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Abstract: The localization of lipoprotein (Lol) system is responsible for the transport of lipoproteins
in the outer membrane (OM) of Vibrio parahaemolyticus. LolB catalyzes the last step in the Lol
system, where lipoproteins are inserted into the OM. If the function of LolB is impeded, growth of
V. parahaemolyticus is inhibited, due to lack of an intact OM barrier for protection against the external
environment. Additionally, it becomes progressively harder to generate antimicrobial resistance
(AMR). In this study, LolB was employed as the receptor for a high-throughput virtual screening from
a natural compounds database. Compounds with higher glide score were selected for an inhibition
assay against V. parahaemolyticus. It was found that procyanidin, stevioside, troxerutin and rutin had
both exciting binding affinity with LolB in the micromolar range and preferable antibacterial activity
in a concentration-dependent manner. The inhibition rates of 100 ppm were 87.89%, 86.2%, 91.39%
and 83.71%, respectively. The bacteriostatic mechanisms of the four active compounds were explored
further via fluorescence spectroscopy and molecular docking, illustrating that each molecule formed
a stable complex with LolB via hydrogen bonds and pi–pi stacking interactions. Additionally, the
critical sites for interaction with V. parahaemolyticus LolB, Tyr108 and Gln68, were also illustrated.
This paper demonstrates the inhibition of LolB, thus, leading to antibacterial activity, and identifies
LolB as a promising drug target for the first time. These compounds could be the basis for potential
antibacterial agents against V. parahaemolyticus.

Keywords: natural inhibitors; the localization of lipoprotein system; LolB; Vibrio parahaemolyticus;
virtual screening; molecular docking

1. Introduction

Vibrio parahaemolyticus is an important foodborne pathogen widely distributed in
aquatic products, and marine and estuarine environments [1]. It not only infects the
Penaeus vannamei juvenile, leading to acute hepatopancreatic necrosis disease (AHPND) and
serious economic losses [2,3], but also causes serious foodborne diseases, such as diarrhea
and sepsis [4], which pose a great threat to human health and food safety. Meanwhile,
the antimicrobial resistance (AMR) of bacteria, including V. parahaemolyticus, is severely
increasing, aggravating the negative effect of bacteria on global health and the economy. If
we do not suppress their development, drug-resistant superbugs will claim 10 million lives
a year and cost the global economy a cumulative $100 trillion by 2050 [5].
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As a Gram-negative bacterium, V. parahaemolyticus possesses an outer membrane (OM)
as a solid barrier to resist the entry of detrimental factors, like antibiotics. Lipoprotein is
an essential part of the OM, which is associated with the pathogenic mechanism [6]. It
plays an important role in important physiological processes, including cell membrane
biogenesis, adhesion and invasion, generation of drug resistance and so on [7]. In V. para-
haemolyticus cells, the OM lipoprotein is synthesized and reaches the periplasmic leaflet of
the inner membrane (IM), prior to transport to its correct location through the localization
of the lipoprotein (Lol) system during OM biogenesis [8]. The Lol system is composed
of five proteins, LolA-E [9]. Lipoproteins are pushed across the periplasm with the aid
of chaperone LolA, from the ABC transporter LolCD2E complex anchored in the IM to
the LolB embedded in the OM inner leaflet, powered by adenosine 5′-triphosphate (ATP)
hydrolysis in the cytoplasm, and are incorporated into the OM by LolB [10].

Multiple novel sterilization techniques were developed to kill V. parahaemolyticus,
such as ultraviolet light-emitting diodes [11], electrolyzed water [12] and photodynamic
inactivation [13]. Under the background of increasingly severe AMR, a novel sterilization
technology targeting OM biogenesis is an optional strategy [14]. A bactericidal agent
targeting the Lol system is capable of blocking the transfer of the OM lipoprotein, disrupting
the bacterial OM, and, eventually, eliminating V. parahaemolyticus. Inhibitors of LolCD2E
and LolA, the inner membrane ABC transporter and the periplasmic chaperone in the
Lol system, respectively, have already been reported [15]. Given that LolB protein is of
great significance for an intact OM and the survival of V. parahaemolyticus, here, we, for the
first time, report compounds targeting V. parahaemolyticus LolB by high-throughput virtual
screening. The antibacterial activities and the mechanisms of interaction with LolB were
also studied. These inhibitors of LolB provide a novel potential sterilization strategy for
V. parahaemolyticus.

2. Results
2.1. Virtual Screening of Natural Compound Database

Virtual screening (VS) is the use of in silico techniques to screen active compounds,
based on the compound database [16]. Using the molecular docking operation between
compounds and drug targets, VS quickly selected active compounds with potential to be
drugs from dozens to millions of molecules, greatly reducing the number of compounds
for experimental screening, shortening the research cycle and decreasing the cost of drug
development [17,18]. Therefore, VS has become one of the most promising tools for drug
development.

