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Abstract: In recent studies, phase junctions constructed as photocatalysts have been found to possess
great prospects for organic degradation with visible light. In this study, we designed an elaborate
rhombohedral corundum/cubic In2O3 phase junction (named MIO) combined with polymeric carbon
nitride (PCN) via an in situ calcination method. The performance of the MIO/PCN composites
was measured by photodegradation of Rhodamine B under LED light (λ = 420 nm) irradiation. The
excellent performance of MIO/PCN could be attributed to the intimate interface contact between MIO
and PCN, which provides a reliable charge transmission channel, thereby improving the separation
efficiency of charge carriers. Photocatalytic degradation experiments with different quenchers were
also executed. The results suggest that the superoxide anion radicals (O2

−) and hydroxyl radicals
(·OH) played the main roles in the reaction, as opposed to the other scavengers. Moreover, the stability
of the MIO/PCN composites was particularly good in the four cycling photocatalytic reactions. This
work illustrates that MOF-modified materials have great potential for solving environmental pollution
without creating secondary pollution.

Keywords: photocatalysis; photodegradation; carbon nitride; phase junction; MOF

1. Introduction

Organic dye pollutants in wastewater have constantly been a concern with the de-
velopment of society [1–3]. Their toxicity and carcinogenicity always threaten ecological
balance and biological health. The processing methods of organic dyes generally include
adsorption, physical/chemical precipitation, biological methods, and photodegradation.
Among them, solar-driven degradation by semiconductor photocatalysts has great poten-
tial in resolving organic dye pollution due to its convenience, eco-friendliness, and low
cost [4,5]. It is well known that the most important part of photocatalysis is the catalysts
because they accelerate the reaction process and improve the degradation efficiency in or-
ganic dye degradation reactions [6,7]. Therefore, photocatalysts working under visible light
irradiation with outstanding photodegradation efficiency still need further exploration.

As an organic representative, polymeric carbon nitride (PCN) is a star material in
photocatalysis owing to its suitable energy band position, excellent stability, and simple syn-
thetic applications [8–11]. The extended π-conjugated systems consisting by sp2-hybridized
C and N atoms have been widely used for studies on energy and the environment [12].
The suitable bandgap of PCN (2.7 eV) enables it to harvest visible light and surmount the
endothermic character of water-splitting reactions (theoretically, 1.23 eV) [13]. However,
as a non-metal photocatalyst, the insufficient capacity of charge carrier transfer results in
the unsatisfactory photocatalytic ability of PCN [12,14]. Many strategies have been used to
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remedy this issue, such as morphological control, element doping, cocatalyst loading, band
structure engineering, and heterojunction construction [15–18]. Among various methods,
heterojunction construction has been proven to be an easy yet effective method to accelerate
the migration of charge carriers [19–21]. Therefore, coupling with proper semiconductors
can also improve the photoactivity of PCN.

Previous reports revealed that the phase junction of polymorph semiconductors plays
a vital role in charge separation [22,23]. Photo-induced charge transfer between two
phases is driven by the built-in electric field in the phase junction, resulting in enhanced
photocatalysis. Taking TiO2 as an example, Li’s group established that the photocatalytic
activity is directly influenced by the surface phase structure [24,25]. And the phase junction
consisting of anatase and rutile particles performed better in photocatalytic H2 evolution.
Hao et al. fabricated a novel CdS phase junction with bonding region-width-control and
resolved photocorrosion and phase exclusion of CdS [26]. The best performance reached
as much as 60-fold that of the single cubic or hexagonal phase. Liu et al. reported a
black/red phase junction phosphorus with faster charge transport properties benefiting
from the appropriate band structures [27]. The theoretical and experimental data have
indicated that different kinds of phase junction materials stand out in photo-to-electron
conversion efficiency.

