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Abstract: Talazoparib (Talzenna) is a novel poly (adenosine diphosphate-ribose) polymerase (PARP)
inhibitor that is clinically used for the therapy of breast cancer. Furthermore, the drug has shown
antitumor activity against different cancer types, including non-small cell lung cancer (NSCLC).
In this work, we investigated the possible inhibitory interactions of talazoparib toward selected
ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation en-
zymes (CYPs) and evaluated its position in multidrug resistance (MDR). In accumulation studies,
talazoparib interacted with the ABCC1 and ABCG2 transporters, but there were no significant effects
on ABCB1. Furthermore, incubation assays revealed a negligible capacity of the tested drug to
inhibit clinically relevant CYPs. In in vitro drug combination experiments, talazoparib synergistically
reversed daunorubicin and mitoxantrone resistance in cells with ABCC1 and ABCG2 expression,
respectively. Importantly, the position of an effective MDR modulator was further confirmed in
drug combinations performed in ex vivo NSCLC patients-derived explants, whereas the possible
victim role was refuted in comparative proliferation experiments. In addition, talazoparib had no
significant effects on the mRNA-level expressions of MDR-related ABC transporters in the MCF-7
cellular model. In summary, our study presents a comprehensive overview on the pharmacokinetic
drug–drug interactions (DDI) profile of talazoparib. Moreover, we introduced talazoparib as an
efficient MDR antagonist.

Keywords: talazoparib; ABC transporter; small cell lung cancer; multidrug resistance; pharmacoki-
netic drug–drug interaction; cytochrome P450

1. Introduction

Oncological diseases are characterized by specific gene mutations and/or epigenetic
dysregulations, which drive the transformation of healthy tissues to malignant tumors.
Among all kinds of cancers, lung cancer is one of the most common variants, with the high-
est mortality (more than 1.38 million annually) in both genders all around the world [1,2].
Within lung cancers, around 85% of tumors are diagnosed as non-small cell lung cancer
(NSCLC) [3]. Due to its high prevalence and poor prognosis, significant attention is paid
to the development of novel curative approaches. NSCLC is traditionally treated with
chemotherapy, radiation, and surgery [4]. In chemotherapy, the drugs target rapidly diving
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cells with limited discrimination between healthy and malignant cells. This feature leads
to the occurrence of harmful adverse effects and substantially overshadow the clinical
success of conventional chemotherapies [5]. In contrast, new targeted anticancer ther-
apeutics are designed to interfere with cancer-specific pathways, thus producing high
efficiency accompanied by acceptable toxicity [6,7]. Beside other pathways, poly (adenosine
diphosphate-ribose) polymerase (PARP) has emerged as a unique druggable target, which
literally revolutionized the therapy of ovarian and breast cancers. PARP is a DNA-repair
enzyme necessary for the reparation of single-strand breaks in genomic DNA. The blockade
of its function follows the concept of synthetic lethality and induces apoptosis selectively
in cells with a BRCA mutation [8,9]. The clinical success of PARP inhibitors (PARPi) began
with the approval of olaparib in 2014; the drugs from this group have shown outstanding
improvement of progression-free survival in comparison with conventional chemotherapy.
Talazoparib (BMN-673; trade name Talzenna; Figure 1) is a fourth-in-class drug and was ap-
proved by the US Food and Drug Administration (US FDA) for the treatment of advanced
or metastatic breast cancer patients with a germline BRCA mutation in 2018 [10,11]. BRCA
mutation is frequent in breast and ovarian cancers; however, it is also present in some other
cancer types to a lower extent [12,13]. Therefore, talazoparib has been evaluated in clinical
trials for the therapy of several hematological and solid malignancies, including NSCLC
(e.g., NCT03426254, NCT03377556, NCT04173507, and NCT02693535).

Figure 1. The structure of talazoparib.

The introduction of pharmacotherapy has helped to transform an anticancer treat-
ment; however, even the most effective drugs face the problem of multidrug resistance
(MDR). This major clinical obstacle leading to therapy failure is tightly associated with
the intrinsic genetic variability of cancer, which allows for the development of molec-
ular mechanisms evading drugs’ effects [14]. Resistance occurs both in conventional
chemotherapeutics as well as novel targeted drugs. MDR is based on the combination
of different pharmacokinetic and pharmacodynamic principles, including upregulated
drug efflux and metabolism, downregulated drug influx, mutation of drug’s target, and
enhancement of DNA repair [15,16]. Within pharmacokinetic aspects, several members
of the ATP-binding cassette (ABC) drug transporter superfamily mediate anticancer drug
efflux and thus contribute to MDR [17,18]. The essential participation in this process has
been described for P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and
multidrug resistance-associated protein 1 (ABCC1) [19]. Next to the function in MDR,
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ABC efflux transporters play an important tissue-protective role and affect systemic drug
disposition, while the first two mentioned transporters are recognized as important sites
for pharmacokinetic drug–drug interactions (DDIs) [20]. Drug efflux transporters form a
cooperative unit with drug-metabolizing enzymes, which also have two opposite faces.
Metabolism is an irreplaceable biological process that affects drugs’ pharmacodynamic
activities and pharmacokinetic behavior (absorption and elimination), thus assisting with
detoxication. At the same time, some enzymes have been found to be overexpressed in
tumors, where they force the deactivation of anticancer agents. Recently, we described
the role of 3A4 isoform of cytochrome P450 (CYP) in the resistance to docetaxel [21].
CYPs superfamily represents a dominant group of phase-I metabolic enzymes. Similar
to ABCB1/ABCG2, several members (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP3A4, and CYP3A5) are mediators of pharmacokinetic DDIs [22,23]. The
knowledge on novel drugs’ interactions with ABC transporters and CYPs is critical for clin-
icians to avoid the prescription of potentially dangerous combinations [24,25]. At the same
time, inhibitory interactions can be beneficially exploited for targeting MDR. While the
clinical translation of the idea of nontoxic MDR modulators have failed, the dual-activity
chemosensitizers from the group of targeted anticancer agents currently attract consid-
erable attention [18,26,27]. Such drugs simultaneously show their own anticancer effects
and inhibit transporter/enzyme-mediated MDR to conventional chemotherapeutics. Their
combination thus produces synergistic effects, and due to the targeted character of dual-
activity modulators, this approach has potential to overcome the limits of old-fashioned
MDR modulation.