The homology model of V. parahaemolyticus LolB protein used Escherichia coli (strain
K12) LolB protein (PDB: 1iwm) [19] with 35% identity as template, where residues 36-211
of V. parahaemolyticus LolB were modeled successfully (Figure 1A). The model was aligned
with E. coli LolB crystal structure and full-length V. parahaemolyticus LolB predicted by
Alphafold, which showed high structural similarity (Figure 1B,C). In the established LolB
model, as shown in the Ramachandran plot (Figure S1), 89.8% of residues were located in
the completely conformation-allowed region, 10.2% in the conformation-allowed region,
and no residue in conformational-disallowed region, indicating that these residues had
good conformational space. The LolB model was of ideal quality for subsequent virtual
screening.

Based on the screening of 39,000 molecules in the Cayman/2D structure database,
70 compounds that bind to the LolB protein were screened (Figure S2), and Table 1 lists
the top 10 compounds with good glide scores to the target protein. With respect to the
glide score, the lower score represents higher affinity with the receptor. The screened top
10 compounds had glide scores of −12.023~−7.781, lower than −6, demonstrating superior
binding capability targeting V. parahaemolyticus LolB.
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Figure 1. Homology model of V. parahaemolyticus LolB protein. (A): V. parahaemolyticus LolB (resi-

dues 36-211) modeled by Swiss-model. (B): Superposition of V. parahaemolyticus LolB model (green) 

with E. coli LolB crystal structure (cyan, PDB 1IWM). The rmsd was 0.374 over 137 Cα. (C): Super-

position of V. parahaemolyticus LolB model (green) with full-length structure of V. parahaemolyticus 

LolB (yellow) predicted by Alphafold. The rmsd was 1.033 over 141 Cα. 

Table 1. The top 10 compounds targeting LolB obtained from virtual screening. 

Number Glide Score Compound Formula Mol wt 

1 −12.023 Stevioside (hydrate) C38H62O19 822.895 

2 −9.858 Forsythoside B C34H44O19 756.707 

3 −9.907 
Coenzyme A (sodium 

salt hydrate) 
C21H37N7NaO17P3S 807.53 

4 −8.994 Rutin (hydrate) C27H36O19 664.566 

5 −8.789 Madecassoside C48H78O20 975.132 

6 −8.626 Troxerutin C33H42O19 742.68 

7 −8.307 Procyanidin C30H26O13 594.525 

8 −8.155 Forsythoside A C29H36O15 624.592 

9 −7.847 Mulberroside A C26H32O14 568.528 

10 −7.781 
Uridine-5’-diphos-

phoglucuronic Acid 
C15H19N2Na3O18P2 646.23 

2.2. Inhibition Effect of the Top 10 Compounds on V. parahaemolyticus 

The listed top 10 compounds were applied to analyze their antibacterial effects on V. 

parahaemolyticus RIMD 2210633 by measuring the inhibition rates under a concentration 

gradient of 100–10 ppm (Figure 2). The results showed that these compounds had concen-
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with inhibition rates of 100 ppm of 87.89%, 86.2%, 91.39% and 83.71%, respectively. 
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Figure 1. Homology model of V. parahaemolyticus LolB protein. (A): V. parahaemolyticus LolB (residues
36-211) modeled by Swiss-model. (B): Superposition of V. parahaemolyticus LolB model (green) with
E. coli LolB crystal structure (cyan, PDB 1IWM). The rmsd was 0.374 over 137 Cα. (C): Superposition
of V. parahaemolyticus LolB model (green) with full-length structure of V. parahaemolyticus LolB (yellow)
predicted by Alphafold. The rmsd was 1.033 over 141 Cα.

Table 1. The top 10 compounds targeting LolB obtained from virtual screening.

Number Glide Score Compound Formula Mol wt

1 −12.023 Stevioside (hydrate) C38H62O19 822.895
2 −9.858 Forsythoside B C34H44O19 756.707
3 −9.907 Coenzyme A (sodium salt hydrate) C21H37N7NaO17P3S 807.53
4 −8.994 Rutin (hydrate) C27H36O19 664.566
5 −8.789 Madecassoside C48H78O20 975.132
6 −8.626 Troxerutin C33H42O19 742.68
7 −8.307 Procyanidin C30H26O13 594.525
8 −8.155 Forsythoside A C29H36O15 624.592
9 −7.847 Mulberroside A C26H32O14 568.528

10 −7.781 Uridine-5’-diphosphoglucuronic Acid C15H19N2Na3O18P2 646.23

2.2. Inhibition Effect of the Top 10 Compounds on V. parahaemolyticus

The listed top 10 compounds were applied to analyze their antibacterial effects on
V. parahaemolyticus RIMD 2210633 by measuring the inhibition rates under a concentra-
tion gradient of 100–10 ppm (Figure 2). The results showed that these compounds had
concentration-dependent bactericidal performances, among which procyanidin, stevioside,
troxerutin and rutin presented relatively ideal inhibitory effects on V. parahaemolyticus, with
inhibition rates of 100 ppm of 87.89%, 86.2%, 91.39% and 83.71%, respectively.

