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Abstract: To date, the effect of resveratrol on tinnitus has not been reported. The attenuative effects
of resveratrol (RSV) on a salicylate-induced tinnitus model were evaluated by in vitro and in vivo
experiments. The gene expression of the activity-regulated cytoskeleton-associated protein (ARC),
tumor necrosis factor-alpha (TNFα), and NMDA receptor subunit 2B (NR2B) in SH-SY5Y cells was
examined using qPCR. Phosphorylated cAMP response element-binding protein (p-CREB), apoptosis
markers, and reactive oxygen species (ROS) were evaluated by in vitro experiments. The in vivo
experiment evaluated the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and auditory
brainstem response (ABR) level. The NR2B expression in the auditory cortex (AC) was determined
by immunohistochemistry. RSV significantly reduced the salicylate-induced expression of NR2B,
ARC, and TNFα in neuronal cells; the GPIAS and ABR thresholds altered by salicylate in rats were
recovered close to their normal range. RSV also reduced the salicylate-induced NR2B overexpression
of the AC. These results confirmed that resveratrol exerted an attenuative effect on salicylate-induced
tinnitus and may have a therapeutic potential.
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1. Introduction

Tinnitus is the conscious perception of sound without any corresponding external
acoustic stimulus, commonly described as a phantom sound [1]. In many cases, tinnitus is
caused by damage to the cochlear or auditory nerve or the central auditory pathway [2]. It
is accompanied by symptoms such as anxiety, emotional disturbances, sleep disturbances,
and work disorders, among others [1,3]. So far, there is no FDA-approved treatment for
tinnitus. Although tinnitus can be transiently suppressed by lidocaine, no drugs have been
shown to reverse the neural hyperactivity at the root of tinnitus. Existing medications
cannot cure tinnitus, but can relieve a few of the serious symptoms of tinnitus.

Salicylate, one of the most widely used drugs, is prescribed for treating pain, headaches,
a high fever, and inflammation. Nowadays, salicylate is commonly used in the secondary
prevention of chronic coronary syndromes. However, its long-term use can cause tinnitus
and eventually hearing loss due to an auditory nerve dysfunction [4,5].

A consequential nerve malfunction is the result of abnormal excitability at the brain-
stem and cerebral cortex [6], which is induced by the overactivity of the N-methyl-D-
aspartate (NMDA) receptor subunit 2B (NR2B) [7–10]. Several studies have suggested that
an increase in the expression of NMDA receptors causes ototoxicity in the cochlea [11,12].
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A high dose of salicylate inhibits cyclooxygenase (COX) activity and increases the level
of arachidonic acid in the lipid bilayers, which increases the open probability of NMDA
receptors [10].

Resveratrol (RSV) is a polyphenol substance contained in most berries. It is known
to have antioxidant, anti-aging, and anti-inflammatory effects [13]. RSV also mediates
neuroprotective effects by maintaining the expression of glutamatergic and cholinergic
receptors via influencing the sirtuin1 (SIRT1) expression [14]. The protective effect of
RSV against cisplatin-induced ototoxicity using the HEI-OC1 cell line via antioxidants
has been reported [15]. Although the neuroprotective role of RSV is well-reported, there
are no reports on the attenuative effect of RSV on salicylate- or noise-induced tinnitus.
In this study, we evaluated the protective effect of RSV in salicylate-induced in vitro and
in vivo models.

2. Results
2.1. RSV Induces a Decrease in the NR2B Expression in Neuronal Cells

SH-SY5Y cells were differentiated into neuron-like cells and treated with RSV or
salicylate. The expression of NR2B, ARC, and TNFα increased in the salicylate-treated cells,
but decreased in the RSV-pretreated cells, as measured by qPCR (Figure 1A). The NR2B
expression was determined by immunocytochemical staining and an immunoblot analysis;
consistent results were obtained (Figure 1B–D).
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cells. Salicylate significantly increased the expression of NR2B, TNFα, and the immediate early gene
ARC, whose expression was decreased in resveratrol (RSV) pretreated SH-SY5Y cells, as measured by
quantitative polymerase chain reaction (A); * p < 0.05, mean ± SD. NR2B expression in SH-SY5Y cells
increased with salicylate treatment and decreased with RSV pretreatment, as demonstrated by im-
munocytochemical staining (B) and immunoblot analysis (C). Western blot experiments were repeated
and the bands were quantified using ImageJ software (D); * p < 0.05, mean ± SD. ARC: activity-
regulated cytoskeleton-associated protein; TNFα: tumor necrosis factor-alpha; NR2B: NMDA receptor
subunit 2B. Scale bar = 50 um.

