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Abstract: The modulation of protein–protein interactions (PPIs) by small chemical compounds is
challenging. PPIs play a critical role in most cellular processes and are involved in numerous disease
pathways. As such, novel strategies that assist the design of PPI inhibitors are of major importance.
We previously reported that the knowledge-based DLIGAND2 scoring tool was the best-rescoring
function for improving receptor-based virtual screening (VS) performed with the Surflex docking
engine applied to several PPI targets with experimentally known active and inactive compounds.
Here, we extend our investigation by assessing the vs. potential of other types of scoring functions
with an emphasis on docking-pose derived solvent accessible surface area (SASA) descriptors, with or
without the use of machine learning (ML) classifiers. First, we explored rescoring strategies of Surflex-
generated docking poses with five GOLD scoring functions (GoldScore, ChemScore, ASP, ChemPLP,
ChemScore with Receptor Depth Scaling) and with consensus scoring. The top-ranked poses were
post-processed to derive a set of protein and ligand SASA descriptors in the bound and unbound
states, which were combined to derive descriptors of the docked protein-ligand complexes. Further,
eight ML models (tree, bagged forest, random forest, Bayesian, support vector machine, logistic
regression, neural network, and neural network with bagging) were trained using the derivatized
SASA descriptors and validated on test sets. The results show that many SASA descriptors are better
than Surflex and GOLD scoring functions in terms of overall performance and early recovery success
on the used dataset. The ML models were superior to all scoring functions and rescoring approaches
for most targets yielding up to a seven-fold increase in enrichment factors at 1% of the screened
collections. In particular, the neural networks and random forest-based ML emerged as the best
techniques for this PPI dataset, making them robust and attractive vs. tools for hit-finding efforts.
The presented results suggest that exploring further docking-pose derived SASA descriptors could be
valuable for structure-based virtual screening projects, and in the present case, to assist the rational
design of small-molecule PPI inhibitors.

Keywords: virtual screening; docking; scoring; protein-protein interaction inhibitors; machine learning

1. Introduction

Virtual screening (VS) is one popular set of techniques to extract a list of potentially
bioactive molecules from input chemical libraries [1–7]. Structure-based methods are of
high interest to investigate novel mechanisms, such as protein–protein interactions, even
more so in the era of AI-powered protein structures predictions [8–11] and major advances
in the field of structural biology, such as Cryo-EM [12–14]. Structure-based virtual screening
(SBVS) has been shown efficient in suggesting hit compounds on numerous targets, but the
approach is not without pitfalls [15–19]. An important problem in virtual screening is that
the methods are usually target-dependent, and as such, one method cannot fit all [15,17–21].
In SBVS studies, the compounds are first positioned in a binding pocket and then scored.
Several docking programs have been shown proficient in reasonably sampling the binding
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site space and in generating reliable poses [20], but a key problem is scoring, resulting in a
high number of inactive compounds ranked high in the scoring list or of active molecules
lost. There are many sources of errors in scoring [15–19], including the difficulties of
implementing complex energy terms in fast scoring functions and the obviously related
challenges of taking into consideration water molecules and protein flexibility, among
others. Several strategies have been proposed to try to improve the process, such as the use
of more sophisticated CPU/GPU intensive energy computations, but the advantages are
not obvious and are also target-dependent [15]. Molecular interaction fingerprints, machine
learning (ML) scoring functions, target-specific scoring functions, and consensus scoring
represent other approaches that have been shown valuable in some circumstances [22–34].

Protein–protein interactions (PPIs) regulate diverse types of biological activities both in
healthy and disease states [35]. It is estimated that the human interactome comprises about
130,000–650,000 types of PPI [36,37]. The crucial importance of PPIs makes them a rich
source of putative targets for the development of a new generation of therapeutics or for
the design of chemical probes that could be used to validate further the importance of some
specific PPIs. However, the nature of the PPI interfaces is in general significantly different
from that of classical drug targets, which have well-defined pockets allowing the tight
binding of small molecules [38]. The PPI binding interface is usually large (~1500–3000 Å2)
and flat (often exposed to solvent) [39], posing substantial problems in ligand discovery
using structure-based approaches. Our last study revealed DLIGAND2 as a best-rescoring
function that significantly improved the vs. performance of Surflex docking for various PPI
targets. DLIGAND2 is a knowledge-based scoring function that predicts protein–ligand
binding affinity based on a distance-scaled, finite, ideal-gas reference (DFIRE) state [40].
Here, we extend our previous research by assessing the vs. potential of rescoring us-
ing GOLD scoring functions (GoldScore, ChemScore, Astex Statistical Potential (ASP),
ChemPLP, ChemScore with Receptor Depth Scaling (RDS)). In addition, the poses were
also scored using a consensus method involving all scoring functions. The best-predicted
poses sorted on the Surflex docking score were further post-processed to derive 3D SASA
descriptors of both the targets and the ligands in their bound and unbound states. The
protein and ligand SASA descriptors were combined to derive a set of protein–ligand
SASA descriptors. These descriptors were independently assessed to measure any possible
impact on vs. metrics. Finally, these descriptors were employed for building eight diverse
ML models: tree, bagged forest, random forest, Bayesian, support vector machine (SVM),
logistic regression, neural network, and neural network with bagging. Several studies
have been performed by exploiting chemical fingerprints to build ML-based quantitative
structure–activity relationship (QSAR) models to separate true inhibitors of PPIs from
inactive molecules [41–44]. These studies essentially aimed at the investigation of the
physicochemical property ranges of compounds acting as inhibitors of PPIs. The identified
properties were then used to build statistical models enabling the generation of compound
collections likely enriched in inhibitors of PPIs [45–47]. However, the potential and effec-
tiveness of descriptors calculated from the experimental 3D structure of a protein–ligand
complex or of docking pose-generated 3D descriptors have not been fully investigated so
far either for rescoring and ranking PPI compounds or for building classification models.
The primary assumption in using these topological 3D descriptors to rank the poses is
that the docking programs are capable of correctly sampling the binding site pockets and
generating reliable poses, but they are not always accurate at scoring them for a wide range
of protein targets. Here, we are interested in the evaluation of several post-processing
strategies. First, we investigated the impact of using different types of scoring functions
and a consensus scoring method on several PPI targets. Then, we investigated the poten-
tial benefit of using SASA data to rescore the molecules. In this case, we used the best
docking poses generated by a fast method available in Surflex (assumed to be reasonable)
and grades them using the derivatized SASA score. Then, we explored further the SASA
descriptors, through various ML approaches, with the aims of generating some predictive
classification models and identifying key SASA descriptors capable of discriminating be-
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tween true active and true inactive ligands. The vs. performance on different targets was
assessed by computing receiver operating characteristics (ROC) graphs and calculating
the area under the curve (AUC) and the early recognition metrics (BEDROC, enrichment
factors at 1% and 5%) to determine the ability of different rescoring methods to rank the
active compounds in the top positions. The performance of ML models was estimated by
calculating AUC, sensitivity, specificity, precision, and concordance. The results indicate
that among the different GOLD scoring functions, GoldScore and ASP were found valuable
for several targets while many SASA descriptors performed equivalently to or better than
the default Surflex and GOLD scoring functions for most targets. Among the ML models,
neural network and random forest classification models yielded superior vs. results for
most targets. The present study provides valuable insights regarding rescoring strategies,
and ML methods on PPIs. The presented protocols could assist the identification of novel
drug-like orthosteric PPI inhibitors. This can be of significant interest with applications
on novel targets acting in different diseases or to replace some monoclonal antibodies or
peptides inhibiting already known targets.

2. Results

The workflow describing the hybrid computational approach developed in this study
by employing docking-based VS, rescoring, and ML is shown in Figure S1. The ten PPI
targets used here include the Bromodomain Adjacent to Zinc Finger Domain 2B (BAZ2B),
Apoptosis regulator Bcl-2; Apoptosis regulator Bcl-xL, BRD4 bromodomain 1 BRD4-1,
CREB-binding protein (CREBBP), HIV Integrase (HIV IN), Inhibitor of apoptosis protein
3 (XIAP), Induced myeloid leukemia cell differentiation protein Mcl-1, and E3 ubiquitin-
protein ligase Mdm2, and Menin (Table 1, Figure S2). The Ephrin type-A receptor 4 (EphA4)
was excluded from this work as there were not sufficient compounds to build ML models.
The vs. performance of rescoring and ML models was assessed on two protein structures
per target, which were selected based on the diversity of the binding sites (Figure S2). The
target compounds were collected from the ChEMBL [48] and PubChem [49] databases.
The chemical space of the PPI datasets was analyzed by performing Principal Component
Analysis (PCA) using simple physicochemical properties of the compounds (Figure S3).
For more details on the methodology used for selecting the protein structures, curation of
target datasets, and PCA analysis, see ref. [50].