2.3. Fluorescence Spectroscopy of Active Compounds with LolB

LolB protein produces endogenous fluorescence under UV irradiation since it contains
three aromatic amino acid residues, namely, tryptophan, tyrosine, and phenylalanine.
When protein reacts with substances, the fluorescence intensity of fluorophore decreases,
known as fluorescence quenching [20]. Therefore, fluorescence spectroscopy is widely
applied for studying the interaction between proteins and inhibitors. In order to verify
whether the reason why procyanidin, stevioside, troxerutin and rutin inhibited the activity
of V. parahaemolyticus was the targeting effect on LolB protein, the fluorescence spectra of
the interactions between the four active compounds and the isolated LolB protein were
further measured, respectively.
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As shown in Figure 3, the fluorescence emission peak emerged at 334 nm when the
excitation wavelength was 280 nm, and the fluorescence intensity of LolB protein without
quencher was 2166 a. u. The addition of procyanidin, stevioside, troxerutin and rutin signif-
icantly decreased the fluorescence intensity of LolB protein in a concentration-dependent
manner from ~2000 a. u. at 0 µM to ~500 a. u. at 25 µM of active compounds. This
suggested that the four molecules interacted with the LolB protein, resulting in fluores-
cence quenching of the LolB protein. Furthermore, with the increase of the concentration
of active compounds, a blue shift of the fluorescence emission peak was observed in all
fluorescence spectra (Figure 3), which implied that the interactions between LolB and the
compounds possibly changed the microenvironment around LolB amino acid residues, so
that the hydrophobicity of LolB increased and the polarity decreased. Together, fluores-
cence quenching and blue shift demonstrated that procyanidin, stevioside, troxerutin and
rutin bound to LolB.
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2.4. Fluorescence Quenching Mechanism of Active Compounds on LolB

To explore the interaction mechanism between the inhibitors and the LolB protein,
the Stern–Volmer equation was used to determine the type of fluorescence quenching.
Fluorescence quenching can be dynamic, resulting from collisional encounters between
the fluorophore and quencher, or static, resulting from the formation of a ground-state
complex between the fluorophore and quencher [20]. Figure 4A shows the Stern–Volmer
plots of the interactions between the different compounds and LolB, which presented a
good linear relationship. The Kq values of procyanidin, stevioside, troxerutin and rutin
inhibiting LolB were 8.3054 × 1012 L/mol·s, 6.1570 × 1012 L/mol·s, 14.2317 × 1012 L/mol·s
and 8.7014 × 1012 L/mol·s, respectively (Table 2). These values were much greater than
the maximum dynamic quenching rate (2.0 × 1010 L/mol·s) [21], confirming that these
molecules combined with LolB to form complexes, producing static quenching. According
to the One Site-Specific Binding model, the binding constant Kd was analyzed to determine
the affinity of inhibitors with LolB (Figure 4B). The four Kd values were in the micromolar
range, especially that of procyanidin, reaching 14.68± 4.65 µM, indicative of strong binding
effects with LolB protein and stable complex formations.
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(A): Stern–Volmer plots. (B): Plots of compound concentrations vs. changes in fluorescence intensity
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Table 2. Fluorescence quenching constants of the interaction between active compounds and LolB.

