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Abstract: Tissue inhibitors of metalloproteinases (TIMPs) play a crucial role in endogenous angiogen-
esis besides the regulation of matrix metalloproteinase (MMP) activity. Associations between TIMP-2
gene polymorphisms and the risk of retinopathy of prematurity (ROP) were examined. Premature
infants born between 2009 and 2018 were included. Five single-nucleotide polymorphisms (SNPs) of
TIMP-2 were analyzed with real-time polymerase chain reaction (PCR). Multivariate logistic regres-
sion was applied to model associations between TIMP-2 polymorphisms and ROP susceptibility and
severity. The GA+AA genotype in individuals with the TIMP-2 polymorphism of rs12600817 was
associated with a higher risk of ROP (odds ratio [OR]: 1.518, 95% confidence interval [CI]: 1.028–2.242)
compared with their wild-type genotypes. The AA genotype (OR: 1.962, 95% CI: 1.023–3.762) and the
AA+GA genotype (OR: 1.686, 95% CI: 1.030–2.762) in individuals with the rs12600817 polymorphism
had higher risks of severe, treatment-requiring ROP relative to their wild-type counterparts. In
patients with treatment-requiring ROP, the AG+GG genotypes in the TIMP-2 polymorphism of
rs2889529 were correlated with the treatment response (p = 0.035). The TIMP-2 polymorphism of
rs12600817 help in predicting ROP risks in preterm infants, while the polymorphism of rs2889529 can
serve as a genetic marker in evaluating the ROP treatment response.

Keywords: TIMP-2; retinopathy of prematurity; single nucleotide polymorphisms (SNPs)

1. Introduction

Retinopathy of prematurity (ROP) is a neovascular retinopathy that occurs among
premature infants. Severe complications include retinal detachment, causing severe vision
loss or blindness [1]. ROP has two phases: The first phase involves a delay of retinal
vascular growth after birth, and the second phase comprises hypoxia-induced pathological
vessel growth [2]. The pathophysiology of ROP is evolving toward genetic factors as the
advancement of prenatal care improves the survival of premature babies.

Genetic polymorphism includes single-nucleotide polymorphism (SNP) [3], which
refers to the presence of two distinct nucleotide alleles in genome positions that appear
in a significant portion of the population [4]. SNPs have been used to predict diseases
and individualize medical treatment. For example, they can be used to detect patients’
responses to drugs and chemicals and track genetic variance among family members [5].

The human TIMP-2 gene (OMIM 188825) is located on chromosome 17q25 [6]. Tissue
inhibitor of metalloproteinase 2 (TIMP-2) maintains tissue homeostasis [7] by suppressing
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the proliferation of quiescent tissues through angiogenic factors, according to the NCBI’s
Reference Sequence (RefSeq) [6,8]. Most studies on TIMP-2 polymorphisms have been
performed in relation to cancers [9,10]. Given that neovascularization occurs in both cancers
and ROP, studies have discussed the correlation between TIMP-2 and ROP [11] or retinal
neovascularization [12]. Still, most of them have focused on the relationship of TIMP-2
with matrix metalloproteinases (MMPs) rather than its direct effect on ROP.

Here, we examined five TIMP-2 SNPs to evaluate whether TIMP-2 SNPs affect ROP
risk, severity, recurrence, and response to treatment.

2. Results

The demographics and clinical characteristics of the studied premature infants are
presented in Table 1. Of the 450 premature infants examined, 224 had ROP (the ROP group),
and 226 did not (the non-ROP group, which served as controls). GA and BW significantly
differed between the non-ROP and ROP groups (p < 0.001). No significant difference
was observed in sex (p = 0.775). In subsequent models that examined the risk profiles
associated with genetic polymorphisms, GA and BW were controlled as confounders in
each comparison of adjusted ORs and 95% CIs.

Table 1. Demographic and clinical characteristics of infants with and without retinopathy of prematurity.