In this study, we investigated the interactions of talazoparib with ABC drug efflux
transporters and CYPs participating in MDR and/or DDIs. Furthermore, we examined the
possible modulator or victim roles of this PARPi in the MDR phenomenon. Appropriate
in vitro and ex vivo techniques were used for this purpose, including cell accumulation
studies, incubations with recombinant enzymes, drug combination assays, comparative
proliferation experiments, and gene induction studies.

2. Results
2.1. Talazoparib Significantly Inhibits ABCG2- and ABCC1-Mediated Transport of Probe Subs-
trate Drugs

First, we employed accumulation studies in MDCKII-par, MDCKII-ABCB1, MDCKII-
ABCC1, and MDCKII-ABCG2 cells with fluorescent MDR-victim anticancer drugs to deter-
mine possible transporter-inhibitory effects of talazoparib. In the case of MDCKII-ABCB1,
no inhibitory interaction occurred (IC50 > 50 µM) (Figure 2A). In contrast, in MDCKII-
ABCG2, a modest effect of talazoparib on ABCG2 efflux activity was observed with IC50 of
11.2 µM (Figure 2B). Finally, in MDCKII-ABCC1, talazoparib potently inhibited ABCC1-
mediated transport of daunorubicin, showing IC50 of 5.62 µM (Figure 2C). To validate the
data, experiments were also performed in control parent cells. As expected, tested PARPi
did not exhibit any significant effects on the accumulations of probe substrate drugs.

2.2. Talazoparib Is Predicted to Interact with the Ligand-Binding Sites of ABCG2 and ABCC1 and
Nucleotide Binding Domain 2 of ABCC1

Molecular modeling was performed to explain the molecular background of outcomes
recorded in the preceding accumulation studies. Flexible molecular docking to ABCG2
predicted the high affinity of talazoparib for the internal cavity (ligand-binding site) of the
transporter (−11.9 kcal/mol). As ABCG2 exists as a dimer, talazoparib could potentially
bind to both monomers (Figure 3A) interacting with residues Phe-431, Phe-432, Thr-435,
Phe-439, Thr-542, and Val-546 (Figure 3B).
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Figure 2. MDCKII cell accumulation studies showing effects of talazoparib on transport activities of
(A) ABCB1, (B) ABCG2, and (C) ABCC1. The cells were pre-exposed to talazoparib or model inhibitors
(LY335979, Ko143, and MK571, respectively) and then treated with fluorescent chemotherapeutics,
daunorubicin, or mitoxantrone. After the substrate accumulation period, the cells were trypsinized,
and flow cytometer was used to quantify the intracellular fluorescence. The plotted values of
relative accumulation reflect a fold increase in the accumulation of the probe substrate caused by
the tested compound; they are numerically expressed as ratios of relative fluorescence units (RFUs)
from treated samples to RFUs of vehicle control. Model inhibitors and vehicle controls represented
100% inhibition and 0% inhibition, respectively; their values were applied during normalization of
talazoparib data and calculation of its IC50 values. Statistical analysis was accomplished using one-
way ANOVA followed by Dunnett’s post hoc test (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
relative to control), while the presented data are means ± SD from three independent assays. DAU,
daunorubicin; MTX, mitoxantrone; TAL, talazoparib.



Int. J. Mol. Sci. 2022, 23, 14338 5 of 22

Figure 3. (A) ABCG2 with the predicted position of talazoparib (orange) relative to the ligand (gray
sticks) that was originally cocrystalized with the transporter (PDB ID: 6HIJ). (B) ABCG2 residues (blue
sticks) interacting with talazoparib. H-bonds are shown as yellow lines, π-stacking as green-dashed
lines, and hydrophobic interactions as gray-dashed lines.

For ABCC1, no human crystallographic structures with both ATP/ADP molecules or
a ligand are available in the PDB database. Therefore, prior to our calculations, the models
were created using bovine ABCC1 crystals and the human ABCC1 primary sequence.
As described for leukotriene C4 (LTC4) cocrystallized with the protein backbone (PDB
ID: 5UJA) [28], a positively charged P-pocket coordinating the glutathione moiety and a
hydrophobic H-pocket surrounding the LTC4 lipid tail can be distinguished at the binding
site. Based on our calculations, talazoparib binds to the P-pocket (−11.7 kcal/mol), where
it interacts with residues His-335, Phe-385, Tyr-440, Phe-594, Asn-1245, Trp-1246, and
Arg-1249 (Figure 4A,B).

Talazoparib, as the potent PARP inhibitor, was originally designed on the basis of a
nicotinamide-like pharmacophore. Its pyridazinone moiety mimics NAD+, which serves as
a substrate for PARP polymerase and provides ADP-ribose monomers for the synthesis
of poly-ADP-ribose chains [29]. Therefore, we were interested in the hypothesis that
talazoparib might interact with amino acid residues of the nucleotide binding domains
(NBDs) of examined ABC transporters. As shown in Figure 4C, it was predicted that
talazoparib interacts with NBD2 residues (−10.7 kcal/mol) of ABCC1. In contrast, no
conformation with binding affinity less than −10.0 kcal/mol was detected for ABCC1′s
NBD1 and both NBDs of the ABCG2 transporter.

2.3. Talazoparib Does Not Interfere with the Metabolic Activities of Clinically Relevant CYP Isoforms

In this experimental set, we screened talazoparib’s possible inhibitory effects on
clinically relevant human CYP isozymes. We selected eight isoforms playing a role in
pharmacokinetic DDIs (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4,
and CYP3A5) [24,25] and docetaxel resistance (CYP3A4) [21]. Talazoparib negligibly
inhibited the metabolic activities of all the examined CYPs with IC50 > 50 µM (Figure 5).
The drug is thus unlikely to stand in the position of the perpetrator of metabolic inhibitory
DDIs or modulator of CYP3A4-mediated MDR.
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Figure 4. (A) Orientation of talazoparib relative to LTC4 (green sticks) in the ABCC1 transporter.
(B) ABCC1 residues (blue sticks) predicted to interact with talazoparib. (C) Predicted interactions
of talazoparib with ABCC1′s NBD2. Residues surrounding P- and H-pocket are shown as labels.
H-bonds are shown as yellow lines, π-stacking as green-dashed lines, and hydrophobic interactions
as gray-dashed lines.

