2), which forms
a heterodimer complex with tuberous sclerosis 1 protein (TSC1). In cells, the TSC1/TSC2
complex negatively regulates a target of rapamycin complex 1 (mTORC1) [25], the latter
is a serine/threonine kinase implicated in the regulation of cell growth and metabolism.
mTORC1 can activate p70 S6 kinase 1 (S6K1) and the ribosomal protein S6 (rpS6), while
inactivating the eukaryotic translation initiation factor 4E (4E-BPs). Adhikari and col-
leagues in their studies reported that in a conditional knockout mouse model for Tsc1
and Tsc2, all primordial follicles are overall activated at puberty, resulting in premature
ovarian insufficiency [26]. Furthermore, Tsc1 deletion in pre-granulosa cells can end in a
global primordial follicle activation [27]. This observation suggests that the TSC1/TSC2
complex is extremely important in the regulation of follicular activation for the ovarian
reserve. An increase in the number of antral/pre-ovulatory follicles was also found after
treatment of both mTOR and Akt signaling activators compared to the treatment with only
Akt activators [28]. Interestingly, Sun and colleagues proposed an approach using both
stimulators of mammalian target of rapamycin (mTOR) and PI3K. Through histological
analysis, they showed that both compounds are able to increase the growth of human
follicles in ovarian cortex [29].

2.2. Hippo Signaling

As mentioned before, the Hippo signaling pathway (also known as the Salvador (Sav)-
Warts (Wts)-Hippo (Hpo) (SWH) pathway) has a crucial role in controlling cell growth and
organ size [30]. The Hippo pathway consists of a serine/threonine protein kinase signal-
ing cascade, resulting in phosphorylation and inactivation of two major transcriptional
coactivators, Yes-associated protein (YAP) and transcriptional coactivators PDZ-binding
motif (TAZ) [31]. The Hippo signaling pathway can also suppresses follicular reserve
activation. Recent studies reported that an increased internal stress or an ovarian tissue
fragmentation can promote the polymerization of globular actin (G-Actin) into filamentous
actin (F-actin). This caused a perturbation of the Hippo signaling pathway and expres-
sion of mammalian sterile 20-like (MTS1/2) and Salvador family WW domain containing
protein 1 (SAV1) complex [32,33], which in turn phosphorylates large tumor-suppressor
1 and 2 (LATS1/2). LATS1/2 inhibited the phosphorylation of YAP and TAZ. When not
phosphorylated, YAP/TAZ moves into the nucleus and stimulates the transcription of
cysteine-rich protein 61/cellular communicator network factor 1 (CYR61/CCN1), connec-
tive tissue growth factors/cellular communicator network factor 2 (CTGF/CCN2), and
baculoviral inhibitors of apoptosis repeat containing (BIRC) genes. Such events trigger
primordial follicle activation and development [34]. Jaspakinolide (JASP) and sphingosine-
1-phosphate (S1P), two actin polymerization-enhancing drugs, cause the Hippo signaling
disorder, as indicated by a rise in both ovarian graft weights and the number of secondary
follicles [35]. Furthermore, during follicular development, an increased expression of YAP1
is concomitant with reduced MTS1 expression [36].

As mentioned above, the ovarian reserve is composed of a finite pool of primordial
follicles whose number is established before birth. This ovarian reserve represents the
capability to generate offspring [37]. In women, with increasing age, the quality and the
quantity of eggs begin to decline, accompanied by a gradual reduction of ovarian function.
Age-related decline of the ovarian reserve is dependent on the microenvironment and the
quality of stored oocytes [38]. In addition, the advanced age of women influences oocyte
maturation, meiotic division, and embryo development [39]. Data from the literature show
that metabolic disorders such as diabetes and acute inflammation, which include an increase
in reactive oxygen species (ROS) levels, may have repercussion on female fertility [40].
Concerning glucose metabolism, it seems that the right intake of glucose by granulosa cells
is decisive for primordial follicle activation. As shown by Xu and colleagues [41], in the
mouse, glucose level influences the trigger of primordial follicle activation in vitro and
in vivo through the AMPK/mTOR pathway. In fact, when the glucose concentration in
culture growth medium or blood is lower than threshold levels, AMP-activated protein
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kinase (AMPK) level increases while the mTOR pathway is inactivated. This in turn
preserves ovarian follicle quiescence. Likewise, in women, high levels of ROS in the
follicular microenvironment have a severe impact on primordial follicles and ovarian
function [42]. Besides, compelling evidence indicates that high ROS level may disrupt the
Hippo signaling pathway and thereby the maintenance of follicle dormancy [43].