Subject
Characteristics

Non-ROP
(n = 226)

ROP
(n = 224) p Value

Gestational age (weeks)
Mean ± SD (weeks) 31.27 ± 2.81 26.95 ± 2.15 <0.001
Birth weight (gram)
Mean ± SD (weeks) 1521.70 ± 517.60 883.86 ± 261.29 <0.001

Gender, n (%)
Male 115 (50.9%) 117 (52.2%) 0.775

Female 111 (49.1%) 107 (47.8%)
Stage
1 + 2 113 (50.4%)

3 + 4 + 5 111 (49.6%)
Zone
1 + 2 204 (91.1%)

3 20 (8.9%)
Plus

0 133 (59.4%)
1 91 (40.6%)

Recurrent
No 216 (96.4%)
Yes 8 (3.6%)

Response
No 27 (12.1%)
Yes 197 (87.9%)

Table 2 presents the relationships between TIMP-2 polymorphisms and the distribution
of patients with or without ROP. In the study population, the TIMP-2 alleles with the highest
frequencies included rs2889529, rs8068674, rs16971783, rs7220980, and rs12600817, and each
was homozygous for A/A, C/C, T/T, A/A, G/G. For the rs2889529, rs8068674, rs16971783,
and rs7220980 polymorphisms, no significant difference was observed in the adjusted OR
when comparing the ROP groups with their wild-type counterparts (Table 2). This finding
indicated that the aforementioned polymorphisms were not associated with increased risks
of ROP. For rs12600817, significant differences in percentage were found in AA+GA, but
not GA or AA individually, compared with the wild-type genotypes (OR: 1.518, 95% CI:
1.028–2.242; p = 0.035). This result indicated higher risks of ROP for the AA+GA genotype
of the rs12600817 polymorphism than for the wild-type genotypes.
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Table 2. Distribution frequency of TIMP-2 genotypes in infants with and without retinopathy
of prematurity.

Genotype
SNP

Non-ROP
(n = 226)

ROP
(n = 224) OR (95% CI) p Value

rs2889529
AA 109 (48.2%) 118 (52.7%) 1.00
AG 94 (41.6%) 82 (36.6%) 0.806 (0.543–1.195) 0.283
GG 23 (10.2%) 24 (10.7%) 0.964 (0.514–1.807) 0.909

AG+GG 117 (51.8%) 106 (47.3%) 0.837 (0.578–1.212) 0.345
rs8068674

CC 117 (51.8%) 113 (50.4%) 1.00
CT 92 (40.7%) 94 (42.0%) 1.058 (0.719–1.557) 0.775
TT 17 (7.5%) 17 (7.6%) 1.035 (0.504–2.128) 0.925

CT+TT 109 (48.2%) 111 (49.6%) 1.054 (0.729–1.526) 0.779
rs16971783

TT 196 (86.7%) 190 (84.8%) 1.00
TA 30 (13.3%) 31 (13.8%) 1.066 (0.621–1.830) 0.817
AA 0 (0.0%) 3 (1.4%) —

TA+AA 30 (13.3%) 34 (15.2%) 1.169 (0.688–1.986) 0.563
rs7220980

AA 161 (71.2%) 146 (65.2%) 1.00
AG 61 (27.0%) 71 (31.7%) 1.284 (0.853–1.932) 0.232
GG 4 (1.8%) 7 (3.1%) 1.930 (0.554–6.727) 0.302

AG+GG 65 (28.8%) 78 (34.8%) 1.323 (0.889–1.970) 0.167
rs12600817

GG 90 (39.8%) 68 (30.4%) 1.00
GA 99 (43.8%) 109 (48.6%) 1.457 (0.961–2.209) 0.076
AA 37 (16.4%) 47 (21.0%) 1.681 (0.986–2.867) 0.056

GA+AA 136 (60.2%) 156 (69.6%) 1.518 (1.028–2.242) 0.035 *
Abbreviations: SNP, single-nucleotide polymorphism; OR, odds ratio; CI: confidence interval. * Statistically-
significant at p < 0.05.

Next, the ROP group (n = 224) was subdivided into mild ROP (n = 114) and severe ROP
(n = 110). We then discussed the relationship between their TIMP-2 polymorphisms and the
severity of ROP (Table 3). No significant differences in the percentage of ROP patients were
observed in the rs2889529, rs8068674, rs16971783, and rs7220980 polymorphisms in either
subgroup compared with their wild-type counterparts. No significant difference in the per-
centage of ROP patients was found in the rs12600817 polymorphism between the mild ROP
group and the wild-type counterpart. However, the AA (OR: 1.962, 95% CI: 1.023–3.762;
p = 0.043) and AA+GA (OR: 1.686, 95% CI: 1.030–2.762; p = 0.037) genotypes showed signifi-
cant differences in percentage between the severe ROP group and the wild-type counterpart
(Table 3). This result indicated that both the AA and AA+GA genotypes were associated
with higher risks of severe ROP than their corresponding wild-type genotypes.