2.4. Talazoparib Combats ABCC1- and ABCG2-Mediated Chemotherapeutic Resistance In Vitro

Combination assays were carried out to evaluate talazoparib’s potential to become
a dual-activity MDR modulator. Daunorubicin and mitoxantrone were selected as MDR-
susceptible substrate drugs for ABCC1- and ABCG2-oriented studies, respectively. The
modulatory concentration of talazoparib (5 µM) was chosen, as it induced significant
ABCC1 and ABCG2 inhibition and, at the same time, had negligible cytotoxic effects in the
tested cell lines. In drug combinations, talazoparib significantly sensitized MDCKII-ABCC1
cells (RR = 2.14) and A431-ABCC1 cells (RR = 1.69) to daunorubicin (Figure 6A,C and
Table 1). Talazoparib also behaved as an efficient MDR reversal agent in MDCKII and
A431 models overexpressing human ABCG2 transporter (RR = 5.28 and 2.83, respectively)
(Figure 6B,D and Table 1). In the parent cells, however, we found no statistically significant
shifts in the IC50 values of daunorubicin (RR = 0.917 and 0.909 for MDCKII and A431
cells, respectively) or mitoxantrone (RR = 1.06 and 1.00) (Figure 6A–D and Table 1). Ac-
cording to the differences in RR values between transporter-overexpressing and parent
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cells, transporter inhibition was the most important factor causing the observed resistance
modulation. Additionally, Chou and Talalay’s combination index method was used for the
exact quantification of drug combination outcomes. The combinations showed synergistic
CI values at almost the whole FA range in cells with ABCB1 and ABCG2 overexpression,
while antagonism or additivity was detected in parental sublines (Figure 6E–H). This differ-
ential pattern confirms the crucial role of cytostatic efflux inhibition in the recorded MDR
reversal. At the same time, these results suggest that talazoparib might be a highly effective
dual-activity MDR antagonist in cancer cells with ABCC1 and/or ABCG2 overexpression.

Figure 5. Incubation assays with recombinant CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19,
CYP2D6, CYP3A4, and CYP3A5. The enzymes were pre-exposed to talazoparib or model inhibitors,
which was followed by the initiation of reaction using the mixture of NADP + and particular Vivid
substrate. After incubation, fluorescence was measured and then normalized against 0% and 100%
activity values. Control 100% activity values were represented by the reaction, which included the
enzyme and 0.5% DMSO without tested drug. The control 0% activity values came from the samples
that contained only 0.5% DMSO and enzyme solvent buffer without enzyme. IC50 values were
defined with the normalized fluorescence data. The data come from three independent repetitions
and are expressed as means ± SD. TAL, talazoparib.
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Figure 6. The influence of 5 µM talazoparib on cytotoxic effect of daunorubicin in (A) MDCKII-
ABCC1 and (C) A431-ABCC1, or with mitoxantrone in (B) MDCKII-ABCG2 and (D) A431-ABCG2
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cells. Assays were performed in control parental cells as well. Cells were exposed to drugs alone
(daunorubicin, mitoxantrone, or talazoparib) or their combinations and incubated for 48 h. Then,
MTT assay was conducted with the cells. Talazoparib concentrations were chosen based on their
significant inhibitory effect on the transporters’ activities and acceptable toxicity. CompuSyn software
was used to quantify the drug combination outcomes generating FA-CI plots for (E) MDCKII-ABCC1
and (F) MDCKII-ABCG2, and (G) A431-ABCC1 and (H) A431-ABCG2. Combination effects are
synergistic (CI < 0.9), antagonistic (CI > 1.1), or additive (CI between 0.9–1.1). The values were
generated in three independent experiments and are plotted as the means ± SD. FA, the fraction of
cells affected; DAU, daunorubicin; MTX, mitoxantrone; TAL, talazoparib.

Table 1. IC50 values and related IC50 shift analysis of the combination of 5 µM talazoparib with
cytostatic substrates (daunorubicin and mitoxantrone) in MDCKII and A431 cell lines. IC50 values
were calculated using the data shown in Figure 6, and possible differences between IC50s were
subsequently analyzed using the two-tailed unpaired t-test (* p < 0.05; ** p < 0.01; *** p < 0.001;
comparing IC50s from single-drug treatments with IC50s of combinations in individual cellular
subcultures). The reversal ratio (RR) is the ratio of the IC50 for single-drug treatment to that for the
combined-drug treatment in the particular subline.

Cell Line Drug(s) IC50 (µM) 95% CI (µM) RR

MDCKII-parent
daunorubicin 1.00 (0.878–1.13)
mitoxantrone 1.48 (1.35–1.62)

daunorubicin + talazoparib 1.09 ns (1.01–1.18) 0.917
mitoxantrone + talazoparib 1.40 ns (1.30–1.53) 1.06

MDCKII-ABCC1
daunorubicin 5.80 (5.42–6.19)

daunorubicin + talazoparib 2.71 ** (2.36–3.12) 2.14
MDCKII-ABCG2

mitoxantrone 12.1 (11.3–12.9)
mitoxantrone + talazoparib 2.29 *** (2.04–2.55) 5.28
A431-parent

daunorubicin 1.11 (0.966–1.29)
mitoxantrone 0.88 (0.714–1.06)

daunorubicin + talazoparib 1.22 ns (1.05–1.43) 0.909
mitoxantrone + talazoparib 0.88 ns (0.692–1.11) 1.00
A431-ABCC1

daunorubicin 3.62 (3.19–4.10)
daunorubicin + talazoparib 2.13 * (1.70–2.64) 1.69
A431-ABCG2

mitoxantrone 10.0 (9.36–10.7)
mitoxantrone + talazoparib 3.53 ** (2.99–4.08) 2.83