2.2. RSV Pretreatment Decreases Phosphorylated CREB in Salicylate-Treated Neuronal Cells

Immunocytochemical staining and an immunoblotting analysis demonstrated that the
p-CREB content increased in the salicylate-treated cells. There was no decrease with the
RSV pretreatment (Figure 2A,B). Immunoblot assays were repeated three times and the
p-CREB expression was quantified (Figure 2C).
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Figure 2. Phosphorylation of cAMP response element-binding protein (CREB) was reduced in
resveratrol (RSV)-pretreated neuronal cells. Salicylate treatment induced CREB phosphorylation,
which was reduced in RSV-pretreated SH-SY5Y cells as shown by immunocytochemistry stain-
ing (A) (scale bar = 100 µm) and immunoblot analysis (B). Western blot data were quantified and
presented as a graph (C); * p < 0.05, mean ± SD. GAPDH was used as the internal standard.
Scale bar = 100 µm.

2.3. RSV Inhibits a ROS Increase in Salicylate-Treated Neuronal Cells

To determine the intracellular ROS levels in salicylate-treated neuronal cells, ROS-
detecting fluorescent DCFH-DA was used. The ROS levels increased in the salicylate-treated
cells, but decreased with the RSV pretreatment (Figure 3A,B). The immunoblot analysis
revealed that the salicylate-induced increase in p53 and cleaved caspase-3 expression was
reduced when the neuronal cells were pretreated with RSV (Figure 3C).

2.4. Effect of RSV on Salicylate-Treated Rat Cortical Neurons

We then confirmed the protective effects of RSV in the primary culture cortical neurons.
Rat cortical neurons were isolated and cultured in conditioned media and subjected to an
immunoblot analysis with antibodies specific for NR2B and the apoptotic protein cleaved
caspase-3. The NR2B and cleaved caspase-3 expression was increased in the salicylate-
treated cells; it decreased with the RSV pretreatment (Figure 4).
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Figure 3. Pretreatment of resveratrol (RSV) reduced intracellular reactive oxygen species (ROS) levels
in salicylate-treated neuronal cells. ROS levels increased with salicylate treatment, but decreased
in RSV-pretreated neuronal cells as observed by fluorescence microscopy (A). The ROS levels were
quantified using ImageJ (B); * p < 0.05, mean ± SD. Salicylate increased the expression of cleaved
caspase-3 and p53, which was deceased in RSV-pretreated cells (C); scale bar = 100 µm. GAPDH was
used as the internal standard. Scale bar = 100 µm.
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Figure 4. Effect of resveratrol (RSV) on the expression of NR2B and cleaved caspase-3 in rat cortical
neuronal cells. Immunoblot analysis of the expression of NR2B and cleaved caspase-3 (A). Expression
of NR2B (B) and cleaved caspase-3 (C) quantified using ImageJ (* p < 0.05, mean ± SD). GAPDH was
used as the internal standard. NR2B: NMDA receptor subunit 2B.

2.5. RSV Attenuates a Salicylate-Induced GPIAS Decrease in Rats

As shown in Figure 5 there was no significant difference in the mean GPIAS value
between the control group (52%) and the study group (50%) during the baseline session
(day 0). However, there was a significant difference in the mean GPIAS values between
the two groups during the drug administration; the mean GPIAS values decreased in the
control group, but were attenuated by the RSV treatment in the study group. These results
suggested that RSV protected against salicylate-induced tinnitus (p < 0.05) (Figure 5).
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Figure 5. Resveratrol (RSV) attenuated a salicylate-induced decrease in gap-prepulse inhibition of the
acoustic startle reflex (GPIAS) ratio. From day 1 to 7, RSV treatment protected against a salicylate-induced
reduction of the GPIAS ratio in Sprague Dawley rats. * p < 0.05. PBS: phosphate-buffered saline.