Next, we investigated the relationship between ROP and the frequency of TIMP-2
alleles. Among the 450 patients recruited, a total of 900 alleles were recorded. Of the
900 alleles, 452 belonged to the non-ROP group, while 448 belonged to the ROP group
(Table 4). The rs2889529, rs8068674, rs16971783, and rs7220980 polymorphisms did not
exhibit a significant percentage difference compared with the wild-type counterpart. For
rs12600817, the G and A alleles showed a significant percentage difference (OR: 1.336, 95%
CI: 1.025–1.743; p = 0.032), which indicated that patients with the A allele of the rs12600817
polymorphism had a higher ROP risk.

Then, the ROP conditions were further separated into mild and severe ROP. According
to Table 5, 228 alleles belonged to the mild ROP group, while 220 were in the severe
ROP group. The rs2889529, rs8068674, rs16971783, and rs7220980 polymorphisms did not
exhibit significant differences in percentage in either subgroup compared with the wild-
type counterparts. No significant difference in percentage was observed in the rs12600817
polymorphism between the mild ROP group and the non-ROP group, but the severe
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ROP group exhibited a significant percentage difference compared with the wild-type
counterpart (OR: 1.446, 95% CI: 1.044–2.002; p = 0.026). The results indicated that the A
allele of the rs12600817 polymorphism was associated with a higher risk of severe ROP in
premature infants.

Table 3. Distribution frequency of TIMP-2 genotypes in infants without or with mild or severe
retinopathy of prematurity.

SNP
Genotypes

Non-ROP
(n = 226)

Mild ROP Severe ROP

(n= 114) OR (95% CI) (n = 110) OR (95% CI)

rs2889529
AA 109 (48.2%) 62 (54.4%) 1.00 56 (50.9%) 1.00
AG 94 (41.6%) 38 (33.3%) 0.711 (0.436–1.159) 44 (40.0%) 0.911 (0.563–1.475)
GG 23 (10.2%) 14 (12.3%) 1.070 (0.514–2.229) 10 (9.1%) 0.846 (0.377–1.901)

AG+GG 117 (51.8%) 52 (45.6%) 0.781 (0.497–1.227) 54 (49.1%) 0.898 (0.569–1.417)
rs8068674

CC 117 (51.8%) 55 (48.2%) 1.00 58 (52.7%) 1.00
CT 92 (40.7%) 47 (41.2%) 1.087 (0.675–1.749) 47 (42.7%) 1.031 (0.643–1.652)
TT 17 (7.5%) 12 (10.6%) 1.502 (0.671–3.360) 5 (4.6%) 0.593 (0.209–1.688)

CT+TT 109 (48.2%) 59 (51.8%) 1.151 (0.734–1.807) 52 (47.3%) 0.962 (0.610–1.519)
rs16971783

TT 196 (86.7%) 97 (85.1%) 1.00 93 (84.5%) 1.00
TA 30 (13.3%) 15 (13.2%) 1.010 (0.519–1.966) 16 (14.6%) 1.124 (0.584–2.164)
AA 0 (0.0%) 2 (1.7%) — 1 (0.9%) -

TA+AA 30 (13.3%) 17 (14.9%) 1.145 (0.602–2.178) 17 (15.5%) 1.194 (0.627–2.274)
rs7220980

AA 161 (71.2%) 74 (64.9%) 1.00 72 (65.5%) 1.00
AG 61 (27.0%) 36 (31.6%) 1.284 (0.782–2.107) 35 (31.8%) 1.283 (0.778–2.115)
GG 4 (1.8%) 4 (3.5%) 2.176 (0.530–8.938) 3 (2.7%) 1.677 (0.366–7.687)

AG+GG 65 (28.8%) 40 (35.1%) 1.339 (0.828–2.165) 38 (34.5%) 1.307 (0.803–2.128)
rs12600817

GG 90 (39.8%) 37 (32.5%) 1.00 31 (28.2%) 1.00
GA 99 (43.8%) 55 (48.2%) 1.351 (0.815–2.239) 54 (49.1%) 1.584 (0.936–2.679)
AA 37 (16.4%) 22 (19.3%) 1.446 (0.754–2.776) 25 (22.7%) 1.962 (1.023–3.762) a

GA+AA 136 (60.2%) 77 (67.5%) 1.377 (0.857–2.212) 79 (71.8%) 1.686 (1.030–2.762) b

a p = 0.043; b p = 0.037.