2.5. Talazoparib Targets Cytostatic MDR in Patient-Derived NSCLC Explants Ex Vivo

Next, we investigated whether observed chemosensitizing potential of talazoparib
might have some impact in a clinically relevant model. We chose eight patient-derived
NSCLC explants exhibiting differential expressions of ABCG2 and ABCC1 (Figure 7A).
Talazoparib and probe inhibitors significantly inhibited cytostatic efflux in primary cultures
with high expression of examined transporters, whereas insignificant accumulation changes
were recorded in those showing low expression (Figure 7B). Noteworthily, we also found a
clear association between the results of drug combination experiments and accumulation
studies. Primary cultures with significant drug accumulation changes produced synergistic
or additive effects following combined drug treatment. Conversely, antagonistic outcomes
were predominantly monitored in the samples exhibiting negative accumulation results
(Figure 7C). Taken together, our ex vivo results suggest that talazoparib might serve as an
effective dual-activity MDR-reversal agent in patients suffering from tumors with high
ABCG2/ABCC1 expressions.
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2.6. MDR-Related Transporters Do Not Establish Resistance to Talazoparib

Herein, we aimed to investigate possible MDR-victim properties of talazoparib, i.e.,
whether functional presence of ABC transporters could negatively affect its antiproliferative
effects. Comparative MTT studies were conducted in MDCKII and A431 cells with and
without transporter overexpressions. As demonstrated in Figure 8A, we observed no
significant differences in talazoparib’s anticancer effects between MDCKII-par cells (IC50 =
69.4 µM) and the corresponding ABCB1- (IC50 = 67.5 µM), ABCC1- (IC50 = 66.0 µM), and
ABCG2-overexpressing counterparts (IC50 = 64.5 µM). An identical pattern was recorded
in A431 cells, where parental variant showed sensitivity comparable to that from ABCB1-,
ABCC1-, and ABCG2-expressing sublines (IC50 of 86.8, 92.7, 91.5, and 91.8 µM, respectively)
(Figure 8B). Based on these outcomes, we can presume that the activities of MDR-related
ABC transporters are not associated with the establishment of resistance to talazoparib.

2.7. Talazoparib Does Not Change the Expressions of MDR-Related Transporters in Breast Can-
cer Model

Talazoparib might theoretically potentiate a pharmacokinetic MDR profile of target
cancer cells via the upregulation of MDR-associated ABC transporters. Thus, in the final ex-
perimental set, we monitored the effect of talazoparib on the expressions of ABCB1, ABCC1,
and ABCG2 in breast cancer MCF-7 cells. The negligibly toxic talazoparib concentration
(0.5 µM) was chosen based on the results of an MTT viability experiment (Figure 9A).
In induction studies, talazoparib did not trigger the transporters’ expression increase or
decrease by more than 100% or 50%, respectively, in comparison with vehicle control
(Figure 9B). Therefore, we can conclude that the tested PARPi is not likely to potentiate
pharmacokinetic MDR profile in the target breast tumor cells.

Figure 7. Cont.
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Figure 7. Talazoparib shows MDR-modulatory properties in patient-derived NSCLC primary cultures.
(A) Western blotting analysis of ABCG2 and ABCC1 expressions (quantitative densitometric analysis
on the left, representative pictures on the right). (B) Accumulation of mitoxantrone and daunorubicin
in the presence of 5 µM talazoparib or probe inhibitors (2 µM Ko143 and 25 µM MK571 for ABCG2
and ABCC1, respectively). One-way ANOVA followed by Dunnett’s post hoc test was used for
statistical data analysis (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 compared to control).
(C) Results of MTT-based combination assays coadministering talazoparib (5 µM) with mitoxantrone
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or daunorubicin in ex vivo NSCLC explants. Cell viability curves are presented on the left, FA-CI plots
on the right. CI values below 0.9 express synergism, CIs between 0.9–1.1 additivity, and CIs > 1.1
reflect antagonism. The plotted data were generated in three independent experiments and are
expressed as the means ± SD. DAU, daunorubicin; MTX, mitoxantrone; TAL, talazoparib.

Figure 8. Talazoparib shows comparable antiproliferative effects within (A) MDCKII and (B) A431
cellular sublines. The cells were exposed to serial dilutions of talazoparib for 48 h, which was
followed by viability detection using the MTT proliferation assay. The two-tailed unpaired t-test was
applied to statistically compare the IC50 values from parental cells and their transporter-expressing
sublines. However, we did not find any statistically significant differences in either of the cell models.
The values in the graphs are means ± SD, which were generated in three independent experiments.
TAL, talazoparib.

Figure 9. The effect of talazoparib treatment on the ABCB1, ABCC1, and ABCG2 mRNA levels in
breast cancer MCF-7 model. (A) The MTT viability assay performed after the 48 h incubation with a
tested drug. (B) Gene induction studies. The MCF-7 cells were treated with talazoparib (0.5 µM) or
rifampicin (25 µM). The qRT-PCR technique was employed for the assessment of the target genes’
mRNA expressions after 24 and 48 h incubation interval. The dotted lines draw the boundaries
for downregulation (lower line) and upregulation (upper line) according to the EMA’s DDI-testing
guidelines [24]. The plotted data are means ± SD from three independent repetitions. RIF, rifampicin;
TAL, talazoparib.

3. Discussion

DNA repair enzymes PARP1 and PARP2 have emerged as clinically useful targets.
PARP inhibitors, including talazoparib (sold as Talzenna), have recently revolutionized the
therapy of ovarian and breast cancers [10]. In this study, we investigated pharmacokinetic
inhibitory interactions of talazoparib and explored its role in MDR in vitro and ex vivo.

First, we launched our study with the investigation of talazoparib’s inhibitory affinity
toward selected ABC drug efflux transporters and CYP isoenzymes. Based on our results,
talazoparib might potentially cause pharmacokinetic DDIs on ABCC1 and ABCG2, but not
on ABCB1 or any of the eight tested CYP isoenzymes. To the best of our knowledge, we
are the first to provide detailed overview of inhibitory properties of talazoparib toward
ADME- and/or MDR-related proteins. According to the in-human mass-balance study,
talazoparib is minimally metabolized, and a major fraction of the dose is excreted renally



Int. J. Mol. Sci. 2022, 23, 14338 14 of 22

and biliary in unchanged form [30]. Thus, competitive inhibitory interactions on CYPs are
impossible to occur, which correlates with our findings.