2.6. RSV Attenuates a Salicylate-Induced Elevation of the ABR Threshold in Rats

As shown in Figure 6, a temporary elevated ABR threshold at 8, 16, and 32 kHz
was confirmed in the control group on day 7 compared with that before the treatment
(day 0), but RSV attenuated the elevation of the ABR threshold on day 7 in the study group.
The mean ABR threshold in both groups did not significantly differ between before the
treatment and one day after the end of the treatment (p > 0.05) (Figure 6). These results
suggested that RSV could potentially protect against a salicylate-induced threshold shift.
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Figure 6. Resveratrol (RSV) attenuated a salicylate-induced elevation of auditory brainstem response
(ABR) threshold in rats. RSV attenuated a salicylate-induced elevated ABR threshold shift except in
the click group; salicylate injection given for seven consecutive days. * p < 0.05.

2.7. Spatial Expression of NR2B in the Auditory Cortex after Salicylate and RSV Treatments

As shown in Figure 7A, the salicylate-treated control group showed an increased
NR2B expression in the auditory cortex whereas RSV significantly attenuated the NR2B
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expression (Figure 7B). In the group treated with salicylate and RSV, the NR2B expression
decreased to the level of the vehicle-treated group.
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3. Discussion

Salicylate is a widely prescribed drug due to its beneficial analgesic and anti-inflammatory
properties [16]. However, its long-term, high-dose usage may lead to adverse effects such
as tinnitus [17,18]. Salicylate abuse can stimulate the NMDA receptor and accelerate the
intracellular Ca2+ influx, causing the excitotoxicity of the auditory nervous system, eventu-
ally leading to cellular damage [19]. Here, we examined the effects of salicylate on neuronal
cells and identified that salicylate increased the expression of NR2B and its related genes,
TNFα and ARC.

RSV is a well-known natural compound that has several beneficial effects [20,21].
RSV mitigates neurodegenerative disorders that involve Sirtuin 1 activation [22]. In a
recently published paper, it was shown that the neuroprotective effect induced by RSV was
mediated by a resistance to glutamate-induced excitotoxicity. The authors suggested that
RSV could moderate glutamate release at the synaptic terminal by decreasing the protein
kinase activity, which in turn relieved the voltage-gating Ca2+ channel activity [23]. Thus,
RSV could be expected to have a protective effect on salicylate-induced neurotoxicity. In
this study, we demonstrated that the increased expression of NR2B and its related genes
induced by salicylate was reduced with an RSV pretreatment. At the cochlea level, the
protective effect of RSV against cisplatin-induced ototoxicity in HEI-OC1 auditory cells
has been reported [15]. RSV was decreased in cisplatin-induced ROS associated with
resveratrol. Excessive ROS production is one of the most important causes of hair cell
damage [24]. Non-steroidal anti-inflammatory drugs produce excessive ROS as a side effect
of long-term use and can induce ototoxicity of the peripheral/central auditory neurons [25].
Salicylate is also known to increase ROS levels in patients if used for long periods and can
eventually damage the cochlear spiral ganglion neurons [26]. Our in vitro experiments
confirmed that salicylate increased the ROS levels, which were decreased by a pretreatment
with RSV. CREB controls plasticity, neurogenesis, and survival in neurons [27]. Previous
studies have shown that CREB was phosphorylated via the Ca2+/calmodulin-dependent
protein kinase II (CaMKII) signaling pathway in the auditory cortex of mice with salicylate-
induced tinnitus [28,29]. In accordance with these studies, we observed an increase in
CREB phosphorylation in salicylate-treated neuronal cells, which decreased when the cells
were pretreated with RSV. Son et al. [30] reported that glutamate at high concentrations
induced neuronal cell death and ROS formation using HT22 neuronal cells. They observed
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that piceatannol reduced glutamate-induced cell death and ROS formation. RSV and
piceatannol have been shown to have antioxidant and anti-apoptotic effects [31].

Short-term tinnitus develops shortly after a high-dose salicylate injection. The known
mechanism of salicylate-induced tinnitus in animals is NMDA receptor stimulation [32].
The development of a GPIAS measurement has enabled the study of animal research in a
tinnitus model.

In this study, we focused on 16 kHz for the GPIAS. According to the review paper of
Galazyuk et al. [33], most salicylate studies were performed on rats for a tinnitus induction.
It has been shown that 1–2 h after a systemic salicylate injection ranging in dosage from
150 to 400 mg/kg, rats exhibit GPIAS deficits typically around 16 kHz [32] and rarely at a
wider range of frequencies [33]. Ralli et al. [34] reported that rats treated with salicylate
alone (SAL) showed a significant reduction in GPIAS at 16 kHz, which was consistent with
tinnitus-like behavior with a pitch near 16 kHz. These findings were confirmed by our
previous paper [14].