Table 4. Distribution frequency of TIMP-2 alleles of infants with and without retinopathy of prematurity.

Genotype
SNP

Non-ROP
(n = 452)

ROP
(n = 448) OR (95% CI) p Value

rs2889529
A allele 312 (69.0%) 318 (71.0%) 1.00
G allele 140 (31.0%) 130 (29.0%) 0.911 (0.685–1.212) 0.522

rs8068674
C allele 326 (72.1%) 320 (71.4%) 1.00
T allele 126 (27.9%) 128 (28.6%) 1.035 (0.774–1.384) 0.817

rs16971783
T allele 422 (93.4%) 411 (91.7%) 1.00
A allele 30 (6.6%) 37 (8.3%) 1.266 (0.768–2.089) 0.354

rs7220980
A allele 383 (84.7%) 363 (81.0%) 1.00
G allele 69 (15.3%) 85 (19.0%) 1.300 (0.917–1.842) 0.140

rs12600817
G allele 279 (61.7%) 245 (54.7%) 1.00
A allele 173 (38.3%) 203 (45.3%) 1.336 (1.025–1.743) 0.032 *

Abbreviations: SNP, single-nucleotide polymorphism; OR, odds ratio; CI: confidence interval. * Statistically-
significant at p < 0.05.
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Table 5. Distribution frequency of TIMP-2 alleles of infants without and with mild or severe retinopa-
thy of prematurity.

SNP
Genotypes

Non-ROP
(n = 452)

Mild ROP Severe ROP

(n = 228) OR (95% CI) (n = 220) OR (95% CI)

rs2889529
A allele 312 (69.0%) 162 (71.1%) 1.00 156 (70.9%) 1.00
G allele 140 (31.0%) 66 (28.9%) 0.908 (0.641–1.287) 64 (29.1%) 0.914 (0.643–1.301)

rs8068674
C allele 326 (72.1%) 157 (68.9%) 1.00 163 (74.1%) 1.00
T allele 126 (27.9%) 71 (31.1%) 1.170 (0.826–1.656) 57 (25.9%) 0.905 (0.628–1.303)

rs16971783
T allele 422 (93.4%) 209 (91.7%) 1.00 202 (91.8%) 1.00
A allele 30 (6.6%) 19 (8.3%) 1.279 (0.703–2.326) 18 (8.2%) 1.253 (0.682–2.302)

rs7220980
A allele 383 (84.7%) 184 (80.7%) 1.00 179 (81.4%) 1.00
G allele 69 (15.3%) 44 (19.3%) 1.327 (0.875–2.014) 41 (18.6%) 1.271 (0.831–1.945)

rs12600817
G allele 279 (61.7%) 129 (56.6%) 1.00 116 (52.7%) 1.00
A allele 173 (38.3%) 99 (43.4%) 1.238 (0.896–1.710) 104 (47.3%) 1.446 (1.044–2.002) a

a p = 0.026.

Finally, rs2889529 and its association with the clinicopathologic characteristics of ROP
were examined (Table 6). Patients with severe ROP carrying the AG+GG genotype had
a significantly lower chance and risk of progressing from stage 3 to 5 ROP (p = 0.010)
compared with the wild-type counterparts. In addition, no significant difference in per-
centage was observed in ROP recurrence between patients with the AA genotype and
those with the AG and GG genotypes (p = 0.198) or the subset of patients with severe
ROP (p = 0.157). Compared with the wild-type AA genotype, the AG+GG genotype was
associated with a significantly decreased treatment response for all the patients (OR: 0.404,
95% CI: 0.173–0.943; p = 0.032). Furthermore, in the severe ROP group, patients with the
AG+GG genotype showed significantly worse treatment responses than those with the
wild-type AA genotype (OR: 0.383, 95% CI: 0.154–0.952; p = 0.035).