Recently, a metal organic framework (MOF)-derived rhombohedral/cubic In2O3 phase
junction (named MIO) was reported for solar-driven water splitting [28]. Because it has
no cytotoxicity or cellular ROS generation, and is easy to obtain, MIO has exhibited a
growth potential in photocatalysis, such as H2 production, CO2 reduction, and pollutant
degradation [29]. Theoretical calculations have illustrated that the photo-generated elec-
trons transfer from c-In2O3 to rh-In2O3 was efficient in preventing the recombination of
charge carriers. Previous research has mainly focused on cubic In2O3-based semiconductor
(c-In2O3), but rarely on its phase junction [30,31]. For example, Wang et al. designed
ZnIn2S4-In2O3 nanotubes with good stability for CO2 reduction [32]. Li’s group reported
core-shell In2O3@Carbon nanoparticles for photocatalytic hydrogen evolution [33]. The
improved accessibility between c-In2O3 and carbon nanoparticles not only favored the
efficient separation of charge carriers, but also enhanced the optical absorption. Sun et al.
synthesized G-C3N4/In2O3 composites for effective formaldehyde detection [34]. Xu et al.
reported a carbon-doped In2O3/g-C3N4 heterojunction for photoreduction of CO2 [35].
Jin and Uddin et al. reported c-In2O3 hybridization with boron-doped and oxygen-doped
carbon nitride for photodegradation, respectively [36,37]. Both of them showed a superior
kinetic degradation rate rather than either In2O3 or PCN alone. Although the investigation
of cubic In2O3-heterojunction in photocatalysis has made some progress, the In2O3 phase
junction has not been looked at in detail.

In this study, we designed a MOF-derived phase junction In2O3/PCN (named MIO/PCN,
Scheme 1) heterojunction prepared by an in situ method in which the two precursors of
MIO and PCN were mixed and then calcined at 500 ◦C. The MIO/PCN heterojunctions
exhibited better visible light absorption, more active sites, and faster charge transfer. The
optimal photodegradation activity of MB by MIO/PCN was about 95- and 19-fold that of
the MIO and PCN, respectively. In addition, the MIO/PCN composites exhibited excellent
stability after four-cycle photodegradation. The main active species were determined to
be superoxide anion radicals (O2

−) and hydroxyl radicals (·OH) by adding scavengers to
the degradation reaction, and were further confirmed by EPR analysis. Based on UV-Vis
DRS, PL/TRPL, and photoelectrochemical tests, the possible photodegradation reaction
mechanism of MIO/PCN is discussed. This present strategy may promote new ideas for
exploring the application field of the phase junction oxides and other related materials.
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Scheme 1. Diagram of the MIO/PCN sample.

2. Results and Discussion

The crystal structure of x wt% MIO/PCN composites was confirmed by X-ray diffrac-
tion (XRD) analysis. As observed from the XRD pattern in Figure 1a, the crystal struc-
ture of the MIL-68(In)-NH2 precursor and MIO were in accordance with the previous
report and no other characteristic peak was detected, respectively [31]. MIO calcined
at 500 ◦C is composed of the mixed phase of rh-In2O3 (PDF No. 22-0336) and c-In2O3
(PDF No. 06-0416) [28]. And no other peaks appeared, indicating good purity of the In2O3
phase-junction. In Figure 1b, there were two characteristic diffraction peaks of the pure
PCN sample located at 2θ = 12.8◦ and 27.3◦, which corresponded to the (100) and (002)
planes, respectively (JCPDS card No. 87-1526). The former was assigned to the packing mo-
tif of heptazine units in plane and the latter originated from the stacking of the conjugated
aromatic system in the interlayer [18]. In the XRD patterns of MIO/PCN composites, the
peak intensity of MIO became more muscular while the content of MIO increased. It was
identified that MIO and PCN existed in the MIO/PCN composites. In addition, the peaks
of the pure PCN sample located at 2θ = 27.3◦ moved to high degree, indicating that the
spacing d was reduced according to the Bragg equation. That is because of the interaction
between PCN and MIO and is beneficial to charge transfer [8].
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The FT-IR spectra of PCN, MIO, and MIO/PCN are shown in Figure 2 to illustrate the
information pertaining to functional groups. In the FT-IR spectra of PCN, the broad peaks
located at 3000–3600 cm−1 indicate the stretching vibration of O-H, N-H, and hydrogen-
bonding interactions [38,39]. The characteristic peaks at 1200–1600 cm−1 correspond to
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the C-N skeleton of PCN. The breathing mode of the triazine units appeared at 800 cm−1,
meaning the presence of -NH and -NH2 groups [39]. In that of MIO, the characteristic
peaks at 570 cm−1 were determined to be In-O asymmetric stretching, and the peaks at
3000–3400 cm−1 correspond to the stretching vibration of the -OH hydrogen bond [11,34].
As shown in the FT-IR spectra of MIO/PCN, all the characteristic peaks of PCN appeared,
indicating the main structure of PCN was not changed. Although the In-O peak was
not observed, possibly because of the small amount of MIO in composites and the weak
peak intensity, the characteristic peaks of PCN and MIO appeared simultaneously at
3000–3600 cm−1. The FT-IR spectra further confirmed the formation of MIO/PCN.
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SEM and TEM images shown in Figures 3 and S1 are to illustrate the morphology of
the composites. In Figure S1, the shape of MIL-68(In)-NH2 is a rod with a smooth surface
and that of PCN is a nanosheet, which was in accordance with the previous reports. After in
situ calcination loading, the morphology of MIO/PCN had no noticeable change compared
with pure PCN, whereas MIO could not be observed. In the TEM images of MIO/PCN
(Figure 3a–c), the rod-like MIO was surrounded by nanosheets of carbon nitride. This was
mainly due to the in situ method, which mixed the two precursors of carbon nitride and
indium oxide first, which were then calcined together. Moreover, that is why only PCN
could be observed in the SEM images of MIO/PCN. In Figure 3d, the HRTEM image of
MIO/PCN, two lattice fringes could be observed in MIO/PCN with layer distances of
0.274 nm and 0.292 nm, corresponding to (110) rh-In2O3 crystal planes and (222) c-In2O3
crystal planes, respectively. In addition, amorphous PCN nanosheets were observed. The
EDX mapping in Figure 3e showed that C, N, In, and O were mainly distributed across
the whole nanocomposites. This phenomenon may be caused by the in situ method.
The analysis of XRD, FT-IR spectra, SEM, and TEM images confirmed the formation of
MIO/PCN composites.