High doses of salicylate cause hyperactivation in the hippocampus and the cerebral
cortex (including the auditory cortex). The plasticity of these cortical excitatory neurons is
involved in salicylate-induced tinnitus [6,34–36]. We observed that NR2B overexpression
and excessive ROS production in salicylate-treated cells were reversed when they were
pretreated with RSV. These beneficial effects of RSV were confirmed in the primary cortical
neurons. Thus, these results suggest that RSV protects against cell excitotoxicity. Based
on our results in a tinnitus animal model, RSV therapy could be proposed as an effective
treatment for tinnitus.

4. Materials and Methods
4.1. Cell Culture and Treatment

SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle’s Medium/F12 supple-
mented with 10% fetal bovine serum, L-glutamine, and 1% antibiotics and incubated in a
humidified atmosphere of 5% CO2 at 37 ◦C. The cells were differentiated by a retinoic acid
(1 µM) treatment in a 0.1% serum-supplemented medium for 2 days [37]. The differentiated
cells were treated with 2 µM RSV in a 0.1% serum-supplemented medium for 12 h and then
treated with 40 µg/mL salicylate in a 0.1% serum-supplemented medium for 8 h.

The cerebral cortex was dissected from Sprague Dawley rat pups at embryonic day
18 and prepared for the cell culture. The primary rat cortical neuron cells were seeded
(0.5 × 106 cells/well) on poly-L-lysine (150 µg/mL; Sigma-Aldrich)-coated 6-well plates.
The cells were cultured in a growth medium containing Neurobasal A, 1X B27 supplement
(Invitrogen), 100 units/mL penicillin, 0.1 mg/mL streptomycin, and 0.5 mM glutamine
(Invitrogen) and incubated in a humidified incubator set at 37 ◦C supplied with 5% CO2.
These cells were subjected to the same treatment method as that for the SH-SY5Y cells,
except for the use of serum media.

4.2. Quantitative Polymerase Chain Reaction (qPCR)

The total RNA was extracted from the treated cells using RNAiso Plus (TAKARA,
Tokyo, Japan). The cDNA was synthesized using PrimeScript II 1st Strand cDNA Synthesis
kits (TAKARA) with the supplied buffer (0.2 µg random primers and 1 mM dNTPs). The
PCR was performed using human and rat gene-specific primers specific for NR2B, tumor
necrosis factor-alpha (TNFα), activity-regulated cytoskeleton-associated protein (ARC),
and β-actin using the Power SYBR Green PCR Master Mix (Applied Biosystems, Carlsbad,
CA, USA). The primers were synthesized by Genotech (Daejeon, Korea) and Integrated
DNA Technologies Inc. (Coralville, IA, USA). Details about the primers are summarized
in Table 1.
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Table 1. Primers used for the quantitative polymerase chain reaction.

Gene Forward Primer (5′→3′) Reverse Primer (3′→5′) Gene Accession

Human β-actin ATCCGCAAAGACCTGTACGC TCTTCATTGTGCTGGGTGCC NM_001101
Human NMDA (NR2B) GGAGAGGTGGTCATGAAGAG CATTGCTGCGTGACACCATG NM_000834.4

Human TNFα GTTGTAGCAAACCCTCAAGCTG CCAGCTGGTTATCTCTCAGCTC NM_000594.3
Human ARC ACAACAGGTCTCAAGGTTCCC AGCCGACTCCTCTCTGTAGC NM_015193.4
Rat GAPDH CTGCCACTCAGAAGACTGTGG TTCAGCTCTGGGATGACCTTG NM_017008.4

Rat NMDA (Nr2b) GGAGATGGAAGAACTGGAAGCTC GACACCTGCCATATTGTCGATG NM_012574.1
Rat TNFα CCACCACGCTCTTCTGTCTAC GATGATCTGAGTGTGAGGGTCTG NM_012675.3
Rat ARC GTCTGCTGCATAGAAGGAACCAG AGGGTGCCCACCACATACTGA NM_019361.1