Table 6. Clinicopathologic characteristics of infants with retinopathy of prematurity, stratified by
polymorphic genotypes of TIMP-2 rs2889529.

Variable

ALL (n = 224) Severe ROP (n = 110)

AA
(n = 118)

AG+GG
(n = 106) p Value AA

(n = 56)
AG+GG
(n = 54) p Value

Stage
1 + 2 59 (50.0%) 54 (50.9%) p = 0.888 0 (0.0%) 6 (11.1%) p = 0.010

3 + 4 + 5 59 (50.0%) 52 (49.1%) 56 (100%) 48 (88.9%)
Zone
1 + 2 104 (88.1%) 100 (94.3%) p = 0.104 56 (100%) 54 (100%) —

3 14 (11.9%) 6 (5.7%) 0 (0.0%) 0 (0.0%)
Plus

0 73 (61.9%) 60 (56.6%) p = 0.423 11 (19.6%) 8 (14.8%) p = 0.503
1 45 (38.1%) 46 (43.4%) 45 (80.4%) 46 (85.2%)

Recurrent
No 112 (94.9%) 104 (98.1%) p = 0.198 50 (89.3%) 52 (96.3%) p = 0.157
Yes 6 (5.1%) 2 (1.9%) 6 (10.7%) 2 (3.7%)

Response
No 9 (7.6%) 18 (17.0%) p = 0.032 a 9 (16.1%) 18 (33.3%) p = 0.035 b

Yes 109 (92.4%) 88 (83.0%) 47 (83.9%) 36 (66.7%)
a OR (95% CI): 0.404 (0.173–0.943); b OR (95% CI): 0.383 (0.154–0.952).

3. Discussion

This study evaluated the relationship between different TIMP-2 polymorphisms and
their ROP risks, treatment response, and ROP recurrence. The main findings of the study
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are that the rs12600817 polymorphism of TIMP-2 could be an indicator of the risks of ROP
in premature infants. Patients with at least one A allele in the genotype of the rs12600817
polymorphism exhibited a higher ROP risk than their homozygous GG counterpart (OR:
1.686, 95% CI: 1.030–2.762; p = 0.037). In addition, the rs2889529 polymorphism can be
used to evaluate the ROP treatment response. The presence of one or two G alleles in the
genotype was associated with a lower risk of stage 3–5 ROP than their homozygous AA
counterparts (p = 0.010). Patients with the G allele had a worse treatment response for ROP
than those with the AA genotype, indicating that the G allele can serve as a genetic marker
of the ROP treatment response.

The TIMP-2 protein acts as a metastasis suppressor [13–15] and can inhibit the reaction
of MMPs, such as MMP-2 [14,16] and MMP-9 [16]; thus, it plays a role in the maintenance
of the extracellular matrix of the retina [17,18]. It can also inhibit the mitogenic response
of human microvascular endothelial growth factor, which can lead to endothelial cell
proliferation [7], the suppression of which can inhibit angiogenesis. ROP is caused by the
abnormal proliferation of blood vessels, eventually progressing to retinal detachment. Our
data indicated that the TIMP-2 polymorphism of rs12600817, which contains the A allele,
might cause the loss of function of the TIMP-2 protein, inhibiting angiogenesis, causing
unnormal vessel proliferation, and eventually leading to ROP development.

Our findings demonstrate TIMP-2 variation as a novel factor of ROP compared with
traditional risk factors, such as GA and BW. Although gene therapy for SNPs is not yet
available, a better understanding of genes and their influence on downstream factors can
help devise better treatment strategies for ROP. SNP testing can help in risk prediction in
individuals in the future. For example, identifying the rs12600817 polymorphism can lead
to testing for the A allele, thereby enabling the risk prediction of ROP in premature infants.
Similarly, identifying the G allele of the rs2889n529 polymorphism can indicate a lower
potential response to ROP treatment, which may serve as a treatment marker.

Consistent with previous studies, decreased TIMP-2 expression may lead to myopia in
mammals [19] and did have an effect on breast cancer [20]. Unlike the traditional view that
TIMP-2 is considered an MMP inhibitor, ours is the first study to investigate the TIMP-2
genome and identify that the rs12600817 polymorphism can affect the development of
severe ROP in premature infants. In addition, the G allele in the rs2889529 polymorphism
seemed to have two effects on patients with severe ROP. First, it appeared to decrease the
risks of stage 3–5 ROP in patients. Second, the data suggested that the G allele tended to
reduce patients’ treatment responses.