Compound Ksv (104 L/mol) Kq (1012 L/mol·s) R2

Procyanidin 8.3054 8.3054 0.9817
Stevioside (hydrate) 6.1570 6.1570 0.9802

Troxerutin 14.2317 14.2317 0.9641
Rutin (hydrate) 8.7014 8.7014 0.9700

2.5. Analysis of Binding Sites between Active Compounds and LolB

To investigate the key interaction sites between the four natural compounds and
the LolB protein, the molecular docking was analyzed through Schrodinger’s Maestro.
Figures 5–8 describe the interactions between the individual compounds and the LolB
protein, showing the docking region and the interaction between ligand and protein. It can
be observed, from the 3D diagram of molecular docking, that these natural compounds were
bound in the entrance area of the hydrophobic cavity of the critical transport lipoprotein
LolB through many main chain contacts. Specifically, the hydroxyl groups and ether
bonds of procyanidin formed hydrogen bonds with Tyr108 and Gln68 of the LolB protein,
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respectively, and the two benzene rings of procyanidin formed pi–pi stacking interactions
with Tyr108 (Figure 5). The hydroxyl groups of stevioside formed 10 hydrogen bonds with
Thr126, Asp65, Arg67, Gln68 and Ser69 (Figure 6). The hydroxyl groups and ether bond
of troxerutin interacted with Tyr123, Asp65, Ala93, Asp109 and Tyr108 of LolB protein
(H bonds), and the pi–pi stacking interaction with Tyr108 was also observed (Figure 7).
The hydroxyl group of rutin formed hydrogen bonds with Arg67, Gln68, Ser69, Thr126
and Tyr108, and the same pi–pi stacking interaction existed in the complex of rutin and
LolB (Figure 8). Consistent with the results of fluorescence spectra (Figure 3), the major
acting force, pi–pi stacking interactions and hydrogen bonds, enhanced the hydrophobicity
of the LolB protein, then, altered the environment of the amino acids at the entrance of
the hydrophobic cavity, affecting the structure and function of OM transport lipoprotein
LolB. Given that fluorescence quenching is commonly observed on binding ligands to
binding sites, including tryptophan, tyrosine, and phenylalanine [20], the interaction of four
inhibitors with LolB might indicate that procyanidin, that formed two pi–pi interactions
with Tyr108, had the highest affinity, especially compared to stevioside, the compound
with the highest glide score that had no pi–pi stacking.
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Figure 5. Molecular docking diagram of the interaction between procyanidin and LolB. (A): Detailed
view of the LolB–procyanidin interaction sites. Amino acid residues involved in binding are shown
in stick representation. H bonds are shown as yellow dashed lines and pi–pi stacking interactions are
shown as cyan dashed lines. Procyanidin is labeled in green. (B): 2D diagram of interaction.
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Figure 6. Molecular docking diagram of the interaction between stevioside and LolB. (A): Detailed
view of the LolB–stevioside interaction sites. Amino acid residues involved in binding are shown
in stick representation. H bonds are shown as yellow dashed lines. Stevioside is labeled in green.
(B): 2D diagram of interaction.
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3. Discussion

Nowadays, the AMR of V. parahaemolyticus should not be underestimated [22,23].
Since an intact OM is required, both for viability and for resistance against antibiotics, in
Gram-negative bacteria, therapeutics targeting OM biogenesis have the potential to kill the
bacteria outright and sensitize them to antibiotics that are otherwise unable to penetrate
an intact OM [15]. Here, we paid attention to the Lol system, the essential undertaker
in transporting OM lipoproteins, and found antibacterial compounds targeting the LolB
protein through VS, namely, procyanidin, stevioside, troxerutin and rutin.