Table 1. Overview of the ten PPI datasets used in this study. The target names, PDB codes of target
protein structures, ChEMBL ID of the targets, the number of compounds categorized as “active”
(activity class: 1) and “inactive” (activity class: 0) in the curated datasets, and the number of active
and inactive compounds in the training and the test set for each target (after docking of the curated
datasets) used in the construction and validation of the classification ML models, are indicated.

Target Name PDB ID Target ChEMBL ID Nactives Ninactives

Training
Set

(Nactives)

Training Set
(Ninactives)

Test Set
(Nactives)

Test Set
(Ninactives)

Bromodomain Adjacent to Zinc
Finger Domain 2B (BAZ2B)

4XUA
CHEMBL1741220 6852 49,457 4794 34,598 2055 14,827

5E73

Apoptosis regulator Bcl-2
2O21

CHEMBL4860 1788 49,082 1240 34,343 531 14,718
4LVT

Apoptosis regulator Bcl-xL
3INQ

CHEMBL4625 971 49,190 674 34,420 289 14,751
3WIZ

BRD4 bromodomain 1 (BRD4-1)
5D3L

CHEMBL1163125 847 981 592 687 253 294
5KU3

CREB-binding protein (CREBBP)
5EIC

CHEMBL5747 1360 48,781 910 34,425 390 13,896
5MMG
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Table 1. Cont.

Target Name PDB ID Target ChEMBL ID Nactives Ninactives

Training
Set

(Nactives)

Training Set
(Ninactives)

Test Set
(Nactives)

Test Set
(Ninactives)

HIV Integrase (HIV IN)
4CFD

CHEMBL2366505 905 1232 610 855 261 366
4CHO

Inhibitor of apoptosis protein 3
(XIAP)

1TFT
CHEMBL4198 1145 49,351 793 34,528 340 14,798

5C3H

Induced myeloid leukemia cell
differentiation protein Mcl-1

5FC4
CHEMBL4361 1455 49,112 995 34,147 426 14,635

5MES

E3 ubiquitin-protein
ligase Mdm2

4ODF
CHEMBL5023 2227 4351 1559 3040 668 1303

4ZFI

Menin
5DB2

CHEMBL2093861 705 31,510 491 22,020 211 9437
6B41

2.1. Virtual Screening Performance of GOLD Scoring Functions

We observed in our previous study that the fast “pscreen” Surflex docking approach,
on PPI targets, displayed variable screening performances with excellent AUC values
(>0.8) for 3 targets (Bcl-2, Bcl-xl, XIAP); moderate AUCs (0.6–0.7) for four targets (BRD4-1,
CREBBP, HIV IN, Mdm2); and poor AUC values (0.4–0.6) for four targets (BAZ2B, Mcl-1,
Menin and EphA4) [50]. We now wanted to investigate the performance of other types of
re-scoring functions on this dataset. We decided to use the GOLD package for rescoring
purposes as it offers different types of scoring functions. For example, the GoldScore func-
tion combines force-field terms with empirical terms to account for some of the deficiencies
in pure force-field-based scoring functions [51]. ASP is a knowledge-based scoring function
that uses information about the frequency of interaction between ligand and protein atoms.
It is gathered by analyzing existing ligand-protein structures in the PDB and this informa-
tion is then used to generate the statistical potentials. ChemPLP and ChemScore are pure
empirical scoring functions that estimate the binding affinity of a complex based on a set of
weighted energy terms whose coefficients are determined by fitting the binding affinity
data of a training set of protein–ligand complexes with known 3D structures, using least
squares fitting (see Methods for more detail on GOLD scoring functions). Table 2 shows
the comparison of vs. performance between Surflex and different GOLD scoring functions
(GoldScore, ChemScore, ASP, ChemPLP, ChemScore RDS) in terms of AUC and BEDROC
for the different PPI targets. The AUC calculations were performed after sorting the global
pose space and retaining the best pose for each compound after rescoring with GOLD
scoring functions and via a consensus approach. Table S1 shows the corresponding early
enrichment values for the targets at 1% and 5% levels for the best-predicted poses obtained
from rescoring the global pose space. The rescoring of the different data sets revealed
that among all the GOLD scoring functions, ASP and GoldScore displayed the best results
by yielding higher AUC values for six targets (with a total of 11 protein structures) and
seven targets (10 protein structures), respectively, as compared to Surflex. Importantly, ASP
generated significantly improved and highest AUC values for four protein structures (Bcl-2:
2O21; BRD4-1: 5D3L, 5KU3; CREBBP: 5EIC), while GoldScore produced the best AUC
values for three structures (Mcl-1: 5MES, Mdm2: 4ODF, 4ZFI). ChemPLP and consensus
were the next good performing scoring functions generating higher AUC values than
Surflex for eight and nine protein structures respectively. The consensus approach gener-
ated an AUC of 0.66 in 5FC4 (Mcl-1), which was the highest among all scoring functions.
The BEDROC calculations showed that ChemPLP was the best scoring function produc-
ing higher values for 12 target protein structures, followed by GoldScore and consensus
scoring for 11 structures as compared to Surflex. ASP and ChemScore generated higher
BEDROC values for nine protein structures. GoldScore produced the BEDROC values with
a difference greater than 0.05 (∆BEDROC) for two structures (Mcl-1: 5FC4, 5MES) as com-
pared to Surflex and with a ∆BEDROC of >0.1 for three structures (BRD4-1: 5D3L, 5KU3,
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Mdm2: 4ZFI), indicating good early recovery of the actives. Similarly, ChemPLP produced
∆BEDROC > 0.05 for two target structures (Bcl-2: 2O21, Mcl-1: 5FC4) and ∆BEDROC > 0.1
for three structures (Bcl-xL: 3WIZ, BRD4-1). Consensus scoring produced a ∆BEDROC of
>0.05 for three structures (Bcl-xL: 3WIZ, Mcl-1: 5FC4, CREBBP: 5EIC) and ∆BEDROC > 0.1
for two structures (BRD4-1). Overall, all rescoring functions produced a ∆BEDROC > 0.1
in BRD4-1 indicating a significantly improved performance compared to Surflex on this
PPI dataset. In the case of 5KU3, the rescoring functions produced more than a two-fold
improvement in the BEDROC score.

Consistent with the preceding observations, ChemPLP and consensus scoring pro-
duced high enrichment values in six targets with a total of 12 and 10 protein structures at
a 1% level, respectively, as compared to Surflex. Whereas, GoldScore and ASP produced
a high EF1% for 6 targets (nine protein structures) and five targets (nine structures), re-
spectively. The results at the 5% level were much better with GoldScore, ChemPLP, and
consensus scoring. They all produced EF values better than Surflex in seven targets (ten
protein structures for GoldScore, twelve for ChemPLP, and eleven for consensus). Whereas
ASP and ChemScore generated high enrichment values for four targets (eight protein
structures) and five targets (eight structures), respectively. There were some target proteins
for which the enrichment factors were more than three times higher as compared with
those obtained with Surflex. For example, Menin (6B41) has a ≥3-fold increase in its EF1 %
when rescored with GoldScore, ASP, and ChemPLP. In Mcl-1 (5MES), EF 1% is more than
two times using GoldScore. Similarly, in the case of 5KU3 (BRD4-1), GoldScore, ASP, and
consensus scoring produced EF 5% > 3-fold, while in the structure 5D3L, EF1% was >2-fold
using ChemScore RDS. Overall, it can be summarized that rescoring the Surflex-generated
poses with GOLD scoring functions can be advantageous for some targets. In particular,
GoldScore and ASP generated highly improved performances in targets, such as Mcl-1,
Mdm2, BRD4-1, and Bcl-2, while for other targets, the AUCs were comparable to or slightly
better than Surflex. Nevertheless, like Surflex, these scoring functions tend to also be
target-dependent.
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Table 2. The AUC and BEDROC scores (α = 20) for the ten PPI targets (BAZ2B: 4XUA, 5E73; Bcl-2: 2O21, 4LVT; Bcl-xL: 3INQ, 3WIZ; BRD4-1: 5D3L, 5KU3;
CREBBP: 5EIC, 5MMG; HIV IN: 4CFD, 4CHO; XIAP: 1TFT, 5C3H; Mcl-1: 5FC4, 5MES; Mdm2: 4ODF, 4ZFI; and Menin: 5DB2, 6B41) and their corresponding protein
structures obtained after rescoring of Surflex generated poses using five GOLD scoring functions (GoldScore, ChemScore, ASP, ChemPLP, and ChemScore RDS) and
via consensus scheme involving all scoring functions. The best AUC and BEDROC values corresponding to each target protein (across rows) are shown in bold.