Hypoxia-Induced retinal neovascularization is often observed in the second phase of
ROP [2]. As former studies have shown, VEGF has been linked to neovascularization [21],
while hypoxia served as a gene inducer for VEGF [22]. Therefore, activation of VEGF
had long been linked to the second phase of ROP. On the other hand, the TIMP-2 gene
has been shown to phosphorylate the VEGF receptor, which causes the VEGF receptor to
be inhibited [23]. The rs12600817 polymorphism could potentially alter the function of
TIMP-2, which could no longer cause phosphorylation of the VEGF receptor. As the VEGF
receptor is no longer inhibited, a large amount of VEGF could be expressed, leading to
neovascularization and causing severe treatment needing ROP.

With these newly found results, the diagnosis and treatment response for ROP could
be improved clinically. For preterm infants, polymorphism rs12600817 could serve as a
biomarker for severe ROP. For infants with genotypes AA and GA, closer follow-up of the
infant’s eye condition should be exercised to ensure a timely treatment is performed on
time once patients’ retinopathy worsens. Polymorphism rs2889529 should also be checked
because it can serve as a genetic marker for treatment response. A worse response to the
treatment was expected for infants with AG and GG genotypes. Thus, more aggressive or
combined interventions of various treatments could be considered in such patients.

This study has a few limitations. First, the study population enrolled for this study
was large compared with that in other ROP SNP studies [24–28], but the number is small
compared with studies of SNPs in other visual diseases [29–33]. Second, because the study
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was conducted in Taiwan, all of the patients were of East Asian/Han Chinese ethnicity;
thus, the study results may not be generalizable to other ethnicities; studies have shown
that infants from Asian countries have higher risks of ROP than white infants [34,35]. Third,
we only studied TIMP-2, but other genes could also influence the occurrence of ROP and its
severity. If this is true, it might indicate that ROP is a multigene disease, in which TIMP-2
only contributed to a portion of the risk to ROP. Fourth, the analysis of different study
groups did not include sex, which can affect ROP. Other maternal factors such as maternal
age [36], hypertensive disorders of pregnancy, and maternal diabetes mellitus may exert
effects, but they were not investigated here [37]. Future studies should investigate how
these factors and genotypes influence the expression of ROP and whether the different
SNPs of TIMP-2 affect the condition of patients with ROP.

4. Materials and Methods
4.1. Study Population

This study was conducted at the Linkou and Taipei branches of Chang Gung Memorial
Hospital, Taiwan. This study was approved by the Institutional Review Board of Chang
Gung Medical Foundation (No. 202001715A3) and adhered to the tenets of the Declaration
of Helsinki.

Infants born between 2009 and 2018 were enrolled after written informed consent was
obtained from their parents. Both full-term infants and preterm infants (defined as those
born before 37 weeks of gestational age [GA] or with birth weight [BW] < 1500 g) were
included [38]. All of the infants were born in Taiwan and had an ethnicity of Chinese. We
excluded patients without complete medical records or with <6-month follow a period. In
total, 55 patients were excluded due to below reasons: 14 patients had incomplete medical
records because they were born in other medical centers; 8 patients withdrew from the
study due to long-hour of waiting for the detailed eye exam; 33 patients withdrew because
they were afraid of the blood drawing process. All included infants underwent screening
for ROP that was conducted by two ophthalmologists. Depending on whether the screening
criteria for ROP were met, the infants were divided into no ROP and ROP groups. All
the patients were first examined by doctors with binocular examination for the grading
of ROP according to the criteria of ICROP [39]. RetCam was used for the documentation
of the progression of the disease and is generally reserved for more severe cases. Based
on their condition, ROP was subdivided into mild (no treatment required, including type
2, or milder than type 2) and severe (type 1) ROP [40]. Type 1 ROP, for which treatment
(either anti-vascular endothelium growth factor or laser photocoagulation) is indicated, was
defined as zone I, any stage ROP with plus disease (a degree of dilation and tortuosity of the
posterior retinal blood vessels meeting or exceeding that of a standard photograph); zone
I, stage 3 ROP without plus disease; or zone II, stage 2 or 3 ROP with plus disease. There
were 112 patients grouped as treatment-requiring ROP. Among the treated eyes, 80 patients
received IVI of anti-VEGF (56 with bevacizumab, 8 with ranibizumab, 16 aflibercept),
12 patients received laser photocoagulation, and 20 received both IVI of anti-VEGF and
laser photocoagulation. Type 2 ROP was defined as ROP for which treatment was not
indicated but required close clinical monitoring, which included zone I, stage 1 or 2 ROP
without plus disease or zone II, and stage 3 ROP without plus disease [40].