To analyze the chemical components and chemical states in 2.5 wt% MIO/PCN,
XPS research was then conducted. Consistent with the EDX results, In, O, C, and N
elements were all detected in the XPS survey spectra (Figure S2), which further proves
the co-existence of MIO and PCN in the composites. High-resolution XPS spectrum of the
elements in MIO/PCN was also carried out. In Figure 4a, there were three peaks of C 1s
at the binding energy of 288.2, 286.4, and 284.8 eV. The first peak was vested in N-C=N of
the triazine ring, the second peak was attributed to C-O=C bond, while the last ones were
vested in the C=C group of PCN [17,38]. In Figure 4b, the peaks of N 1s were divided into
three characteristic peaks. The characteristic peak at 401.0 eV was caused by uncondensed
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C-N-H groups on the surface of PCN [9,10]. The last two forms of N 1s, located at 400.1 and
398.6 eV, belonged to the tertiary N-(C)3 groups and sp2-hybridized nitrogen (C=N-C) in
aromatic triazine rings, respectively [39]. Both of them and sp2-C constituted the heptazine
C6N7 units of PCN [40]. In Figure 4c, the two XPS peaks located at 444.8 and 452.5 eV
corresponded to the spin-orbit coupling of In 3d5/2 and In 3d3/2 of MIO [41]. The peak in
Figure 4d at 532.0 eV belongs to OC orbitals fitted to chemisorbed oxygen species. The XPS
analysis indicated the co-existence of MIO and PCN in the composites.
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The performance of the MIO/PCN composites was measured by photodegradation
RhB under LED light irradiation (λ = 420 nm). It can be seen in Figure 5a that the adsorption
of RhB on pure PCN, MIO, or x wt% MIO/PCN was faint. In the absence of a catalyst, the
photodegradation of RhB hardly occurred. This further illustrated the crucial importance
of a catalyst in photodegradation of RhB. However, the photocatalytic activity of the pure
MIO sample showed poor degradation capacity (17%) for RhB while that of PCN was 90%
in 60 min. Experimental results indicated that controlling the ratio of MIO in the MIO/PCN
sample was of great importance in achieving optimal photocatalytic degradation [42]. The
2.5 wt% MIO/PCN sample exhibited the best activity, reaching almost 100% degradation
within 50 min under LED light irradiation (λ = 420 nm). The photodegradation efficiency
of MIO/PCN samples was obviously enhanced compared to that of pure MIO. The pho-
tocatalytic stability of the 2.5 wt% MIO/PCN sample was tested by cycle degradation of
RhB (Figure 5b). After four runs of continuous reaction, the 2.5 wt% MIO/PCN sample
still exhibited stable photodegradation efficiency. The experimental results indicate that the
MIO/PCN sample had good stability and the enhanced photodegradation activity of RhB
was due to the introduction of MIO in the composites.
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Figure 5. Photodegradation of RhB under LED light irradiation (λ = 420 nm) (a) by x wt% MIO/PCN
samples, (b) four cycle tests by 2.5 wt% MIO/PCN, (c,d) different scavengers on the degradation of
RhB of 2.5 wt% MIO/PCN, EPR spectra of 2.5 wt% MIO/PCN for the detection of (e) DMPO-·O2

−,
(f) DMPO-·OH.