Target PDB ID
Surflex GoldScore ChemScore ASP ChemPLP ChemScore RDS Consensus Scoring

AUC BEDROC AUC BEDROC AUC BEDROC AUC BEDROC AUC BEDROC AUC BEDROC AUC BEDROC

BAZ2B
4XUA 0.491 0.120 0.489 0.127 0.505 0.144 0.496 0.139 0.489 0.127 0.503 0.132 0.495 0.133

5E73 0.482 0.120 0.482 0.118 0.507 0.140 0.493 0.132 0.487 0.123 0.506 0.139 0.493 0.127

Bcl-2
2O21 0.857 0.641 0.860 0.640 0.839 0.588 0.883 0.595 0.853 0.711 0.590 0.209 0.798 0.548

4LVT 0.886 0.701 0.877 0.700 0.864 0.690 0.887 0.694 0.869 0.739 0.665 0.368 0.886 0.722

Bcl-xL
3INQ 0.844 0.523 0.799 0.463 0.753 0.408 0.786 0.411 0.776 0.513 0.555 0.188 0.770 0.435

3WIZ 0.823 0.500 0.821 0.521 0.792 0.510 0.816 0.461 0.823 0.614 0.541 0.174 0.805 0.573

BRD4-1
5D3L 0.696 0.672 0.778 0.777 0.725 0.808 0.801 0.818 0.793 0.858 0.671 0.852 0.799 0.849

5KU3 0.426 0.254 0.652 0.600 0.531 0.516 0.678 0.674 0.632 0.572 0.503 0.530 0.625 0.643

CREBBP
5EIC 0.604 0.100 0.627 0.114 0.598 0.123 0.675 0.159 0.643 0.134 0.546 0.082 0.664 0.155

5MMG 0.662 0.160 0.654 0.134 0.579 0.113 0.631 0.138 0.613 0.119 0.540 0.084 0.620 0.135

HIV IN
4CFD 0.627 0.604 0.590 0.356 0.462 0.401 0.614 0.565 0.595 0.476 0.451 0.335 0.567 0.533

4CHO 0.631 0.639 0.617 0.425 0.473 0.371 0.620 0.589 0.614 0.537 0.455 0.335 0.571 0.521

XIAP
1TFT 0.888 0.767 0.851 0.636 0.823 0.582 0.811 0.493 0.845 0.572 0.752 0.535 0.806 0.563

5C3H 0.892 0.704 0.676 0.341 0.726 0.492 0.765 0.502 0.778 0.632 0.739 0.551 0.735 0.626

Mcl-1
5FC4 0.585 0.170 0.636 0.228 0.657 0.257 0.658 0.212 0.642 0.243 0.595 0.223 0.659 0.241

5MES 0.59 0.150 0.630 0.205 0.602 0.167 0.596 0.152 0.605 0.166 0.524 0.130 0.605 0.168

Mdm2
4ODF 0.64 0.842 0.712 0.869 0.633 0.791 0.706 0.832 0.681 0.822 0.531 0.649 0.661 0.833

4ZFI 0.57 0.600 0.657 0.744 0.535 0.442 0.594 0.539 0.554 0.400 0.435 0.242 0.566 0.492

Menin
5DB2 0.548 0.104 0.534 0.136 0.525 0.099 0.533 0.124 0.536 0.122 0.527 0.087 0.532 0.129

6B41 0.517 0.065 0.521 0.104 0.478 0.066 0.509 0.092 0.527 0.093 0.469 0.059 0.489 0.076
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2.2. Post-Docking Derivatization of SASA Descriptors

We showed previously that the relative SASA (rSASA) (see Section 4.2) of the ligand
could serve as a robust descriptor for identifying true PPI ligands, which are largely solvent-
exposed at the binding interface. The rSASA showed good vs. performance when used
independently or in combination with the Surflex scoring function [50]. Encouraged by
these results, we set out to explore the capability of several diverse protein, ligand, and
protein–ligand SASA descriptors in modulating vs. performance. These descriptors were
calculated by measuring the SASA of the receptor–ligand complex (the “bound” surface
area), the receptor on its own, and the ligand on its own (the “unbound” surface areas”),
and then calculating the difference in surface area between the bound complex and the
unbound receptor and ligand (the “delta” surface area). No changes are made to the
structures, so relaxation on binding is not included in the calculations. The SASA of the
ligand and receptor before and after the receptor–ligand binding can be broken down
into different categories based on either pharmacophore types, residue types, or structural
features. Following the pharmacophoric approach, the SASA in the specified state of all
receptor or ligand atoms within the system is divided individually into six basic types:
Hydrophobic (H), Aromatic (Ar), donor (D), Acceptor (Ac), Positive (P), Negative (N).
Those atoms not matching any of the types were classified as the type “other” (O). By using
this approach, we extracted the seven SASA descriptor subtypes for the ligand and the
receptor in the bound and unbound state. We next calculated the delta and relative SASA
for each SASA category for the receptor and the ligand. In the end, four global ligand
and receptor SASA descriptors were derived: total (bound and unbound), total delta, and
relative total (see Methods). In this way, we derived

32 receptor SASA descriptors: total unbound (TRU), total bound (TRB), total delta
(∆TR), relative total (rel. TR), hydrophobic unbound (HRU), hydrophobic bound (HRB), hy-
drophobic delta (∆HR), relative hydrophobic (rel. HR), aromatic unbound (ArRU), aromatic
bound (ArRB), aromatic delta (∆ArR), relative aromatic (rel. ArR), donor unbound (DRU),
donor bound (DRB), donor delta (∆DR), relative donor (rel. DR), acceptor unbound (AcRU),
acceptor bound (AcRB), acceptor delta (∆AcR), relative acceptor (rel. AcR), positive un-
bound (PRU), positive bound (PRB), positive delta (∆PR), relative positive (rel. PR), negative
unbound (NRU), negative bound (NRB), negative delta (∆NR), relative negative (rel. NR),
other unbound (ORU), other bound (ORB), other delta (∆OR), relative other (rel. OR);

32 ligand SASA descriptors: total unbound (TLU), total bound (TLB), total delta (∆TL),
relative total (rel. TL), hydrophobic unbound (HLU), hydrophobic bound (HLB), hydropho-
bic delta (∆HL), relative hydrophobic (rel. HL), aromatic unbound (ArLU), aromatic bound
(ArLB), aromatic delta (∆ArL), relative aromatic (rel. ArL), donor unbound (DLU), donor
bound (DLB), donor delta (∆DL), relative donor (rel. DL), acceptor unbound (AcLU), ac-
ceptor bound (AcLB), acceptor delta (∆AcL), relative acceptor (rel. AcL), positive unbound
(PLU), positive bound (PLB), positive delta (∆PL), relative positive (rel. PL), negative un-
bound (NLU), negative bound (NLB), negative delta (∆NL), relative negative (rel. NL), other
unbound (OLU), other bound (OLB), other delta (∆OL), relative other (rel. OL).

With the protein and ligand SASA descriptors in hand, we derived 16 protein–ligand
SASA descriptors for each SASA category: total delta (∆TRL), relative total (rel. TRL),
hydrophobic delta (∆HRL), relative hydrophobic (rel. HRL), aromatic delta (∆ArRL), relative
aromatic (rel. ArRL), donor delta (∆DRL), relative donor (rel. DRL), acceptor delta (∆AcRL),
relative acceptor (rel. AcRL), positive delta (∆PRL), positive (rel. PRL), negative delta (∆NRL),
relative negative (rel. NRL), other delta (∆ORL), relative other (rel. ORL) (see methods).