3. DNA Damage Stress Response and Primordial Follicle Growth

Cancer treatments with higher genotoxic potential, such as alkylating drugs, cyclophos-
phamide (Cy), and platinum-based complexes create DNA adducts that interfere with cell
cycle progression and replication [44,45]. Chemotherapy drugs damage both healthy cells
and the quiescent reserve oocytes. Recent findings suggest that chemotherapeutic treat-
ments result in the activation of the PTEN-PI3K-Akt-mTOR signaling pathway, which
ends in an accelerated follicular growth [46] called “burn out” [46,47]. Thus, primordial
follicle depletion and the consequent loss of reproductive potential in the patients [48] can
be due either to an accelerated follicle activation or to a direct activation of DDR in the
nucleus of the reserve oocyte. In mice, we and other groups show that Cy administration
induces cell death in the granulosa cells surrounding the growing follicles, as measured by
TdT-mediated dUTP nick-end labeling (TUNEL) assay [49,50]. Follicular apoptosis, which
reduces anti-Mullerian hormone (AMH) secretion, may trigger an upregulation of the
PI3K-Akt-mTOR pathway in the pre-granulosa cells of primordial follicles. In line with this,
in mice, compelling evidence demonstrates that AMH administration mitigates ovarian
reserve loss induced by Cy [51,52]. The biochemical pathway that regulates primordial
follicle activation in rodents is centered on translocation of FOXO3 from the nucleus to
the cytoplasm [53]. Targeting the PI3K-PTEN-Akt-mTOR pathway to prevent FOXO3
nuclear shuttling has been considered as a means to protect ovaries following exposure
to chemotherapy, and promising results using pharmacological inhibitors of mTOR are
reported by several groups [27,54,55]. Chemotherapy may directly target resting primor-
dial follicles embedded in avascular regions of the ovarian cortex. Immunofluorescence
(IF) assays for cleaved poly ADP ribose polymerase (PARP) and for the histone variant
H2AX, phosphorylated at Ser139 (γH2AX), indicate that reserve oocytes are damaged by
chemotherapy. Within the reserve follicle, DDR is mediated by the activation of apical
DDR kinases (DNA-PK, ATM), Check-point kinase 2 (CHK2), and p53, as revealed by IF
assays using phosphor-specific antibodies. In addition, Cromatin Immunoprecipitation
assay (ChIp) performed on ovaries collected from cyclophosphamide-injected pups shows
that p53 drives the transcription of the pro-apoptotic gene PUMA ([50] see supplementary
information). In mice, following cyclophosphamide treatments in vivo, we also find that
reserve oocytes are positive for both p-Akt/p-FOXO3 and p-ATM/γH2AX expression
([50] see supplementary information). This indicates that DDR markers’ expression is
concomitant with the activation of the PTEN-PI3K-Akt-mTOR-FOXO3 pathway. These
findings suggest that follicle growth signals act in parallel with the activation of DDR (as it
is proposed in Figure 2). Thus, combinations of inhibitors (recently reviewed [10]) for both
pathways may protect more efficiently the ovarian reserve from genotoxic stressors.
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Figure 2. Concomitant firing of both the follicular activation pathway and DDR. Chemotherapy
triggers both the follicular activation pathway and DDR. A hallmark of the follicular activation
cascade is FOXO3 phosphorylation. Akt-mediated phosphorylation promotes the export of FOXO3 to
the cytoplasm. DDR is induced by DNAPK/ATR/ATM (c-Abl tyrosine kinase is also involved in their
activation), which in turn can activate the CHK2-p53 signaling cascade, promoting the transcription
of PUMA and NOXA genes.