In the next step, we explored possible exploitation of observed inhibitory interactions
for the negative affection of cytostatic MDR. In in vitro drug combination studies, we
provided mechanistic evidence on MDR-combating abilities of talazoparib. Importantly,
synergistic potentiation of ABCC1- and ABCG2-substrate cytotoxic drugs was also found
in primary ex vivo NSCLC explants with clear dependence on the functional expression of
the examined transporters. Observed synergistic outcomes have a crucial impact for the
practical use of suggested drug combinations; synergism substantially improves the safety
of therapy by allowing for drug dose reduction in oncological clinical practice [31]. Taken
together, these results suggest that talazoparib might gain a position in combined therapy
of ABCC1/G2-overexpressing BRCA-mutated tumors as a valuable dual-activity MDR
modulator. To verify the rationality of this statement, the performance of xenograft and
in-human clinical studies will be necessary. Importantly, both ABCG2 and ABCC1 were
described as MDR mediators in breast cancer at THE clinical level. High ABCG2 expression
was found in A significant number of breast cancer patients and was correlated with tumor
grade, clinical stage, and lymph node metastasis, indicating its association with MDR
and possible role as independent prognostic marker [32,33]. Besides ABCG2, ABCC1 is
also frequently overexpressed in breast cancer tissues showing correlation with aggressive
phenotype and chemotherapeutic resistance [33,34]. So far, talazoparib has been combined
with new targeted drugs as well as different conventional chemotherapeutics in clinical
trials. Some of these studies focus on anticancer agents that have been recognized as victims
of ABCC1/G2-mediated MDR. An upcoming phase I clinical study, NCT05101551, a trial
for relapsed pediatric acute myeloid leukemia, aims to determine the safety and efficacy of
talazoparib in combination with topotecan. Topotecan is well-known as a sensitive ABCG2
substrate [35]. In addition, it will be interesting to observe the follow-up of the phase I
study, which investigated the combination of talazoparib with irinotecan in children and
young adults with recurrent/refractory solid tumors [36]. Both ABCC1 and ABCG2 are
capable of active efflux of irinotecan and its active metabolite SN-38 [37,38]. Some clinical
trials are currently recruiting patients, including NCT03911973, the study evaluating the
efficacy of gedatolisib in combination with talazoparib for the therapy of advanced breast
cancer. Gedatolisib is a promising anticancer drug candidate that is an MDR victim through
the ABCG2 transporter [39]. Apart from clinical trials, some preclinical studies have
demonstrated the synergistic activity of talazoparib’s combination with MDR victim drugs.
Lok and colleagues demonstrated that talazoparib synergizes with temozolomide in vitro
in small cell lung cancer cell lines and showed strong combinatorial efficacy in vivo in
patient-derived xenograft models [40]. Temozolomide was characterized as an MDR victim
on ABCG2 transporter [41]. In addition, temozolomide, SN-38, and doxorubicin synergized
with talazoparib in osteosarcoma cell lines bearing molecular features of BRCA1/2-mutated
tumors [42]. Based on our results, it might be beneficial to analyze the data from the
abovementioned clinical and experimental studies in the context of ABCC1/G2 expressions
and their possible associations with studies’ outcomes.

Besides revealing the MDR-modulatory properties in drug combination assays, com-
parative proliferation studies were conducted to understand its possible opposite feature,
i.e., the susceptibility to pharmacokinetic resistance. Our results demonstrate that func-
tional expressions of ABCB1, ABCC1, and ABCG2 are not associated with the emergence of
resistance toward talazoparib. Previous brain penetration studies in Abcb1- and Abcg2-
knockout mice models and accumulation experiments in MDCKII-ABCB1 and MDCKII-
ABCG2 cells showed that talazoparib is a substrate of ABCB1, but not of ABCG2 [43]. The
role of ABCB1 in the control of talazoparib’s disposition has been further confirmed in
the clinical DDI study with ketoconazole and rifampicin (ABCB1 inhibitor and inducer,
respectively) [44]. The discrepancy between the proved ABCB1 substrate affinity and MDR
establishment failure has been frequently seen in our recent studies with different novel
drugs [45–47] as well as in the works by other teams [48,49]. As explained in detail in our
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papers, several factors can participate in observed discordance, such as relatively high
lipophilicity of talazoparib (logP≈ 2.93 according to ALOGPS 2.1). In addition, in the study
with alisertib, we provided the direct evidence that incubation time differences between
comparative proliferation assays and transport studies may result into this conflicting
situation [47]. However, in the light of our results, talazoparib’s MDR victim role is unlikely,
which makes this PARPi a promising MDR modulator.

Finally, we investigated the short-term effects of talazoparib on the mRNA levels
of clinically relevant ABC efflux transporters. In our qRT-PCR experiments, talazoparib
did not cause significant transcriptional changes in ABCB1, ABCC1, and ABCG2 genes
in the MCF-7 breast cancer cells. In contrast, long (12-days) exposure to talazoparib
has been found to upregulate ABCB1, ABCC1, and ABCG2 mRNAs in another breast
cancer model, MCF-10A. Interestingly, protein levels have been fluctuating (concentration-
dependent induction or downregulation), unchanged, and decreased for ABCB1, ABCC1,
and ABCG2, respectively [50]. However, considering our data and the discussed ones, it
is not presumable that talazoparib has significant potential to potentiate pharmacokinetic
MDR in target tissues. At the same time, downregulation of ABCG2 might be a beneficial
factor supporting the talazoparib-mediated MDR reversal. Nevertheless, breast cancer
patients are treated with talazoparib for several months [11]; thus, data from clinical DDI
studies could provide a definite information on this issue.