2.3. Virtual Screening Performance of SASA Descriptors

The AUC values calculated for the PPI datasets screened using SASA descriptors are
shown as a heat map in Figure 1 and Table S2 in the supporting information. The combined
analysis of AUCs for the different descriptors is shown in Figure S4. The percent change in
the AUC values, BEDROC scores, and database enrichments EF1%/EF5% are shown in
Tables S3–S6, respectively. The results indicate that many post-docking calculated SASA
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descriptors of proteins, ligands, and protein–ligand complexes generated AUCs that were
comparable to or better than the default Surflex scores in many targets. For instance, among
the receptor SASA descriptors, TRU, ∆TR, ∆HRU, ∆HR, and ∆ArR were the best descriptors
that achieved excellent performance (AUC > 0.8) in seven, nine, six, eight, and five protein
structures, respectively, and reasonably good performance (AUC: 0.7–0.8) in another three,
one, four, two and three target structures, respectively. Bcl-2, Bcl-xL, BRD4-1, XIAP, and
Mdm2 were the common test systems in which TRU, ∆TR, ∆HRU, and ∆HR descriptors
showed good performance. Whereas, ∆ArR showed excellent performance in the aforemen-
tioned targets except for XIAP. When compared to the performance of Surflex, TRU, ∆TR,
HRU, ∆HR, ∆ArR, DRU, ∆DR, AcRU, and ∆AcR generated improved AUC values in 12, 13,
14, 15, 11, 10, 10, 10, and nine protein structures respectively (Table S3). Among the ligand
SASA descriptors, TLU, TLB, ∆TL, OLU, OLB, and ∆OL achieved excellent performance
(AUC > 0.8) in 8, 6, 8, 6, 6, and 6 protein structures, respectively. Bcl-2, Bcl-xL, BRD4-1,
XIAP, and Mdm2 were the common targets in which these ligand descriptors performed
very well. However, the performance of OLU, OLB, and ∆OL was moderate in the targets
BRD4-1 and XIAP. When considering overall performance, TLU, TLB, ∆TL, HLU, OLU, OLB,
and ∆OL were the best descriptors that generated higher AUC values as compared to
Surflex in 15, 15, 16, 11, 11, 12, and nine protein target structures, respectively (Table S3).
Among the receptor—ligand SASA descriptors, ∆TRL, ∆HRL, ∆DRL, and ∆ORL produced
excellent results (AUC > 0.8) in eight, five, six, and six protein structures, respectively.
Whereas ∆TRL and ∆HRL showed good performance in another target structure. Bcl-2,
Bcl-xL, and XIAP were again the common targets in which ∆TRL, ∆DRL, and ∆ORL showed
improved performance. ∆TRL also showed high performance in BRD4-1, while ∆HRL
showed excellent results in Bcl-2, Bcl-xL, and BRD4-1. Based on the results obtained against
all targets, it can be inferred that ∆TRL, ∆HRL, ∆ARL, ∆DRL, ∆NRL, and ∆ORL were the best
descriptors generating higher AUC values as compared to Surflex in 16, 12, 10, 10, nine, and
nine protein structures respectively. Based on the average AUCs over the entire dataset, the
following trend was observed: TLU > ∆TR > ∆TRL > ∆HR > ∆TL > TRU > TLB > HRU > OLU
> ∆HRL > OLB > ∆ArR > Surflex > others (Figure S4). Besides the good vs. performance, as
evident by the enhanced AUC values (Figure 1 and Table S2), the SASA descriptors-based
scoring metrics also exhibited high early enrichments and BEDROC scores in comparison
to Surflex. The SASA descriptors TRU, ∆TR, HRU, ∆HR, TLU, TLB, ∆TL, OLU, OLB, ∆TRL,
∆HRL, and ∆ArRL generated higher EF 1% values in eight targets (with a total of 12 pro-
tein structures), eight targets (11 structures), six (nine structures), eight targets (11 struc-
tures), nine targets (14 structures), eight targets (11 structures), eight targets (12 structures),
six targets (nine structures), seven targets (10 structures), eight targets (12 structures), seven
targets (10 structures), and five targets (nine structures), respectively. There were some
target proteins for which the EF1% is 2–6 times higher than those obtained with Surflex.
For example, Mcl-1 (5MES) has a ~4-fold increase in its EF1% for TLB, ∆TRL; and >4-fold
and >5-fold when scored using TR, and TLU, respectively. Similarly, Menin (6B41) has a
>4-fold increase in its EF1% for TR and DR. Whereas, TRU, HR, AcRU, AcR, NR, TLU, TL,
OLU, ∆OL, and ∆ORL produced increased enrichment (between 3–4%) for the same protein.
In the case of BRD4-1 (5KU3), rel. HL showed a ~3-fold increase in EF1% value. TR and
∆TRL produced ~2 times higher EF1% value for Bcl-xL (3INQ). When considering EF5%,
TRU showed higher enrichment values in six targets (with a total of 11 protein structures);
∆TR in eight targets (14 protein structures); HRU in six targets (11 structures); ∆HR in eight
targets (14 structures); ∆ArR in six targets (10 structures); TLU in eight targets (13 structures);
TLB in eight targets (12 structures); TL in seven targets (11 structures); OLB in six targets
(11 structures); TRL in eight targets (13 structures); and ∆HRL in eight targets (12 struc-
tures). There were some target proteins for which the EF5% is up to four times higher than
those obtained from Surflex docking. For example, rel. HL showed a four-fold increase
of EF5% in BRD4-1 (5KU3). In the case of Bcl-xL (3WIZ), TLU generated EF5% ~2-fold
higher as compared to Surflex. TLU and TLB generated more than two-fold higher EF5% in
5MES (Mcl-1). Whereas ∆TR, ∆TR, and ∆TRL produced EF5% > two-times in Menin (6B41).
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Collectively, among all descriptors, TRU, ∆TR, ∆HR, TLU, TLB, ∆TL, OLU, and ∆TRL were
the major SASA scoring metrics that produced higher average EF1% and EF5% values as
compared to Surflex (Figure S5). The vs. performance in terms of BEDROC score (α = 20)
for the SASA descriptors showed a similar trend as that observed for the early enrichment
factors (Figure S6). There were some target proteins for which the BEDROC scores were
2–3 times higher than those obtained from the default Surflex-dock scores. For instance,
HLB and rel. HL generated BEDROC score ~3 times higher for BRD4-1 (5KU3) as compared
to Surflex. TR, TLU, TLB, and TRL increased the BEDROC value by ~2-fold in Mcl-1 (5MES).
While TLU produced ~2 times higher BEDROC score in the case of 5FC4 (Mcl-1). Thus, it
can be deduced that the performance of some topological descriptors is superior to Surflex
as well as GOLD rescoring functions. This suggests that these 3D descriptors could be used
as scoring metrics for screening compound collections after performing docking and for
instance a first rescoring post-processing step.
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Figure 1. Heat map plot showing the AUC values for the ten PPI targets and their protein structures
(y-axis) obtained using 32 protein SASA descriptors, 32 ligand SASA descriptors, and 16 protein-
ligand SASA descriptors. The calculations were performed for each target-specific set of active and
inactive binders.

2.4. Building and Validating Machine Learning Models Using SASA Descriptors

To investigate whether it is possible to discriminate the two classes of PPI inhibitors
(active: 1 and inactive: 0) using the ML approaches, we built several classification ML
models relying on the derivatized SASA descriptors from the docking poses for each PPI
target and the corresponding protein structures. The dataset (poses) of each target was
split into a training set (70%) and a test set (30%) in a stratified fashion to have the same
proportion of class labels in the training and test subsets as the input data set (Table 1). We
selected eight binary classifiers, tree, bagged forest, random forest, Bayesian, SVM, logistic
regression, neural net, and neural net (with bagging) implemented in BIOVIA pipeline
pilot v18.1 software. The models were constructed with default hyperparameters. The
model performance was assessed by computing ROC AUC, sensitivity, specificity, precision,
and concordance (accuracy) for the training and test sets. Table 3 shows the 10-fold cross-
validation ROC AUC values attained for ten PPI targets using eight ML methods. Other
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model statistics obtained from the cross-validation are provided in Table S7. Based on the
results, the neural network (bagging) outperformed all ML techniques by producing the
highest cross-validated AUC values in nine out of 10 targets (with a total of 17 protein
structures). SVM produced the best AUC values in both structures of BAZ2B and in one
structure of CREBBP (5MMG). Both neural network (bagging) and SVM were equally
effective in the case of 3WIZ (Bcl-xL) and 5EIC (CREBBP). Similarly, random forest and
neural network (bagging) showed the best performance in the case of Bcl-2 (2O21). Taken
together, neural net (bagging), random forest, and SVM emerged as the best classifiers
by producing AUC > 0.8 in 18 structures; Bayesian and neural network in 14 structures;
and tree, bagged forest, logistic regression in 12 structures. Table 4 shows the AUC values
obtained by the different models on the test sets. Whereas other statistics obtained on
test sets are provided in Tables S8 and S9. Neural network with bagging produced the
best AUC values in eight out of 10 targets with a total of 14 structures. The random
forest algorithm produced the best AUC values in two targets (Bcl-2 and Menin; four
structures). Tree with or without bagging generated the highest AUC value in BRD4-1
(5D3L). The neural network without bagging showed the highest AUC values in Bcl-xL
(3INQ) and XIAP (5C3H). With respect to overall performance, neural networks with
bagging achieved excellent performance (AUC > 0.8) in 14 structures; random forest in
13 structures; trees with bagging, SVM, and logistic regression, and neural network without
bagging in 12 structures each, tree without bagging in 11 structures; and Bayesian in
10 structures. Considering the performances of ML classifiers on the test sets, the different
algorithms can be graded in the following order: neural network (bagging) > random
forest > bagged forest ~ SVM ~ logistic regression ~ neural network > tree > Bayesian.
A similar trend can be deduced when the sensitivity, specificity, precision, and concordance
data are compared across the different ML models. For instance, the neural net (bagging)
model produced sensitivity > 80% in six targets (with a total of 12 protein structures).
SVM, Bayesian, random forest, and neural network produced sensitivity > 0.8 in six targets
(11 structures), five targets (10 structures), five targets (nine protein structures), and five
targets (nine structures), respectively (Table S8). However, most of the ML models failed in
terms of sensitivity in the targets BAZ2B and Menin.