OM biogenesis is involved in specific transport machines, called the Lol, BAM, and
Lpt pathways, responsible for transferring lipoproteins, outer membrane proteins and
lipopolysaccharide, respectively [24]. The attractiveness of OM biogenesis processes as
antibacterial targets is driven, in particular, by their essentiality, conservation, and extra-
cytoplasmic localization [25]. In the Lol system, previous research confirmed LolA and
LolCD2E as antibacterial targets [26]. MAC13243, discovered with cell-based small-molecule
screening, had a unique mechanism and promising activity against multidrug-resistant Pseu-
domonas aeruginosa and inhibited the function of the LolA protein (Figure 9) [27]. Moreover,
the degradation products of MAC13243 resulted in thiourea compounds, which shared
a similar cellular mechanism interacting with LolA (Figure 9) [28]. The first reported
inhibitors of the LolCD2E complex were the pyridineimidazoles, shown to inhibit the LolA-
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dependent release of the outer membrane lipoprotein Lpp from E. coli spheroplasts [29]. A
similar phenomenon was also observed with the presence of the pyrrolopyrimidinedione
compound G0507, another LolCD2E inhibitor, which was identified in a phenotypic screen
for inhibitors of E. coli lacking the tripartite efflux pump component, TolC [25]. In this paper,
we screened natural inhibitors, procyanidin, stevioside, troxerutin and rutin, in inhibiting
V. parahaemolyticus (Figure 2), and verified their binding with LolB through in vitro assays
(Figure 3), confirming that LolB is a promising drug target. To our knowledge, this is the
first demonstration of inhibition of LolB leading to antibacterial activity.
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Concerning accessibility, safety and applicability [30], we selected natural compounds
as the database, then obtained four LolB inhibitors inhibiting V. parahaemolyticus (Table 1
and Figure 2). Firstly, procyanidin is a class of flavonoids from plants like grape seeds [31].
It was demonstrated that procyanidin had clear and well-defined beneficial effects against
several pathologies, including cardiovascular heart disease, obesity, where it prevents
weight gain and adipose tissue mass increase, and diabetes and insulin resistance [32,33].
Procyanidin also possesses the potency of free radical scavenging, antioxidant activity and
cancer chemoprevention [34,35]. Recently, the potential role of procyanidin as a therapeutic
agent against SARS-CoV-2 was discovered [35], indicating its promising utility. As the
inhibitor of LolB protein with the best glide score in VS (Table 1), stevioside is a natural
glycoside extracted from the leaves of Stevia rebaudiana [36]. It became well-known for its
intense sweetness (250–300 times sweeter than sucrose) and is used as a safe, non-caloric,
sweetener in food industries [37]. It is suited for both diabetics, hypertensive and PKU
patients, as well as for obese persons intending to lose weight by avoiding sugar sup-
plements in the diet [36]. Troxerutin, also known as vitamin P4, is a naturally occurring
flavonoid which is isolated from tea, coffee and cereal grains, as well as from vegetables. It
has a variety of valuable pharmacological and therapeutic activities, such as antioxidant,
anti-inflammatory, anti-diabetic, anti-tumor, antihyperlipidemic, and nephroprotective
activities [38,39]. Furthermore, clinical trials revealed the efficacy of troxerutin for manage-
ment of phlebocholosis and hemorrhoidal diseases [39]. The last active compound, rutin,
also known as vitamin P, or rutoside, is one of the most common dietary polyphenols found
in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota
and absorbed from the intestines, and becomes bioavailable in the form of conjugated
metabolites [40,41]. Rutin showed a wide range of pharmacological applications, including
antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, anti-hypertension
and anti-hypercholesterolemia, as well as potential antiviral activity against SARS-CoV-2,
due to its significant antioxidant and nontoxic properties [42,43]. Taking its numerous
benefits into account, rutin can be widely used in functional foods, dietary supplements,
and pharmaceuticals. The weaknesses of low aqueous solubility, poor stability and limited
membrane permeability need to be resolved in practical application [41,44]. Overall, pro-
cyanidin, stevioside, troxerutin and rutin are natural products with low toxicity and have
a broad spectrum of pharmacological and therapeutic benefits, compared with synthetic
compounds, exhibiting tremendous prospects for development. Admittedly, however, the
four compounds are moderate antibacterial inhibitors, which need to be in relatively high
concentrations (100 ppm) for inhibition of V. parahaemolyticus, and it is possible that they
poorly penetrate the OM of Gram-negative bacteria. Future work will focus on enhancing
their inhibition effects on V. parahaemolyticus and other Gram-negative bacteria, by means
of structural optimization.

When resolving the E. coli LolB structure, researchers obtained the crystal structure
of the complex of LolB with PEGMME2000 at the hydrophobic cavity (PDB 1IWN) [19].
In our study, molecular docking showed the complex of V. parahaemolyticus LolB with
inhibitor at the entrance of the hydrophobic cavity (Figure 10A and Figure S2), where LolB
interacted with LolA in the putative mouth-to-mouth lipoprotein transfer model [45]. Upon
binding, the “mouth” of LolB is blocked by the inhibitor, the acyl chain of the lipoprotein is,
therefore, unable to enter the hydrophobic cavity of LolB, and the trafficking of lipoprotein
and the growth of bacterial cells is possibly prevented. The docking results suggested
that the four compounds interacted with LolB through both main chain contacts and side
chain contacts (Figure 10A). Some active sites involving backbone contacts, Arg67, Ser69
and Ala93, were located in β-sheet, and Tyr123 and Thr126 positions at the α-helix, that is
speculated to undergo conformational changes to give access of the lipoprotein substance
to the LolB hydrophobic cavity (Figure 10A) [46]. Therefore, the interaction of stevioside,
troxerutin and rutin with Tyr123 and Thr126 likely hindered conformational changes of the
α-helix, locked the close state of LolB, and affected LolB functioning. Furthermore, given
that the LolB protein has no large structural difference among various microorganisms



Int. J. Mol. Sci. 2022, 23, 14352 12 of 17

(Figure 1B), it is quite possible that these backbone contacts also exist between inhibitors
and other LolB proteins from different bacteria.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 17 
 

 