4. Materials and Methods
4.1. Chemicals and Reagents

Talazoparib was obtained from MedChemExpress (New Jersey, NJ, USA). TaqMan
systems for detecting ABCB1, ABCG2, ABCC1, B2M, and GAPDH, and TaqMan™ Univer-
sal Master Mix II (no UNG) were obtained from Applied Biosystems Life Technologies
(Carlsbad, CA, USA). TRI Reagent for RNA isolation was acquired from the Molecular
Research Center (Cincinnati, OH, USA). Oligo (dT) was obtained from Generi Biotech
(Hradec Kralove, Czech Republic). Deoxynucleotide (dNTP) Solution Mix and Proto-
Script® II Reverse Transcriptase were bought from New England Biolabs (Ipswich, MA,
USA). Opti-MEM, Minimum Essential Medium (MEM), media for primary culture (Dul-
becco’s Modified Eagle Medium (DMEM): Nutrient Mixture F-12) were bought from Gibco
BRL Life Technologies (Rockville, MD, USA). MK571 and Ko143 were received from Enzo
Life Sciences (Farmingdale, NY, USA). LY335979 (zosuquidar) was gained from Toronto
Research Chemicals (North York, ON, Canada). Anti-β-actin (cat. no. ab8226) and mouse
monoclonal anticytokeratin 18 antibody [C-04] (FITC) (cat. no. ab52459) were attained
from Abcam (Cambridge, MA, USA). Primary antibodies against human ABCB1 (cat. no.
sc-13131), ABCG2 (cat. no. sc-377176), ABCC1 (cat. no. sc-18835), and secondary antimouse
antibody (cat. no. sc-516102) were bought from Santa Cruz Biotechnology (Dallas, TX,
USA). Pierce™ Coomassie Plus (Bradford, UK) Assay Reagent (cat. no. 23238), and Vivid
CYP3A4 Screening Kit were gained from Thermo Fisher Scientific (Waltham, MA, USA).
Dimethyl sulfoxide (DMSO), mitoxantrone, daunorubicin, 3-(4,5-dimethyl-2-thiazolyl)-2,5-
diphenyl-2H-tetrazolium bromide (MTT) dimethyl sulfoxide (DMSO), phosphate-buffered
saline (PBS), fetal bovine serum (FBS), CYP inhibitors (α-naphthoflavone, miconazole, mon-
telukast, sulfaphenazole, quinidine, and ketoconazole), hormones, penicillin/streptomycin,
pituitary extract, triiodothyronine, phosphoethanolimine, ethanolamine, growth factors,
gentamicin, collagenase, bovine serum albumin, trypsin inhibitor, protease inhibitor cock-
tail, Ficoll Paque Plus, and cell culture media were purchased from Sigma Aldrich (St.
Louis, MO, USA).

4.2. Cell Cultures

Two cell line subsets (MDCKII and A431) with and without ABCB1, ABCC1, and
ABCG2 overexpression were included in the study. Canine parental MDCKII (MDCKII-
par), MDCKII-ABCB1, MDCKII-ABCG2, and MDCKII-ABCC1 were provided by Dr. Alfred
Schinkel (The Netherlands Cancer Institute, Amsterdam, Netherlands). Parental A431 cells



Int. J. Mol. Sci. 2022, 23, 14338 16 of 22

(derived from human squamous carcinoma) and their A431-ABCB1, A431-ABCC1, and
A431-ABCG2 sublines were kindly donated by Dr. Balasz Sarkadi (Hungarian Academy of
Sciences, Budapest, Hungary). Human breast adenocarcinoma MCF7 cells were purchased
from the European Collection of Cell Cultures (Salisbury, UK). All the in vitro cell lines were
cultivated in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) without antibiotics. Cells were used at passage numbers
up to 25, and possible mycoplasma infection was routinely tested. The dimethyl sulfoxide
(DMSO) solvent was used for the dissolution of talazoparib, while its concentrations in cell
media were ≤ 0.5%. The possible interfering effects of DMSO were eliminated by including
vehicle controls when appropriate.

4.3. Generation of Primary Explants from Patients’ NSCLC Tissue Samples

NSCLC specimens from lung lobectomies were donated by patients at the Depart-
ment of Cardiac Surgery, University Hospital Hradec Kralove. All the patients signed
the informed consent; its formulation was approved by the University Hospital Ethics
Committee (study no. 202002 S04P). Subjects’ features are presented in Table 2. The NSCLC
malignant tissues were excised from lung lobes by the pathologist immediately after the
surgery. Then, NSCLC primary explants were generated according to the established
protocols [45,51]. First, the tumor tissues were cut into small pieces by scalpel. Then, the
cells were released from the tissue by the 0.1% collagenase in 1 ×MEM at 37 ◦C for 30 min.
Subsequently, 1% BSA in MEM (v/v) was added, and cells were filtered through a 40 µm
pore-sized cell strainer. The resulting solution was centrifuged at 200 × g for 5 min and
the pellet was resuspended in 1% BSA in MEM. The centrifugation (100 × g for 10 min)
in Ficoll Paque Plus was used for removing biological impurities such as cell debris, etc.
Next, the NSCLC cells were collected and transferred into c-based media. The additional
centrifugation (200 × g for 5 min) was applied to remove the traces of Ficoll solution. In the
final isolation step, the pellet was resuspended in c-based media, and primary cells were
transferred into a collagen I-coated flask. After cell recovery, fibroblasts were eliminated
via antifibroblast microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Following
an additional recovery period, the physiological cells were removed by the introduction
of 10% FBS into the c-based media. Explants’ passage number did not exceed 4 during
experiments to retain the characteristics of primary tumor cells.

Table 2. Basic specifications of tumor biopsies donated by NSCLC patients.