Table 3. 10-fold cross-validation ROC AUC values with their standard deviations (SD) attained for
ten PPI targets obtained using different ML learning approaches. The best AUC values corresponding
to each target protein (across rows) are shown in bold.

Target PDB ID Tree Bagged
Forest

Random
Forest Bayesian SVM Logistic

Regression Neural Net Neural Net
(Bagging)

BAZ2B
4XUA 0.543 ±

0.013
0.500 ±

0.000
0.601 ±

0.145
0.602 ±

0.001
0.758 ±

0.005
0.550 ±

0.018
0.543 ±

0.009
0.651 ±

0.024

5E73 0.534 ±
0.010

0.500 ±
0.000

0.631 ±
0.132

0.602 ±
0.001

0.772 ±
0.002

0.535 ±
0.016

0.542 ±
0.004

0.671 ±
0.021

Bcl-2
2O21 0.965 ±

0.011
0.943 ±

0.001
0.999 ±

0.117
0.984 ±

0.000
0.990 ±

0.000
0.973 ±

0.000
0.992 ±

0.001
0.999 ±

0.000

4LVT 0.948 ±
0.004

0.940 ±
0.001

0.998 ±
0.038

0.984 ±
0.000

0.988 ±
0.000

0.979 ±
0.000

0.989 ±
0.001

0.999 ±
0.000

Bcl-xL
3INQ 0.971 ±

0.032
0.907 ±

0.004
0.997 ±

0.129
0.983 ±

0.001
0.991 ±

0.001
0.980 ±

0.000
0.987 ±

0.001
0.999 ±

0.001

3WIZ 0.973 ±
0.019

0.906 ±
0.007

0.998 ±
0.011

0.977 ±
0.000

0.999 ±
0.001

0.975 ±
0.000

0.988 ±
0.005

0.999 ±
0.000

BRD4-1
5D3L 0.962 ±

0.028
0.972 ±

0.007
0.968 ±

0.013
0.936 ±

0.001
0.952 ±

0.001
0.917 ±

0.001
0.947 ±

0.013
0.999 ±

0.003

5KU3 0.972 ±
0.049

0.966 ±
0.005

0.957 ±
0.008

0.924 ±
0.001

0.927 ±
0.001

0.900 ±
0.001

0.928 ±
0.010

0.999 ±
0.003
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Table 3. Cont.

Target PDB ID Tree Bagged
Forest

Random
Forest Bayesian SVM Logistic

Regression Neural Net Neural Net
(Bagging)

CREBBP
5EIC 0.635 ±

0.042
0.500 ±

0.000
0.887 ±

0.178
0.794 ±

0.001
0.938 ±

0.003
0.766 ±

0.000
0.766 ±

0.011
0.938 ±

0.033

5MMG 0.714 ±
0.070

0.500 ±
0.000

0.883 ±
0.153

0.746 ±
0.009

0.946 ±
0.004

0.734 ±
0.014

0.760 ±
0.022

0.934 ±
0.028

HIV IN
4CFD 0.970 ±

0.008
0.920 ±

0.017
0.936 ±

0.004
0.827 ±

0.004
0.895 ±

0.002
0.781 ±

0.002
0.831 ±

0.024
0.999 ±

0.005

4CHO 0.931 ±
0.055

0.928 ±
0.009

0.929 ±
0.019

0.832 ±
0.014

0.896 ±
0.003

0.770 ±
0.001

0.833 ±
0.052

0.999 ±
0.005

XIAP
1TFT 0.972 ±

0.089
0.974 ±

0.038
0.998 ±

0.127
0.981 ±

0.000
0.997 ±

0.000
0.984 ±

0.000
0.994 ±

0.005
0.999 ±

0.000

5C3H 0.985 ±
0.006

0.984 ±
0.007

0.998 ±
0.116

0.981 ±
0.003

0.998 ±
0.000

0.987 ±
0.000

0.997 ±
0.000

0.999 ±
0.000

Mcl-1
5FC4 0.752 ±

0.068
0.578 ±

0.006
0.930 ±

0.143
0.811 ±

0.002
0.835 ±

0.002
0.817 ±

0.001
0.842 ±

0.010
0.956 ±

0.008

5MES 0.780 ±
0.089

0.583 ±
0.003

0.921 ±
0.147

0.819 ±
0.002

0.877 ±
0.004

0.817 ±
0.003

0.843 ±
0.010

0.957 ±
0.014

Mdm2
4ODF 0.943 ±

0.003
0.938 ±

0.006
0.977 ±

0.077
0.932 ±

0.000
0.966 ±

0.000
0.942 ±

0.000
0.952 ±

0.005
0.999 ±

0.003

4ZFI 0.952 ±
0.009

0.937 ±
0.005

0.977 ±
0.059

0.926 ±
0.002

0.962 ±
0.000

0.942 ±
0.000

0.956 ±
0.006

0.999 ±
0.002

Menin
5DB2 0.500 ±

0.000
0.500 ±

0.000
0.823 ±

0.129
0.758 ±

0.014
0.903 ±

0.004
0.662 ±

0.002
0.680 ±

0.028
0.969 ±

0.038

6B41 0.538 ±
0.012

0.500 ±
0.000

0.828 ±
0.242

0.760 ±
0.025

0.897 ±
0.008

0.617 ±
0.080

0.679 ±
0.028

0.971 ±
0.033

Table 4. ROC AUC values for ten PPI targets obtained by applying ML models to the test sets. The
best AUC value corresponding to each target protein (across rows) is shown in bold.

Target PDB ID Tree Bagged Forest Random
Forest Bayesian SVM Logistic

Regression Neural Net Neural Net
(Bagging)

BAZ2B
4XUA 0.534 0.5 0.537 0.53 0.521 0.532 0.53 0.54

5E73 0.524 0.5 0.546 0.525 0.54 0.52 0.538 0.553

Bcl-2
2O21 0.966 0.949 0.987 0.978 0.979 0.972 0.981 0.985

4LVT 0.948 0.948 0.992 0.982 0.976 0.974 0.988 0.991

Bcl-xL
3INQ 0.964 0.91 0.989 0.982 0.983 0.985 0.99 0.986

3WIZ 0.979 0.916 0.989 0.975 0.981 0.986 0.988 0.993

BRD4-1
5D3L 0.926 0.926 0.918 0.897 0.915 0.893 0.917 0.918

5KU3 0.901 0.901 0.911 0.886 0.908 0.887 0.906 0.927

CREBBP
5EIC 0.631 0.5 0.769 0.726 0.724 0.744 0.75 0.772

5MMG 0.689 0.5 0.691 0.712 0.732 0.721 0.746 0.788

HIV IN
4CFD 0.822 0.827 0.801 0.74 0.805 0.742 0.784 0.832

4CHO 0.792 0.807 0.791 0.73 0.816 0.714 0.753 0.824

XIAP
1TFT 0.97 0.972 0.996 0.979 0.99 0.981 0.994 0.997

5C3H 0.973 0.976 0.994 0.974 0.994 0.985 0.995 0.995
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Table 4. Cont.