Photodegradation of RhB occurred because of the active species produced in MIO/PCN
during the reaction. Therefore, the main active species were tested under the same pho-
tocatalytic degradation condition except for adding different scavengers. The scavengers
included 1, 4-benzoquinone (BQ), methyl alcohol (MeOH), and isopropyl alcohol (IPA),
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which capture superoxide radicals (·O2
−), holes (h+), and hydroxyl radicals (·OH), respec-

tively [43]. Figure 5c,d shows that significantly decreased efficiency of the photodegradation
occurred when BQ and IPA were added to the system. Additionally, there was no obvious
change after the addition of MeOH in photocatalytic degradation. The photocatalytic
experiment with scavengers suggested that ·O2

− and OH were the major active species in
the photodegradation reaction of RhB [44].

The generation of the main active species on the MIO/PCN composite under visible-
light irradiation was also probed by a 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin-
trapping electron paramagnetic resonance (EPR) technique. In Figure 5e, when the light was
off, no EPR signal appeared. When the light was on, a strong EPR signal of DMPO-·O2

− ap-
peared. Additionally, when the light was kept on for another five minutes, the signals were
measurably enhanced. As shown in Figure 5f, the characteristic signals of the DMPO-·OH
radical emerged after visible light irradiation. It can be concluded that both ·O2

− and
·OH are the major reactive species in photodegradation of RhB by 2.5 wt% MIO/PCN
photocatalyst. The EPR spectra is in accordance with the results of the capture experiments
of active species [45]. By the above experimental studies, the possible mechanism was
speculated as follows [46,47]:

MIO/PCN + hv→ e− + h+

e− + O2 →·O2
−

h+ + H2O/OH− →·OH + H+

O2
−, OH + RhB→ products

The optical and photoelectrical properties of MIO/PCN were investigated to explore
the mechanism of enhanced photoactivity. In Figure 6a, there was a red shift of the DRS
curve with increasing content of MIO in MIO/PCN. Broadened visible light absorption is
vitally essential for increasing photocatalytic activity [48,49]. PL and TRPL spectra were
used to explore the charge-carrier separation and migration behavior. It can be observed
from Figure 6b that the fluorescence intensity of 2.5 wt% MIO/PCN was apparently
quenched after being modified by MIO, indicating that the charge recombination was
efficiently suppressed [17]. The average lifetime of PCN and 2.5 wt% MIO/PCN composite
in Figure 6c was 2.54 ns and 1.32 ns. The rapid charge-carrier transfer from MIO to PCN
resulted in a shorter PL lifetime [14,46]. Furthermore, the charge separation was further
explored by the electrochemical impedance spectra (EIS). The evidently decreased Nyquist
radius in Figure 6d illustrates that the resistance of 2.5 wt% MIO/PCN was much smaller
than that of PCN [50,51]. The reduced resistance was conducive to the rapid migration of
charge carriers. These results convincingly prove that the construction of MIO/PCN could
promote charge separation and transfer.

In order to exclude the influence of structural change of the photocatalyst, XRD
analysis was conducted. As shown in Figure 7a, the structure of the MIO/PCN did not
change before or after photodegradation of RhB. This indicates that the impact of structural
changes of photocatalysts on their enhanced photoactivity can be excluded. In Figure 7b,
the BET surface areas of PCN and MIO were determined as 72 and 45 m2g−1, respectively,
while that of the MIO/PCN sample was 65 m2g−1. Compared with pure PCN, the slightly
decreased specific surface areas of MIO/PCN was due to the addition of MIL-68(In)-NH2
by the in situ calcination [7,32]. The combination of the two block substances resulted in the
decrease of BET-specific surface area. Therefore, the MIO/PCN composites performed well
in photodegradation of RhB because of boosting solar absorption, fasting charge transfer,
and being suppressed charge recombination. Based on the above discussion, a possible
mechanism of charge transfer route in the MIO/PCN composites was proposed, as shown
in Scheme 2. Irradiated by visible light, the electrons (e−) excited by light in the valence
band (VB) of PCN transferred to the conduction band (CB) of PCN, and then flowed to the
CB of MIO. Certainly, part of the electrons and holes recombined before the reaction. In
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addition, the electrons that migrated to the surface of photocatalysts reacted with O2 to
form ·O2

−. The holes in the CB reacted with H2O/OH− to generate ·OH. The two active
species, ·O2

−/OH, attacked the RhB pollutants and generated harmless products, even
including water and carbon dioxide.
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3. Materials and Methods

Materials: All chemicals were used without further purification.
Indium nitrate hydrate (In(NO3)3·4H2O), 2-aminoterephthalic acid, N,N-dimethyl

formamide (DMF), indium chloride tetrahydrate (InCl3·4H2O) and urea were purchased
from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). N,N-dimethylformamide
(DMF) was purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). All reagents
were of analytical grade and were used without further purification.