Sample No. Gender Age Histopathological Diagnosis

1 male 73 adenocarcinoma
2 male 66 squamous carcinoma
3 female 71 adenocarcinoma
4 male 73 squamous carcinoma
5 male 72 adenocarcinoma
6 female 69 adenocarcinoma

7 male 64 combined neuroendocrine carcinoma
(large cell + small cell)

8 male 70 squamous carcinoma

4.4. Accumulation Assay with Fluorescent Cytostatic Substrates

The conduction of accumulation assays followed the slightly changed protocol de-
scribed previously [46,52–54]. In the study, MDCKII-par, MDCKII-ABCB1, MDCKII-
ABCC1, MDCKII-ABCG2, and primary explants were seeded into 12-well plates in variant
densities, 22.0 × 104, 15.0 × 104, 25.0 × 104, 22.0 × 104, and 15.0 × 104 cells/well, respec-
tively. After 24 h incubation, two washing steps with 1 × PBS were applied. Then, different
talazoparib dilutions or model inhibitors (LY335979 for ABCB1; MK571 for ABCC1 and
Ko143) in Opti-MEM solutions were added to the cells. Accumulations were started by
adding 0.5 µM mitoxantrone or 2 µM daunorubicin as the probe substrates of ABCG2 or
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ABCC1/ABCB1, respectively, after a 10-minute preincubation period. The cells were then
incubated under standard conditions for 30 min. Next steps included placing the plates
on ice, washing the cells with ice-cold 1 × PBS two-times, and detaching the cells with the
ice-cold 10 × trypsin without phenol red. Following trypsinization, cells were resuspended
in 1 × PBS containing 2% FBS. Subsequently, cell suspensions were transferred into the
test tubes and kept on ice. The fluorescence in cells was measured immediately after the
collection of their suspensions using flow cytometer Sony SA3800 Spectral Cell Analyzer
(Sony Biotechnology, San Jose, CA, USA). SA3800 software (Sony Biotechnology, San Jose,
CA, USA) was used to evaluate the data.

4.5. Molecular Docking

Talazoparib was downloaded from the ZINC Database (http://zinc.docking.org) [55].
Its conformation was optimized using the GlycoBioChemPRODRG2 Server [56], and the
energy was minimized with the help of UCSF Chimera 1.9 [57]. ABCG2 (PDB IDs: 6HIJ,
6HBU) and ABCC1 (PDB IDs: 5UJA, 6BHU) were downloaded from the RCSB Protein
Data Bank (PDB; http://rcsb.org/pdb/) [28,58–61]. As described previously, ABCG2
deposited under PDB ID: 6HBU contains the E211Q mutation. Therefore, the Swiss Model
Workspace accessible via the Expasy Web Server [62] was used to change Gln-211 to Glu-211
using the primary sequence of human ABCG2 (Q9UNQ0) and the PDB ID: 6HBU as a
template [46]. The Swiss-Model Workspace was also used to generate a homology model
of the ABCC1 transporter. For this purpose, the primary human ABCC1 sequence (P33527)
and the crystal structures of the bovine ABCC1 transporter were used. The transporters
and talazoparib were further prepared for docking using MGL Tools 1.5.6 [63]. All the
ligands were removed; hydrogens and Gasteiger charges were added. AutoDock Vina
1.1.2 [64] was used for the calculations. In the case of ABCG2, talazoparib was docked into
the ligand-binding cavity (PDB ID: 6HIJ; x = 129.81, y = 129.91, and z = 142.89; grid box:
25 × 25 × 25; flexible residues: Phe-432, Phe-439, Leu-539, Ile-543, Val-546, and Met-549)
and NBDs (PDB ID: 6HBU; x = 113.32, y = 92.03, and z = 129.89, and x = 94.09, y = 115.37,
and z = 129.96; grid box: 25 × 25 × 25; flexible residues: Thr-82, Lys-86, Gln-126, Glu-211,
and His-243) as previously described [46]. Eight residues were set as flexible (Lys-332,
Tyr-440, Trp-553, Phe-594, Arg-1197, Asn-1245, Trp-1246, and Arg-1249) when talazoparib
was docked into the ABCC1 model generated from PDB 5UJA (x = 94.81 y = 59.06, and
z = 56.65; grid box: 30 × 30 × 30) [47] and six residues when docked into ABCC1 NBD1
(PDB ID: 6BHU; x = 116.42, y = 136.13, and z = 174.02; grid box: 25 × 25 × 25; flexible
residues: Trp-653, Lys-684, Gln-713, Glu-1428, Asn-1429, and Gln-1434) and NBD2 (PDB ID:
6BHU; x = 106.43, y = 159.48, and z = 160.57; grid box: 25 × 25 × 25; flexible residues: Asn-
767, Glu-1065, Tyr-1302, Lys-1333, Gln-1375, and Asp-1454). The exhaustiveness parameter
was set to 8 for all calculations. Transporter–ligand interactions were evaluated using the
Protein–Ligand Interaction Profiler (PLIP) [65] and visualized with PyMOL (The PyMOL
Molecular Graphics System, Version 2.5, Schrödinger, LLC).

4.6. Incubation Assay for Human Recombinant CYPs

The procedure for measuring inhibitory activity of talazoparib toward CYP isoenzymes
was described previously [46,52–54]. Possible interactions of examined PARPi with human
CYP3A4, CYP2C8, CYP2D6, CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A5 were
evaluated using commercial Vivid CYP450 Screening Kits. In brief, talazoparib and model
inhibitors were diluted in supplied buffer and pipetted into the black 96-well plates. CYP
isoenzymes were mixed with the NADPH-regeneration system, and resulting solutions
were added to the wells. After 10 min preincubation, the solution of NADP + and a
particular Vivid substrate were added to start the CYP-catalyzed reaction. Fluorescence
corresponding to the levels of produced metabolites was detected using the microplate
reader Infinite M200 Pro (Tecan, Männedorf, Switzerland) in a kinetic mode (1-minute
intervals). The data from the 15 min interval were selected to analyze the results.

http://zinc.docking.org
http://rcsb.org/pdb/
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4.7. MTT Proliferation Assay

The viability MTT assay was employed in several experimental sets, including induc-
tion studies, comparative viability assays, and drug combinations. First, 1.3× 104 (MDCKII
sublines), 1.2 × 104 (A431 sublines), 1.5 × 104 (MCF-7), and 1.0 × 104 (primary NSCLC
explants) cells were seeded in 96-well plates. After seeding, cells were left to refresh in
incubator for 24 h. Secondly, the medium was removed, and the serial dilutions of the
drugs or drug combinations were added to the cells. Next to these variants, a medium with
40% DMSO and vehicle-containing media were tested as nonviable and unaffected viability
controls, respectively. After an additional 48 h of incubation, the cells were washed with
1 × PBS and then treated with 1 mg/mL MTT solution in Opti-MEM. Subsequently, cells
were incubated for 60 min under standard conditions. After MTT treatment, generated for-
mazan crystals were solubilized with DMSO for 10 min. Wavelengths of 570 nm (formazan)
and 690 nm (background) were used for absorbance measurements using a microplate
reader Infinite 200 Pro NanoQuant (Tecan, Männedorf, Switzerland).