Target PDB ID Tree Bagged Forest Random
Forest Bayesian SVM Logistic

Regression Neural Net Neural Net
(Bagging)

Mcl-1
5FC4 0.742 0.586 0.854 0.783 0.776 0.813 0.843 0.859

5MES 0.755 0.573 0.845 0.786 0.715 0.809 0.835 0.846

Mdm2
4ODF 0.947 0.947 0.958 0.922 0.957 0.946 0.95 0.963

4ZFI 0.941 0.94 0.949 0.919 0.954 0.943 0.951 0.961

Menin
5DB2 0.5 0.5 0.674 0.622 0.614 0.62 0.646 0.646

6B41 0.536 0.5 0.669 0.601 0.608 0.633 0.656 0.637

2.5. Enrichment Factors Estimation of Machine Learning Models

All of the ML models were used to calculate the enrichment factors (EF1% and EF5%)
for the test sets (Table S10). Consistent with the highly improved AUC values, the ML
models also showed high early enrichment values for the test sets in several target pro-
teins. In the case of BAZ2B, the best enrichment in the hit rate for the top-scoring 1% of
compounds was 2 for the protein 4XUA produced by neural net (bagging), and for 5E73
SVM produced EF1% of 2.2. For Bcl-2 (2O21), random forest, SVM, and neural networks
were equally effective by producing the best EF1% value of 28.72. In the case of 4LVT,
these models, including Bayesian, produced the same EF1% value of 28.72. For Bcl-xL
(3INQ), neural network (bagging) produced the best EF1% of 52. While in the case of 3WIZ,
neural networks and random forest produced the same EF1% value. For BRD4-1 (5D3L),
all ML models, except Bayesian, produced the EF1% of 2.162. In comparison, all models
produced the same result in the case of 5KU3. For CREBBP, the neural network (bagging)
exhibited the best EF1% value of 12.38 and 9.03 in 5EIC and 5MMG, respectively. For HIV
IN, all methods exhibited the EF1% value of 2.4 in 4CFD. While in 4CHO, bagged forest,
random forest, and neural networks showed the same EF1% value. For XIAP, random
forest and neural network (bagging) produced the best EF1% value of 43.934 in 1TFT and
5C3H. For Mcl-1, SVM and neural network (bagging) displayed the best enrichment of
23.805 and 23.57 in 5FC4 and 5MES, respectively. For Mdm2, all models, except Bayesian
and logistic regression, exhibited the EF1% value of 2.9. In the case of 4ZFI, random forest,
SVM, logistic regression, and neural network (without bagging) produced the same EF1%.
For Menin, SVM produced the best EF1% value of 6.68 in both 5DB2 and 6B41. Overall, the
best performance was exhibited by the neural network by yielding the best EF1% value in
nine targets with a total of 14 structures and an average EF1% of 17.23. The second-best
ML method was SVM which produced the best EF1% value in seven targets with a total
of 11 structures and an average EF1% of 17.01. Random forest stood in third place by
producing the best EF1% value in seven targets with a total of 10 structures and an average
EF1% of 16.8. With respect to the enrichment factor at 5%, the neural network (bagging)
outperformed other techniques by producing the best EF5% value in all targets with a
total of 14 structures and an average EF5% of 8.5. Random forest was the second-best
method that generated the high EF5% value in six targets with a total of seven structures
and an average EF5% value of 8.3. SVM produced a high EF5% value in four targets
(four structures) and an average EF5% of 8.134. Our analysis of additional test statistics
(Cohen’s Kappa κ, Matthew’s correlation coefficient MCC, Youden’s Index J, and F1 score)
is in agreement with the conclusions drawn here. For example, the Neural network with
bagging performed better than other methods based on the aforementioned parameters
in most of the targets. Whereas, Bayesian and SVM produced some improvement in the
targets BAZZ2B and Menin, in which other methods failed (Figure S7). We also compared
the early enrichments of ML models to Surflex and the best-performing receptor, ligand,
and receptor–ligand SASA descriptors (Figure S8). The overall mean of EF1% and EF5%
for the ML models were much higher than the Surflex and SASA descriptors. For instance,
neural network (bagging) models produced EF1% ~7 times better as compared to Surflex
in targets Mcl-1 (5FC4) and CERRBP (5EIC). Whereas the early recovery values obtained



Int. J. Mol. Sci. 2022, 23, 14364 13 of 21

using SASA descriptors were better than Surflex. These results indicate that the docking
scoring function may not be efficient when used solely for performing VS. Rather, the use
of docking pose-derived descriptors in combination with ML techniques could be valuable
in identifying active PPI ligands. We also analyzed the predictor fields to understand which
features matter most and which are of least importance based on the relative importance
of each predictor in estimating the model. Figure S9 shows the distribution of descriptor
importance values obtained from the 20 neural net (bagging) models trained on different
data sets. ∆HR, ∆TL, ∆TR, TRU, ∆TRL, HRU, TLU, TLB, TRB, and ∆HRL descriptors were
predicted to be of high importance based on the Neural net models. All these descriptors
also showed good vs. performance when assessed independently.

3. Discussion

With the discovery of novel therapeutically important PPIs, there is an urgent need
to develop drug candidates modulating these interactions to supplement the currently
limited clinical pipeline. Alternatively, small molecules that perturb specifically some PPIs
could be valuable to understand the importance of a protein complex in a disease state
and thus help de-risk target selection. However, the rational design of selective and potent
small molecule inhibitors of PPIs is in general very challenging compared to traditional
targets, such as kinases, proteases, or G protein-coupled receptors [52–54]. The present
study is built on our previous fast docking and rescoring-based vs. investigation performed
on inhibitors of PPIs and aims at gaining insights about the pertinence of using hybrid
methods that combine docking pose-derived SASA descriptors with scoring functions
and/or with ML techniques (i.e., when enough data are available for the target of interest)
so as to facilitate the discovery of novel PPI inhibitors. This work is also encouraged by the
research performed by Núñez et al. in which they applied a similar strategy to traditional
drug targets: adenosine deaminase, and estrogen receptor alpha [55]. In that study, after
docking with GOLD and Glide, they post-processed the poses to derive a protein–ligand
interaction fingerprint (PLIF) metric. Next, the SASA descriptors were computed for each
ligand and its respective protein in their bound/unbound states. Subsequently, a Bayesian
model was learned with SASA descriptors which was then used to score the remaining
ligands in the screening databases. The performance of SASA descriptors was found
comparable or superior to those of GOLD and Glide.

Here, we compared the results of a fast Surflex docking-scoring protocol against
rescoring with five GOLD scoring functions. In addition, we evaluated the screening
potential of docking-pose derived protein-, ligand-, and protein–ligand-SASA descriptors
as well as that of ML models developed with these descriptors while monitoring the impact
on (early) enrichment factors. Similar to Surflex, GOLD scoring functions were also found
to be target-dependent. Among all GOLD scoring functions, GoldScore produced the best
AUC value in one protein structure of Mcl-1 (5MES) and both structures of Mdm2. ASP
generated the best results in Bcl-2 (2O21), BRD4-1, and CREBBP (5EIC). The performance of
other GOLD scoring functions was lower than the one of Surflex. In contrast to traditional
scoring functions, the overall performance and early database enrichments for many SASA
descriptors were found superior to Surflex or GOLD scoring functions for a large variety
of target classes suggesting that these scoring metrics could be interesting for structure-
based screening experiments. For instance, among the protein SASA descriptors, SASA
receptor total delta ∆TR was the best-performing descriptor that produced excellent AUC
values in nine protein structures. This indicates that the difference in the unbound and
the bound SASA area of the binding site is a unique metric for each ligand that could be
used to discriminate actives from inactive molecules. Among the ligand SASA descriptors,
SASA ligand total unbound TLU produced the best results in eight target structures. This
is consistent with previous studies which suggested that the rSASA score of the ligand,
which is derived from the bound and the unbound fraction of the ligand SASA, can be
used for finding ligands that are largely solvent-exposed at the PPI sites [41,50]. The
rSASA of the active PPI ligand is relatively lower as compared to that of the inactive
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compound. Among the protein–ligand SASA descriptor, SASA receptor–ligand total delta
∆TRL generated excellent results in eight target structures. This suggests that the net SASA
of the protein–ligand complex is another distinctive feature of an active ligand that can
be valuable for screening purposes. The vs. performance was further enhanced when we
used the descriptors for training ML models and validated them on test sets. Among the
ML models and the present PPI dataset, neural networks and random forest achieved the
best results in most of the targets except BAZ2B, for which all methods could not yield
desirable results. In the case of Menin, the results were only satisfactory using random
forest models. The visual inspection of the binding sites of BAZ2B structures showed
relatively tight subpockets that are formed by hydrophobic/aromatic residues and with a
conserved water molecule. In the case of Menin structures, the binding site is large and
substantially flatter compared to the other PPIs. These features pose a significant challenge
in ligand docking and it is possible that the poses generated for the compounds on these
targets are not accurate enough. This in turn leads to the calculation of incorrect SASA
descriptors that could not help train good ML models. Importantly, a consistent trend is
observed where all methods (native docking, rescoring, SASA metrics, and ML models)
failed on these targets which likely points to the fact that docking poses are unreliable
and/or that some possible experimental errors could be present.