3.1. Preparation of MIL-68(In)-NH2

The precursor MIL-68(In)-NH2 was prepared using a hydrothermal method [26].
Typically, a certain amount of 2-aminoterephthalic acid and In(NO3)3·xH2O were dissolved
in DMF and the hydrothermal reaction occurred in an oven. After the reaction ended, the
obtained products were washed with methanol and dried overnight at 80 ◦C.

3.2. Preparation of MIO/PCN and PCN

MIO/PCN samples were obtained using an in situ method [8]. Different amounts
of MIL-68(In)-NH2 mixed with urea and calcined at 500 ◦C for 2 h in a muffle furnace.
The products were collected and named x wt% MIO/PCN, where x means the calculated
conversion rate of MIO.

Pure PCN was synthesized under the same conditions without the addition of MIL-
68(In)-NH2.

3.3. Characterization

XRD patterns were measured on an X-ray diffractometer (D/MAX-2200, Rigaku
Company) to examine the crystal structure of samples. FT-IR spectra was used to analyze
the functional groups of samples by using an ALPHA-P spectrometer. The morphology
and elemental mapping images of samples were characterized by field-emission scanning
electron microscopy (SEM, JSM-6700F) and transmission electron microscopy (TEM, JEOL
JEM 2100F). The chemical valence of the elements in the samples was obtained using X-ray
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photoelectron spectroscopy (XPS, Thermo ESCALAB 250XI, standard peak is the C 1s peak
at 284.8 eV). Nitrogen adsorption-desorption isotherms and the Brunauer-Emmett-Teller
(BET) surface areas were collected at 77 K using Micromeritics ASAP2010 equipment.
The visible-light absorption of samples was measured by UV-visible diffuse reflectance
spectra (UV-DRS, Cary 500 Scan Spectrophotometer, Varian, Palo Alto, CA, USA). PL
was performed on Varian Cary Eclipse (Agilent, Santa Clara, CA, USA) to research the
recombination of charge carriers of samples. Electrochemical impedance spectroscopy
(EIS) of samples was measured on an electrochemical workstation (Shanghai chenhua)
in a standard three-electrode system in which the working electrode was the FTO glass
with synthesized samples (10 mg catalyst in 1 mL 1% ethanol and 0.5 mL Nafion with an
active area of 1 cm2); the reference electrode was the Ag/AgCl electrode; and the counter
electrode was Pt wire. The electrolyte was 0.4 M Na2SO4 aqueous solution.

3.4. Photocatalytic Rhodamine b Degradation

The photocatalytic performance test was conducted under LED lamp (λ = 420 nm)
irradiation. In the reaction, 10 mg samples were put into 50 mL 20 ppm rhodamine B (RhB)
solution and stirred for 30 min under dark condition. Then the mixture was illuminated
under a LED lamp (λ = 420 nm) for 1h. The original solution concentration was labeled
C0. During the irradiation, the suspension (2–3 mL) was taken from the dispersion every
10 min, and the clarified reaction solution (concentration C) could be obtained by filtering
with a needle filter. The absorbance of the solution at 664 nm was determined using
a Shimazu UV-2600 UV-Vis spectrophotometer. The degradation efficiency of the RhB
solution was calculated according to the formula D = ln (C/C0) × 100%. The absorption
method replaced C0 and C according to the Lambert–Beer law.

4. Conclusions

In conclusion, the MIO/PCN composites were synthesized by a facile in situ method
that tightly combined PCN and MIO. The successful construction of MIO/PCN was de-
termined by XRD, TEM, and XPS analysis. The best-performing sample was determined
to be the 2.5 wt% MIO/PCN composite, which could degrade RhB almost 100% within
50 min under LED light irradiation. The reason for the excellent degradation capability of
MIO/PCN was revealed by DRS, PL/TRPL, and EIS analysis. Experimental data showed
the phase junction MIO provided a reliable electronic transmission channel for charge
transfer and improved the separation efficiency of electron and hole. The active species
were identified as ·O2

− and ·OH by photodegradation reaction containing scavenger and
EPR. Additionally, the durability and stability of the MIO/PCN were upheld to an excellent
degree after four cycle tests. Our work provides an avenue for the application of phase
junction materials in photocatalysis.
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