Through analyzing the side chain interactions of the LolB protein with inhibitors, it 

could be concluded that the residue Tyr108 of V. parahaemolyticus LolB was one of the most 

important active sites, of which the benzene ring and phenolic hydroxyl group of the side 

chain played a key role for the interaction of procyanidin, troxerutin and rutin with re-

ceptor LolB (Figures 5, 7 and 8). Additionally, Gln68 was another important amino acid 

residue in the V. parahaemolyticus LolB protein, since the carboxamido group of Gln68 

formed at least two hydroxyl bonds with procyanidin, stevioside, and rutin (Figures 5, 6 

and 8). Sequence alignment revealed that the corresponding amino acids of Gln68 and 

Tyr108 were Val and Asn, respectively, in E. coli LolB (Figure 10B). The two residues were 

specific to V. parahaemolyticus, perhaps to procyanidin, interacting with the side chains of 

Tyr108 and Gln68 only, and could not bind E. coli LolB, and, thus, had no better effect on 

other microbial infections. Moreover, the side chain carboxyl groups in Asp65 and Asp84 

were also involved in the formation of hydroxyl bonds, but the residues were not homol-

ogous with E. coli either. (Figures 6, 7 and 10). In summary, inhibitors targeting V. para-

haemolyticus LolB, in the future, could be designed and optimized, based on the identified 

critical residues, Tyr108 and Gln68. 

 

Figure 10. Amino acid residues interacting with inhibitors in V. parahaemolyticus LolB. (A): Position 

of interaction sites in V. parahaemolyticus LolB. Residues involving backbone contacts are labeled in 

green, and residues involving side chain interactions are shown as blue sticks. (B): Sequence align-

ment of LolB. Residues involving backbone contacts in V. parahaemolyticus LolB are indicated by 

green triangles, and residues involving side chain interactions in V. parahaemolyticus LolB are indi-

cated by blue triangles. Vp, Vibrio parahaemolyticus; Ec, Escherichia coli. 

We hope this study can provide strong technical support for the accurate control of 

V. parahaemolyticus, and contribute new strategies for in-depth research in the control of 

microbial safety. This targeted sterilization technology, aimed at the OM, paves the way 

for resolving AMR, reducing the risk of bacterial infection and safeguarding human 

health. 

4. Materials and Methods 

4.1. Homology Modeling 

The sequence of LolB of V. parahaemolyticus RIMD 2210633 (protein id: BAC59004.1) 

from NCBI GenBank [47] was submitted to SWISS-MODEL (https://beta.swiss-

model.expasy.org/, accessed on 1 December 2020) to construct the 3D structure of the pro-

tein [48,49]. The most homologous sequence was selected as the template for homology 

modeling. The effectiveness of the obtained model of V. parahaemolyticus LolB, constructed 
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of interaction sites in V. parahaemolyticus LolB. Residues involving backbone contacts are labeled
in green, and residues involving side chain interactions are shown as blue sticks. (B): Sequence
alignment of LolB. Residues involving backbone contacts in V. parahaemolyticus LolB are indicated
by green triangles, and residues involving side chain interactions in V. parahaemolyticus LolB are
indicated by blue triangles. Vp, Vibrio parahaemolyticus; Ec, Escherichia coli.

Through analyzing the side chain interactions of the LolB protein with inhibitors, it
could be concluded that the residue Tyr108 of V. parahaemolyticus LolB was one of the most
important active sites, of which the benzene ring and phenolic hydroxyl group of the side
chain played a key role for the interaction of procyanidin, troxerutin and rutin with receptor
LolB (Figures 5, 7 and 8). Additionally, Gln68 was another important amino acid residue
in the V. parahaemolyticus LolB protein, since the carboxamido group of Gln68 formed
at least two hydroxyl bonds with procyanidin, stevioside, and rutin (Figures 5, 6 and 8).
Sequence alignment revealed that the corresponding amino acids of Gln68 and Tyr108
were Val and Asn, respectively, in E. coli LolB (Figure 10B). The two residues were specific
to V. parahaemolyticus, perhaps to procyanidin, interacting with the side chains of Tyr108
and Gln68 only, and could not bind E. coli LolB, and, thus, had no better effect on other
microbial infections. Moreover, the side chain carboxyl groups in Asp65 and Asp84 were
also involved in the formation of hydroxyl bonds, but the residues were not homologous
with E. coli either. (Figures 6, 7 and 10). In summary, inhibitors targeting V. parahaemolyticus
LolB, in the future, could be designed and optimized, based on the identified critical
residues, Tyr108 and Gln68.

We hope this study can provide strong technical support for the accurate control of
V. parahaemolyticus, and contribute new strategies for in-depth research in the control of
microbial safety. This targeted sterilization technology, aimed at the OM, paves the way for
resolving AMR, reducing the risk of bacterial infection and safeguarding human health.