As more information is being used when developing ML models as compared to only
relying on a docking score, as expected, the results obtained from the ML approaches
are superior to the best-rescoring function DLIGAND2 identified in our last study [50]
both in terms of AUC and early enrichments. Additionally, we would like to emphasize
that in the future we would be working in a more flexible ML platform that could allow
automatic tuning of hyperparameters. Since we are dealing with large datasets, different
targets, and ML techniques, it was computationally expensive to manually explore all
hyperparameters in Pipeline Pilot. However, it became clear from our experiments that
adopting default hyperparameters showed a consistently good performance in most of
the targets. Yet we anticipate that the performances observed could be further improved
(particularly sensitivity and early enrichments) after tuning hyperparameters.

In trying to rationalize why SASA descriptors would help in discriminating between
good and bad binders, we already mentioned that the method does not seem to favor
high MW molecules [50]. In fact, it would seem that the SASA descriptors as used here
assist the selection of molecules that fill better the binding site most likely important for
PPIs as it has been shown that ligand binding pockets within a PPI interface are very
different from traditional ligand binding pockets and tend to contain three to five binding
sub-pockets of low volume [56,57]. It is also possible that SASA descriptors are fuzzier
than interaction fingerprints or scoring functions and as such less sensitive to possible
docking errors likely to occur due to the plasticity of most PPI interfaces. Thus, they can
be interesting to combine with such approaches while important work will be required
to fully investigate this question. For the time being, combining SASA descriptors with
rescoring is still target-dependent, but the present results suggest that the approach could
be interesting to circumvent in part this problem.

The protocol presented here, which involves docking compounds, extracting 3D de-
scriptors from the docking poses, and using them for building ML models, seems interesting
to investigate further with regard to the generation of compound collections potentially en-
riched in PPI modulators. We suggest that pose-derived SASA descriptors or pose-derived
SASA descriptors combined with ML techniques could be a useful adjunct to other methods.
For example, most of the work done so far to design dedicated PPI collections are mainly
ligand-based. For instance, Hamon et al. built an SVM model with DRAGON molecular
descriptors for small molecules using the 2P2I database (https://2p2idb.marseille.inserm.fr,
accessed on 14 November 2022) to define a physicochemical profile of orthosteric inhibitors.
The model was successfully used to mine PPI-like compounds from external datasets
from PubChem BioAssay and in-house small molecule collections [47]. In another study,
Reynes et al., by constructing decision trees on a dataset of known PPI inhibitors and

https://2p2idb.marseille.inserm.fr
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regular drugs, determined a global physicochemical profile for the putative PPI inhibitors.
The statistical analysis revealed two important molecular descriptors for PPI inhibitors
characterizing specific molecular shapes and the presence of a privileged number of aro-
matic bonds. The best model was transposed into a computer program, PPI-HitProfiler, that
can output from any drug-like compound collection a focused chemical library enriched
in putative PPI inhibitors [58]. In a recent study, Bosc et al. constructed different ML
models based on molecular descriptors using databases of experimentally confirmed PPI
inhibitors. The predictive models were used to curate the putative PPI inhibitors from large
commercial compound collections. The curated collection is available on-demand to the
scientific community in 384-well plates as the Fr-PPIChem library. The compounds from
the library showed a 46-fold activity rate enhancement compared to a non-iPPI-enriched
diversity library in high-throughput screening against the CD47-SIRPα PPI [59]. It seems
possible that SASA descriptors generated from docking poses could also be valuable to
assist the design of PPI collections.

In summary, we showcased a proof-of-concept study highlighting the potential of
GOLD scoring functions; several post-docking derivatized SASA descriptors of protein,
ligand, and protein–ligand complex; and ML models to enhance the performance of fast
docking computations performed with Surflex (“pscreen” mode) as monitored by ROC
AUC and early database enrichment efficiency using experimentally known inhibitors of
PPI targets. Significantly higher AUC values and enrichment factors were obtained for
several targets using 3D SASA descriptors combined with rescoring or combined with ML
as compared to default “pscreen” Surflex computations or rescoring using only GOLD
functions, indicating an improvement in both the global ranking of compounds and also, in
the early enrichment stages. The latter significant issue is additionally manifested in ligand
enrichments at 1%, which were augmented by up to seven times in several proteins using
neural network models. Collectively, our results strongly encourage the use of docking in
combination with the use of pose-derived SASA descriptors or with ML techniques when a
sufficient number of bioactivity data are available, to screen large molecular databases in
search of new PPI inhibitors.

4. Materials and Methods
4.1. Rescoring with GOLD Scoring Functions and Consensus Approach

The procedure of docking PPI datasets to the respective protein structures is described
in ref [50]. The docking poses obtained from each protein structure were rescored using
five different scoring functions with default settings: (i) GoldScore: It is the original
scoring function provided with GOLD [51,60]. It has been optimized for the prediction
of ligand binding positions and takes into account factors such as hydrogen bonding
energy, van der Waals energy, and ligand torsion strain; (ii) ChemPLP: piecewise linear
potential is an empirical fitness function optimized for pose prediction. The piecewise
linear potential (PLP) is used to model the steric complementarity between protein and
ligand, but additionally, in ChemPLP, the distance- and angle-dependent hydrogen and
metal bonding terms from Chemscore are considered. ChemPLP is slightly faster than
ChemScore and up to four times faster than GoldScore. Several validation tests have
shown it to be generally more effective than the other scoring functions for both pose
prediction and virtual screening; (iii) Astex Statistical Potential (ASP): ASP is an atom-atom
potential derived from a database of protein–ligand complexes and can be compared to
other knowledge-based scoring potentials, e.g., PMF and DrugScore. ASP has comparable
accuracy to ChemScore and GoldScore; (iv) ChemScore: It estimates the total free energy
change that occurs on ligand binding and was trained by regression against binding affinity
data for 82 complexes. The ChemScore fitness function also incorporates a protein–ligand
atom clash term and an internal energy term. ChemScore takes into account hydrophobic-
hydrophobic contact area, hydrogen bonding, ligand flexibility, and metal interaction; and
(v) ChemScore (RDS), a modified form of ChemScore where the effect of scaling hydrogen
bonds, metal–ligand, and hydrophobic interactions are systematically investigated based
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on the burriedness of intermolecular interactions in protein–ligand complexes. Burriedness
is expressed using receptor density scaling (RDS), as defined by the number of heavy atoms
around an interaction. Optimization of scaled ChemScore terms using burriedness from
experimental X-ray data and docked inactive ligands has shown to improve the ability to
discriminate actives from inactives significantly. These modified ChemScore terms penalize
interactions with flexible outer walls or loops of the binding site; they adjust hydrogen-
bond strengths in solvent-exposed surface areas when there is competition with solvent for
favorable hydrogen bond interactions [51].

Consensus scoring is a method in which the predicted binding affinities or scores of
each compound for a binding pocket are predicted by using more than one scoring method.
In this study, a consensus scoring approach using the ‘rank-by-rank’ method [33] was
applied to evaluate the hits obtained from high throughput docking. All the candidates
were ranked by the average ranks predicted by all the scoring functions. This strategy
uses relative ranks rather than absolute binding affinities for ranking. Since the compound
docking scores obtained from Surflex and GOLD rescoring are of different nature and type,
data normalization was performed to bring all the scores to a common scale ranging from 0
to 1. Data normalization was performed using Equations (1) and (2).

Normalized score =
Docking score− Docking scoremin

Docking scoremax − Docking scoremin
(1)

The compounds were then ranked based on the normalized docking scores from the
five scoring functions. Finally, the results from different scoring functions were combined
by averaging the rank of each molecule obtained from the individual scoring function
(Equation (2)). These consensus scores were then utilized for rescoring and vs. assessment.
The compounds were ranked from best to worst based on their consensus rank.