4.8. Drug Combination Assays

The assays evaluating the effect of combination of talazoparib with conventional
MDR-victim cytostatics were conducted in the way which was described previously [45,66].
In vitro cell lines (MDCKII and A431) and primary NSCLC explants were seeded (see
densities above) in 96-well plates and incubated for 24 h. After incubation, the medium
was removed, and several dilutions of mitoxantrone or daunorubicin with or without
5 µM talazoparib were transferred to the cells (within drug combinations, the drugs were
applied concomitantly, not sequentially). Combined cells were incubated with the tested
compounds for 48 h, and subsequently, MTT assay was performed to assess cell viability as
described above. Besides IC50-shift analysis, CompuSyn 3.0.1 software (ComboSyn Inc.,
Paramus, NJ, USA) was used for the additional analysis of obtained data. This software
works with the algorithms of the combination index (CI) method of Chou–Talalay, which
is frequently used for the accurate quantification of drug combinations’ outcomes [67].
According to the CI method principle, the combination effects were separated into three
categories, including synergistic (CI < 0.9), additive (CI between 0.9–1.1), or antagonistic
(CI > 1.1) ones.

4.9. Western Blotting Analysis

Western blotting analysis was employed for the assessment of ABC transporters’
expressions in NSCLC explants as described in previous studies [45,66]. First, primary
cultures derived from NSCLC tumors (7.5 × 105) were seeded in Petri dishes (dimensions:
60 × 16 mm) and incubated under standard conditions. Once the confluence reached
100%, explants were washed two times with cold 1 × PBS and lysed with cell lysis buffer.
Following centrifugation (12000 × g for 30 min at 4 ◦C), the total protein concentration
was determined in pure lysates by the Bradford Assay reagent. Separation of proteins
was performed in 8% SDS-PAGE gel. Then, the Trans-Blot TurboTM Transfer System (Bio-
Rad Laboratories, Hercules, CA, USA) was used to transfer them to PVDF membranes.
Subsequently, a 5% nonfat dry milk in TBST buffer was used for blocking of membranes
at 25 ◦C for 1.5 h. After the blocking step, membranes were incubated with the specific
primary antibodies diluted in TBST buffer (anti-ABCB1 (1:500), anti-ABCC1 (1:500), anti-
ABCG2 (1:1000), and anti-β-actin (1:)) overnight at 4 ◦C. Membranes were inserted into
the solution of HRP-conjugated secondary antibody (diluted in TBST buffer at a ratio of
1:2000) and bathed for 1 h at 25 ◦C. After washing the membranes with TBST buffer 3 times,
Immobilon Western Chemiluminescent HRP Substrate (EMD Millipore, Billerica, MA, USA)
and Chemi DocTM MP Imaging System (Bio-Rad Laboratories, Hercules, CA, USA) were
used for visualization of the specific proteins’ bands. Finally, ImageJ software (version
1.46r; National Institutes of Health, Bethesda, MD, USA) was used for the quantitative
analysis of results.
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4.10. Gene Induction Studies

Gene expression analyses based on quantitative real-time reverse transcription
PCR (qRT-PCR) were performed as described previously [46,52,53]. MCF-7 cell line
(3.8×105 cells/well) was seeded in 12-well plates 24 h before induction experiments. The
medium was replaced with a fresh medium containing 0.5 µM talazoparib, 25 µM ri-
fampicin, or 0.1% DMSO (vehicle control). After 24 and 48 h intervals, samples were
collected by using TRI Reagent. Subsequently, total RNA was isolated from the cells using
the chloroform/isopropanol method. Reverse transcription of 1 µg RNA to cDNA was
conducted with ProtoScript II Reverse Transcriptase using T100 Thermal Cycler (Bio-Rad
Laboratories, Hercules, CA, USA) according to the two-step protocol described previ-
ously [66]. The expressions of ABCB1, ABCC1, and ABCG2 genes were measured by
qRT-PCR using specific TaqMan assays with QuantStudio 6 machine (Life Technologies,
Carlsbad, CA, USA). qRT-PCR reactions were run under predefined thermal cycling con-
ditions (95 ◦C for 10 min, then 40 repeats of a cycle of 95 ◦C for 15 s and 60 ◦C for 60 s).
GAPDH and B2M were used as house-keeping genes; the fold-changes in target genes’
expressions were determined according to the 2-∆∆Ct method.

4.11. Statistical and Data Analysis

The experimental data were analyzed by using the GraphPad Prism version 8.0.1
(GraphPad Software Inc., La Jolla, CA, USA). One-way ANOVA followed by Dunnett’s post
hoc test or the two-tailed unpaired t-test were used for calculation of p-values (specifications
are present in figure legends when appropriate). Differences of p < 0.05 were considered
statistically significant. Nonlinear regression fitting following sigmoidal Hill kinetics
was used for determination of IC50 values. All the experiments were independently
repeated at least three times, while each of these measurements was accomplished in
biological triplicate.

5. Conclusions

In conclusion, we described the interactions of talazoparib with ABCC1 and ABCG2
and proved its limited inhibitory properties toward ABCB1 and eight CYP enzymes. In addi-
tion, we introduced talazoparib as an effective ABCC1- and ABCG2-targeting dual activity
MDR modulator acting both in vitro and ex vivo. Finally, based on our results, talazoparib
seems to be a truly prospective MDR antagonist since it lacks MDR victim properties and
potentiating effects on MDR phenotype. In addition, the drug might be potentially utilized
as a valuable chemosensitizer in patients suffering from NSCLC or other tumors expressing
ABCC1 and/or ABCG2. Our in vitro and ex vivo observations could provide a useful
foundation for future in vivo studies investigating the combination of talazoparib with
MDR victim cytostatics in BRCA-mutated and ABCC1/ABCG2-overexpressing tumors.
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