4. Materials and Methods
4.1. Homology Modeling

The sequence of LolB of V. parahaemolyticus RIMD 2210633 (protein id: BAC59004.1)
from NCBI GenBank [47] was submitted to SWISS-MODEL (https://beta.swissmodel.

https://beta.swissmodel.expasy.org/
https://beta.swissmodel.expasy.org/
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expasy.org/, accessed on 1 December 2020) to construct the 3D structure of the pro-
tein [48,49]. The most homologous sequence was selected as the template for homology
modeling. The effectiveness of the obtained model of V. parahaemolyticus LolB, constructed
by SWISS-MODEL, was defined by the GMQE&QMEAN method (https://swissmodel.
expasy.org/qmean/, accessed on 1 December 2020) [50]. Meanwhile, the PROCHECK
program of SAVES v6.0 (https://saves.mbi.ucla.edu/, accessed on 1 December 2020) was
performed to validate the conformational rationality of the LolB protein model.

4.2. High-Throughput Virtual Screening

The active site of V. parahaemolyticus LolB was determined by homologous protein
alignment, or prediction through the sitemap module of the Schrodinger Suite (Schrödinger,
Inc., New York, NY, USA). After structure preparation (e.g., structure optimization of
protein and ligands, receptor grid generation, etc.), 39,000 molecules from the Cayman/2D
structure database were used to screen active compounds binding V. parahaemolyticus LolB
at the large and deep hydrophobic cavity by structure-based virtual screening (provided by
APExBIO Technology LLC, Houston, TX, USA). The top 10 compound glide scores were
selected and purchased for further research.

4.3. Determination of Inhibition on V. parahaemolyticus

V. parahaemolyticus RIMD 2210633 strain was a gift from Dr. Craig and Dr. David of the
Centre for Environment, Fisheries and Aquaculture Science. The antibacterial effect of the
screened compounds was determined by broth microdilution method [51]. Briefly, a single
colony of V. parahaemolyticus, on Thiosulfate citrate bile salts sucrose (TCBS) agar (Beijing
Land Bridge Technology Co., Ltd., Beijing, China), was selected to inoculate into Tryptic Soy
Broth (TSB) medium (Beijing Land Bridge Technology Co., Ltd., Beijing, China) containing
3% NaCl, overnight at 37 ◦C with shaking. The cells were centrifuged at 3000 rpm for
10 min and resuspended in Mueller–Hinton Broth (MHB) medium (Beijing Land Bridge
Technology Co., Ltd., Beijing, China), 20 µL of which was dispensed into 96-well plates
containing serially diluted compounds (purchased from Shanghai Macklin Biochemical
Co., Ltd., Topscience Co., Ltd., Shanghai Acmec Biochemical Co., Ltd., or Shanghai yuanye
Bio-Technology Co., Ltd., Shanghai, China) ranging from 100–10 ppm. Polymyxin B was
used as control. Plates were incubated statically at 37 ◦C for 16 h. The OD600 of each well
was read on Synergy2 Microplate Reader (Agilent Technologies, Inc., Santa Clara, CA,
USA). Experiments were repeated three times in triplicate. The inhibition rate of each
compound was calculated using the following equation [52]:

Inhibition rate (%) = [1 − (ODtreated − ODcompound)/(ODcontrol − ODblank)] ×100% (1)

where ODblank is the OD value of medium before incubation, ODcompound is the OD value
of medium with compound before incubation, ODcontrol is the OD value of inoculum and
ODtreated is the OD value of inoculum with compound.

4.4. Cloning, Expression and Purification of V. parahaemolyticus LolB Protein
4.4.1. Cloning of V. parahaemolyticus LolB

The DNA sequence of LolB from V. parahaemolyticus RIMD 2210633 was obtained from
NCBI GenBank [47]. Residues 26-212 of LolB were codon optimized using E. coli Codon
Usage Analyzer 2.1 (http://faculty.ucr.edu/~mmaduro/codonusage/usage.htm, accessed
on 1 September 2020) [53]. A single plasmid, pET28b, containing the codon-optimized
gene, was chemically synthesized (GENEWIZ, Suzhou, China) with an N-terminal His6 tag
and NdeI and HindIII restriction sites.