Consensus Rank =
Sur f lexrank + GoldScorerank + PLPrank + ASPrank + ChemScorerank + ChemScore− RDSrank

6
(2)

4.2. Solvent Accessible Surface Area (SASA) Calculations and Derivatization of SASA Descriptors

The SASA of the ligand and corresponding receptor-binding site in their bound/unbound
states was calculated for each docking pose using the “binding_sasa.py” script from
Schrödinger. More details on the procedure of calculation of SASA descriptors are described
in ref [50]. Briefly, seven SASA descriptor subtypes (Hydrophobic (H), Aromatic (Ar),
Donor (D), Acceptor (Ac), Positive (P), Negative (N), and Others (O)) were calculated
for the protein and the ligand in the bound and unbound state. The protein and ligand
descriptors were combined to generate the corresponding protein–ligand SASA descriptors.
The total delta and relative total SASA for the receptor, ligand, and receptor–ligand were
calculated as described in Equations (3)–(8). The relative SASA for each SASA category
was calculated for ligand, protein, and protein–ligand using Equations (9)–(11). To evaluate
the vs. performance of rescoring with GOLD scoring functions, consensus method, and
SASA descriptors, we followed the protocol defined in Figure S1 for each PPI target. The
performance was assessed by computing ROC graphs and calculating the AUC, EF1%,
EF5%, and BEDROC (α = 20), demonstrating the ability of the vs. method to distinguish
known ligands among the set of inactive compounds or predominance of active ligands in
the top positions of the ranked list [61–65].

SASA total ligand delta (TL) = SASA total ligand unbound (TLU)− SASA total ligand bound (TLB) (3)

SASA total receptor delta (∆TR) = SASA total receptor unbound (TRU)− SASA total receptor bound (TRB) (4)
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SASA total receptor −ligand delta (∆TRL)
= {SASA total receptor unbound (TRU) + SASA total ligand unbound (TLU)}
−{SASA total receptor bound (TRB) + SASA total receptor bound (TLB)}

(5)

relative SASA Total ligand (rel. TL) =
TLB
TLU

(6)

relative SASA Total receptor (rel. TR) =
TRB
TRU

(7)

relative SASA total receptor ligand delta (rel. TRL) =
TRB + TLB
TRU + TLU

(8)

relative SASA X ligand (rel. XL)

= XLB
XLU

{Where X : Hydrophobic (H), Aromatic (Ar), Donor (D), Acceptor (Ac), Positive (P), Negative (N)and Others (O)} (9)

relative SASA X Receptor (rel. XR)

= XRB
XRU

{Where X : Hydrophobic (H), Aromatic (Ar), Donor (D), Acceptor (Ac), Positive (P), Negative (N)and Others (O)} (10)

relative SASA X receptor − ligand delta(∆TRL)

= XRB+XLB
XRU+XLU

{
Where X : Hydrophobic (H), Aromatic (Ar), Donor (D),
Acceptor (Ac), Positive (P), Negative (N) and Others (O)

}
(11)

4.3. Machine Learning Models Generation

All ML models were generated using the BIOVIA pipeline pilot v18.1 interfaced with
the R package V 3.4.1 [66,67] using the recommended standard protocol. All models were
developed using the same set of SASA descriptors. The SASA scores were normalized
before using them for building ML models. To address the dataset imbalance, the weighting
method was set to “by class” during the model’s construction. Three types of Recursive Par-
titioning (RP) models were constructed: tree, bagged forest, and random forest. For creating
RP single decision tree models, following parameters were used: model type = single tree;
Minimum samples per node = 10; Maximum tree depth = 20; Split method = Gini;
Weighting Method = By Class; Maximum Knots per property = 20; Maximum look ahead
depth = 0; Maximum generic depth = 0. RP Bagged forest models are an extension of
the decision tree approach that minimizes errors from over-fitting by generating multiple
trees and randomizing the training sets (without resampling the descriptors) that each tree
utilizes to reproduce the trends in the training set. “Bagging” (bootstrap aggregation) with
replacement is used to generate a new, modified version of the training set for each tree:
each tree tends to get a random subset of the original training set, with ~2/3 unique
compounds and ~1/3 duplicates. In the case of RP bagged forest models, ten trees
(model type = Forest) were created with “bagging” with the same settings as mentioned
above. In the case of the forest of random trees (random forest), 500 trees were created with
“bagging” with a number of randomly preselected variables set to 9 to be considered as
splitting criteria for each node. In a Random forest, when each tree is “induced” (created),
it receives a different subset of the descriptors and the algorithm applies different weights
on the descriptors, which can also be used in different orders in the different hierarchies of
the levels of nodes within each tree. Each tree then develops a different model to reproduce
its training set. Each tree’s classification of the test instance is recorded as a vote. The votes
from all trees are aggregated and the test instance is assigned to the class that receives the
maximum vote. We also generated SVM-based models which are based on the principle
of finding a plane that best separates a description of the two classes of compounds in
the training set. For complicated datasets, algorithms called kernel functions are used to
transform the descriptors of a dataset into a higher dimensional space, to better separate
the “good” and “bad” compounds. Support vectors are constructed that use a minimal
number of the “good” and “bad” compounds to define a boundary to the hyper plane (the
multi-dimensional plane that separates the transformed descriptions of the compounds
in higher dimensional space), in a way that attempts to minimize error while maximiz-
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ing generalizability. The parameters used were as follows: SVM-Type = C-classification;
SVM-Kernel = radial; Cost = 1, 2; Weighting Method = By Class; Gamma = 0.0125. The logis-
tic regression models were constructed using the GLM method (Generalized linear model).
GLM performs a logistic regression with no bias correction. The deep neural net models
were constructed with two hidden layers and each layer with 80 nodes. The learning rate
of every epoch was 0.1 with a momentum of 0.9, and the maximum number of iterations
for network training was 5000. To prevent the model from over-fitting, the fraction of the
hidden layer to be dropped out for model training was set to 0.25. Bayesian models build
a binary classifier by uniting different sets of descriptors, with different weights on each
descriptor, in diverse ways, to build a model that best reproduces the known trends in the
training set. The Bayesian models were constructed using the naïve Bayes algorithm. Naïve
Bayes is a fast, scalable algorithm that calculates conditional probabilities for combinations
of attributes and the target attribute. From the training data, an independent probability is
established. This probability gives the likelihood of each target class, given the occurrence
of each value category from each input variable. It is known to perform well on large
datasets and has very fast processing times. In all cases, 10-fold cross-validation was used
to calculate the ROC curve. In addition, we calculated several metrics, such as Sensitivity
(Equation (12)), specificity (Equation (13)), precision (Equation (14)), and concordance
(Equation (15)), to evaluate the performances of classifiers. Sensitivity represents the per-
centage of correctly identified active compounds. Specificity signifies the percentage of
correctly identified inactive compounds. Concordance corresponds to the overall accuracy.
Precision signifies the percentage of identified positive compounds or positive predictive
value (PPV). In addition, we calculated Youden’s J statistic (Equation (16)), Matthew’s
correlation coefficient (MCC) (Equation (17)), the F1 score (Equation (18)), and Cohen’s
Kappa statistic (Cκ or κ) (Equation (19)). Youden’s index (J) is a performance metric that
evaluates the performance of a binary classification model. Its value ranges from 0 to 1.
When the value is at its minimum (i.e., zero), the model is useless. When its value is 1,
there are no false negatives or false positives, and the predictions are perfect. MCC, also
referred to as the phi coefficient, is a chance-corrected statistic where MCC = 1 indicates
perfect agreement, MCC = −1 indicates total disagreement, and MCC = 0 indicates that the
model is no better than random. The F1 score is the harmonic mean of precision (i.e., the
positive predictive value hit rate) and sensitivity. The best F1 score is 1, while the worst
score possible is 0. Cohen’s Kappa (κ) is a chance-corrected statistic that uses a different
method to calculate the random likelihood of making correct predictions for the external
set. Kappa < 0 indicates no agreement, Kappa of 0–0.2 indicates slight agreement, Kappa of
0.21–0.40 is fairly predictive, and Kappa of 0.41–0.60 indicates moderate agreement.

Sensitivity =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

Precision =
TP

TP + FP
(14)

Concordance (Accuracy) =
TP + TN

TP + TN + FP + TN
(15)

J = sensitivity + speci f icity− 1 (16)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(17)

F1 = 2× precision× recall
precision + recall

(18)

κ =
Po − PE
1− PE

= 1− 1− Po

1− PE
(19)
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In Equation (15), true positive (TP) is the number of active ligands that are predicted
correctly; true negative (TN) is the number of inactive ligands that are predicted correctly;
false negative (FN) is the number of active ligands that are predicted as inactive molecules,
and false positive (FP) is the number of inactive ligands that are predicted to be active. In
Equation (19), PO is the relative observed agreement among raters, and PE is the hypothet-
ical probability of chance agreement, obtained using the observed data to calculate the
probabilities of each observer randomly saying each category. If the raters are in complete
agreement, then κ = 1. If there is no agreement among the raters other than what would be
expected by chance (as given by PE), κ ≤ 0.
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