4. Molecular Pathways Involved in Chemotherapy-Induced Ovarian Reserve Loss

Studies in mouse models indicate that TAp63alfa is expressed in primordial oocytes [56].
Excess reserve oocytes are detected in TAp63-null mice (within the first week after birth),
suggesting a role of TAp63alfa in controlling the natural removal of damaged primordial
follicles [57]. Following ionizing radiation (IR), ovaries from the same TAp63-null mice
(P5) still have some reserve oocytes compared to control mice, 48 h after IR [58]. However,
further studies in mice indicate that CHK2 and p53 both have crucial roles in the efficient
removal of oocytes with unrepaired meiotic DNA double-strand breaks (DBSs) [59]. In
addition, CHK2-mediated phosphorylation of p53 and of TAp63alfa (at S621 residue, S582
in human) are both induced in response to IR [59–61]. Recent reports suggest that following
CHK2-mediated phosphorylation, the TAp63-tetramer may become a substrate of casein
kinase (CK1), which in turn continues the TAp63 activation cascade [62]. This model for
TAp63alfa activation is also proposed following exposure to diverse chemotherapeutic
drugs [63] by using in vitro experiments. However, in these experiments, the authors did
not report the status of activation of either p53 or CHK2. In addition, studies ex vivo of
murine ovarian fragments and biochemical investigations performed in cell lines lacking
p53 can only partially recapitulate the signaling pathways occurring in vivo in the ovary
following chemotherapy. The use of gene deletion mouse models may be informative
to define the mechanisms underlying the chemotherapy-induced ovarian reserve loss.
However, such experimental evidence must be further confirmed either by using specific
pharmacological inhibitors or through a transgenic mouse model carrying a single-point
mutation with loss of function. In mice, loss of PUMA (in all cell types forming the ovary)
protects the ovarian reserve during chemotherapy and preserves fertility [64]. In the same
manuscript, the authors report that primordial follicles from TAp63-null mice are protected
following cisplatin but not cyclophosphamide, suggesting mechanistic differences in the
oocyte depletion in response to different chemotherapy drugs. However, cisplatin, like
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cyclophosphamide, induces follicular activation in mice [65–67]. Compelling evidence
from Bolcun-Filas and colleagues indicates that primordial oocytes expressing TAp63 with
a mutation at its CHK2 phosphorylation site (S621A) are not resistant to cisplatin and
mafosfamide (an analogue of cyclophosphamide). In addition, studies in transgenic mice
confirm that p53 contributes to primordial oocyte elimination induced by cisplatin and
mafosfamide. Deleting p53 in a TAp63S621A-mutant background results in ovarian re-
serve resistance to cisplatin treatment [68]. In line with this result, in mice we detected
CHK2-mediated phosphorylation of p53 into the nucleus of damaged oocytes following
cyclophosphamide ([50] supplementary information) or following treatment with other
chemotherapeutic compounds (manuscript in preparation). In addition, ChIP experiments
performed on ovaries collected from treated mice demonstrate that chemotherapy-induced
death of oocytes require p53 transcriptional activity ([50] supplementary information;
manuscript in preparation). Together, these data from different labs reveal a critical role
for p53 in oocyte response to different chemotherapeutic compounds, thus revising the
model based only on TAp63alfa as the key transcription factor for DNA damage-induced
ovarian reserve loss. Modifications of TAp63alfa, mediated by several kinases (like CHK2
and later by CK1), might be important for the DNA damage signaling path (possibly linked
to gamma H2AX phosphorylation level in the chromatin) but not directly necessary to
trigger its transcriptional activity on PUMA promoter.

5. Discussion

Ovarian follicle development and oocyte competence are coordinated by a very com-
plex interplay between signaling pathways of different types of cells (oocytes, stromal
cells, granulosa cells) forming the ovary. Granulosa cells play a crucial role in follicle
growth, they produce hormones, and, through points of contact between cell membranes,
they exchange signaling molecules and nutrition with the oocyte. Nutrition, oxygen, and
hormone supply are also ensured by the vascular system, which implies the involvement of
signaling pathways regulating the angiogenesis process in follicular activation. In mice, the
transcription factor FOXO3 is essential in follicular development, but other key signaling
molecules underlying follicle activation still remain elusive. Recent reports described
multiple signaling pathways underlying primordial follicle activation and maintenance of
follicle quiescence [69,70]. Chemotherapy drugs induce primordial follicle depletion [10],
but it is still debated whether this is due to accelerated follicle activation or to a direct
activation of DDR in the nucleus of reserve oocytes. In vivo, following cyclophosphamide
treatments of mice, we show that reserve oocytes are positive for both p-Akt/p-FOXO3
and p-ATM/γH2AX expression ([50] see supplementary information). This indicates that
an early DDR event is concomitant with the presence of an initial follicular activation
marker (i.e., p-FOXO3). This finding may suggest that oocytes have lost their follicular
quiescence to initiate the DDR. It is likely that the signaling pathways underlying ovarian
follicle activation act in parallel with the activation of DDR. Thus, the primordial follicle
(pre-granulosa cells plus the oocyte) may act as a single unique signaling component. A
better understanding of the crosstalk between follicle reserve activation pathways and
DDR will have an impact on the treatment of infertility, providing new molecular targets
for clinical intervention.
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