4.4.2. Expression and Purification of LolB Protein

The LolB protein was acquired through transformation of the expression vector into
E. coli BL21 (DE3) CodonPlus cells (TIANGEN Biotech Co., Ltd., Beijing, China) grown
in LB broth (Beijing Land Bridge Technology Co., Ltd., Beijing, China) in the presence of

https://beta.swissmodel.expasy.org/
https://beta.swissmodel.expasy.org/
https://swissmodel.expasy.org/qmean/
https://swissmodel.expasy.org/qmean/
https://saves.mbi.ucla.edu/
http://faculty.ucr.edu/~mmaduro/codonusage/usage.htm
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50 µg/mL kanamycin at 37 ◦C. The cells were grown to an OD600 of 0.55–0.6, then induced
with 0.2 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 18 h at 20 ◦C with shaking
at 200 rpm. Cells were harvested, resuspended in buffer A (20 mM Tris, 500 mM NaCl,
10 mM imidazole, 10% glycerol, pH 7.5) containing lysozyme, Complete EDTA-free protease
inhibitor (Roche Ltd., Basel, Switzerland) and DNase (Shanghai Macklin Biochemical Co.,
Ltd., Shanghai, China) and lysed with an Ultrasonic Cell Disruptor (SCIENTZ-IID; Ningbo
Scientz Biotechnology Co., Ltd., Zhejiang, China). The insoluble cell lysate was removed
by centrifugation at 11,000 rpm for 10 min and the resulting supernatant was loaded onto
a 5 mL HisTrap HP column (Danaher Corporation, Washington, DC, USA), washed with
buffer B (20 mM Tris, 1000 mM NaCl, 30 mM imidazole, 10% glycerol, pH 7.5) and eluted
with buffer C (20 mM Tris, 500 mM NaCl, 300 mM imidazole, 10% glycerol, pH 7.5). Finally,
the eluted fractions were purified on a Hiload 16/600 Superdex 200 pg gel filtration column
(Danaher Corporation, Washington DC, United States) that was pre-equilibrated with
buffer GF (20 mM Tris, 200 mM NaCl, 5% glycerol, pH 7.5).

4.5. Fluorescence Spectroscopy

Samples of purified LolB protein were mixed with 0 µM, 5 µM, 10 µM, 15 µM, 20 µM
and 25 µM specific compounds dissolved in Tris-HCl buffer, respectively. After 30 min, the
fluorescence spectra of the mixtures were measured with a F-7100 fluorescence spectropho-
tometer (Hitachi High-Tech Corporation, Tokyo, Japan). The excitation wavelength was set
at 280 nm, the range of 300–400 nm was selected for emission scanning, and the width of
the excitation slit and the emission slit was 5 nm.

4.6. Identification of Fluorescence Quenching Mechanism

Based on the data of fluorescence spectra, the type of fluorescence quenching of reaction
between compounds and LolB protein was identified by the Stern–Volmer equation [54]:

F0/F = 1 + Kqτ0[Q] = 1 + Ksv[Q] (2)

In the equation, F0 and F denote the fluorescence intensities before and after the
addition of the compound, respectively. Kq and Ksv are the biomacromolecule quenching
constant and the Stern–Volmer quenching constant, respectively. The value τ0 is the average
lifetime of the biomacromolecule without the quencher (10−8 s) and [Q] represents the
concentration of the compound.

The equilibrium binding constant Kd was calculated using nonlinear regression with
‘One Site- Specific Binding’ model [55]:

Y = Bmax * X/(Kd + X) (3)

In the equation, X is the ligand concentration, Y is the fluorescence intensity, Bmax
denotes the maximum specific binding.

4.7. Analysis of Molecular Docking

The docking results of the top 10 compounds on the V. parahaemolyticus LolB protein
were visualized by Maestro (Schrödinger, CA, USA) [56]. Ligand–receptor protein interac-
tions were shown in both two-dimensional and three-dimensional plots. In order to clarify
the inhibitory mechanism, specific compounds were docked with LolB protein and the
distribution of binding sites were analyzed, respectively.

5. Conclusions

The development of new antibacterial compounds targeting the Lol system of V. para-
haemolyticus helps to construct efficient sterilization technology, and could potentially solve
the problem of AMR. The present study was carried out to discover active compounds
targeting the LolB protein to kill V. parahaemolyticus. The present data indicated that pro-
cyanidin, stevioside, troxerutin and rutin screened via VS had both exciting binding affinity
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with LolB and preferable antibacterial activity towards V. parahaemolyticus at concentra-
tions of 100 ppm. Fluorescence spectroscopy and molecular docking demonstrated that
these active compounds formed stable complexes with LolB through hydrogen bonds and
pi–pi stacking interactions, and Tyr108 and Gln68 were the critical active sites in the LolB
protein. Our study corroborated LolB as being a promising drug target, elucidated the
active sites in LolB, and provided natural antibacterial agents for the targeted elimination
of V. parahaemolyticus.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232214352/s1, Figure S1: Ramachandran Plot of V. para-
haemolyticus LolB model. Figure S2: Virtual screening results containing 70 hits.
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