Recurrence after treatment with IVR was defined as having initial ROP regression,
followed by the reappearance of plus disease, preretinal and vitreous hemorrhage, wors-
ening of retinal neovascularization, or progression to retinal detachment. Nonresponders
were defined as those cases with persistence or worsening of plus disease, persistence or
worsening of neovascular proliferation, or progression to retinal detachment [41–43].

4.2. Selection of TIMP-2 Polymorphism

More than 29,321 SNPs have been documented in the dbSNPs database regarding
the intron or downstream of the TIMP-2 gene region. Overall, the selection of SNPs for
association analysis of candidate genes adhered to the following principles: (1) Haplotype-
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tagging (htSNPs) SNPs are derived from the analyses of HapMap data and essentially
provide a minimal set of markers that would guarantee that at least one marker is in
strong linkage disequilibrium with any unmeasured marker according to our estimates
of pairwise linkage disequilibrium measures. (2) The most known polymorphisms of the
coding region (cSNPs) were included in genotyping. Ultimately, we selected five TIMP-2
SNPs—rs2889529, rs8068674, rs16971783, rs7220980, and rs12600817—because they adhered
to the aforementioned principles and were reported in studies on TIMP-2 pathophysiology
in ocular diseases [44–46].

4.3. Genomic Data Extraction

The patients’ DNA was extracted using a DNA collection kit (Oragene-DNA; DNA-
Genotek, Ottawa, ON, Canada) with 3 mL blood samples as per the manufacturers’ in-
structions. The extracted DNA samples were dissolved in TE buffer (10 mM Tris at pH 7.8
and 1 mM EDTA), and the optical density of the absorbance was measured at 260 nm,
which was measured by Thermo ScientificTM NanoDrop 2000 UV-Vis spectrophotometers
(Thermo Fisher Scientific, Waltham, MA, USA). The products were then stored at −20 ◦C
to create templates for polymerase chain reaction (PCR)

4.4. Real-Time PCR

The rs2889529, rs8068674, rs16971783, rs7220980, and rs12600817 variants of TIMP-2
were assessed using the ABI StepOne Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA) and analyzed using SDS v3.0 software (Applied Biosystems) with a TaqMan
assay. Each reaction required a mixture of 2.5 mL of TaqMan Genotyping Master Mix,
0.125 mL of the TaqMan probe mix, and 10 ng of genomic DNA, with a final volume of
5 mL. The initial denaturation was performed at 95 ◦C for 10 min, followed by 40 cycles of
95 ◦C for 15 s and 60 ◦C for 1 min for annealing and extension.

4.5. Statistical Analyses

Hardy–Weinberg equilibrium was assessed using a goodness-of-fit χ2 test for biallelic
markers. The ROP characteristics between the ROP and non-ROP groups were compared
using the Mann–Whitney U test and Fisher’s exact test. The multivariate logistic regres-
sion model was applied to study the associations between the TIMP-2 variants and ROP
susceptibility and their effect on ROP severity. We then used multiple logistic regression
models to estimate the risks and clinicopathological characteristics by calculating the ad-
justed odds ratios (ORs) and 95% confidence intervals (CIs) associated with the genotype
frequencies. The differences were considered significant at p < 0.05. All statistical analyses
were performed using SAS software version 9.1 (SAS Institute, Cary, NC, USA).

5. Conclusions

There were two main findings from this study. First, the TIMP-2 polymorphism of
rs12600817 can help in the prediction of ROP risk in preterm infants. Second, the TIMP-2
polymorphism of rs2889529 can serve as a genetic marker for evaluating the ROP treatment
response. This information can guide the individualized management and treatment of
patients with ROP.
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