4.3. Immunocytochemistry Staining

SH-SY5Y cells were cultured on poly-D-lysine-coated coverslips (Thermo Fisher Scien-
tific, Waltham, MA, USA) and differentiated into neuronal cells. Following the treatment,
the cells were fixed with 4% paraformaldehyde and incubated with primary antibodies
specific for NR2B (1:200; Santa-Cruz Biotechnology, CA, USA) and p-CREB (1:200; Santa
Cruz Biotechnology) for 90 min at room temperature (RT) followed by incubation with
Alexa 555-conjugated donkey anti-mouse IgG (1:500; Molecular Probes Inc., Eugene, OR,
USA) and Alexa 488-conjugated donkey anti-rabbit IgG secondary antibodies (1:500; Molec-
ular Probes Inc.), respectively, along with Hoechst 33342 (1:1000; Molecular Probes Inc.) in
phosphate-buffered saline (PBS) for 90 min at RT. The cells were then mounted (ProLong
Gold anti-fade reagent; Molecular Probes Inc.) and visualized under a Nikon Eclipse Ti2
fluorescence microscope (Nikon, Tokyo, Japan). The images were taken by a DS-Ri2 digital
camera (Nikon).

4.4. Immunoblotting

The proteins were isolated from the cells using a radioimmunoprecipitation assay
(RIPA) buffer along with a protease inhibitor cocktail, 2 mM phenylmethylsulphonyl
fluoride (PMSF), and 1 mM sodium orthovanadate. The cell lysates were centrifuged at
16,000× g for 20 min at 4 ◦C and the protein was quantified. Equal amounts of proteins
were resolved by SDS-PAGE using 6–15% resolving gels and electro-transferred onto
a polyvinylidene difluoride (PVDF) membrane. The membrane was blocked with 5%
normal horse serum (NHS) in TBS-T and then incubated overnight at 4 ◦C with primary
antibodies specific for NR2B (1:200; Santa Cruz Biotechnology), p-CREB (1:500; Santa Cruz
Biotechnology), CREB (1:500; Santa Cruz Biotechnology), cleaved caspase-3 (1:150; Merck
Millipore, CA, USA), p53 (1:500; Santa Cruz Biotechnology), and GAPDH (1:1000; Santa
Cruz Biotechnology) as well as horseradish peroxidase-conjugated anti-rabbit, anti-mouse,
and anti-goat (Santa Cruz Biotechnology). The protein bands were visualized by enhanced
chemiluminescence detection (GE Healthcare, Buckinghamshire, UK) and quantified using
ImageJ software 1.53t, Bethesda, MD, USA). All the bands were normalized with GAPDH
and p-CREB was normalized with CREB.

4.5. ROS Assay

The ROS levels were analyzed using 2′,7′-dichlorofluorescein diacetate (DCFH-DA).
Briefly, the differentiated cells (approximately 70% confluence) were incubated with 2 µM
RSV in 0.1% FBS for 12 h and then treated with 40 µg/mL salicylate for 8 h at 37 ◦C. The
cells were then incubated with 20 µM DCFH-DA at 37 ◦C for 20 min. They were mounted
and visualized under a Nikon Eclipse Ti2 fluorescence microscope. The ROS levels were
measured using ImageJ software.

4.6. In Vivo Experiments
4.6.1. Animals

Twenty adult male Sprague Dawley rats (weighing 250–300 g) with normal eardrums
and Preyer’s reflex were used in this study. This study was approved by the Institutional
Animal Care and Use Committee (C IACUC-2020-S0019). The rats were randomly classified
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into two groups, a control group (n = 10, salicylate treatment group) and a study group
(n = 10, salicylate and RSV co-treatment group). The ABR and GPIAS were evaluated
in both groups. The control group received an intraperitoneal (IP) injection of sodium
salicylate (Sigma-Aldrich, 400 mg·kg−1·day−1) combined with PBS (0.2 mL) whereas the
study group received an IP injection of the same dose of sodium salicylate combined with
RSV (Sigma, 250 mg·kg−1·day−1). The IP injections were administered daily for 7 days
(Figure 8).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 10 of 13 

Figure 8. Schematic diagram of in vivo experimental procedure for investigating the tinnitus-atten-

uating effect of resveratrol in Sprague Dawley (SD) rats. Drugs were administered from day 1 to 

day 7 in the control and study groups (salicylate, RSV (resveratrol), and PBS (phosphate-buffered 

saline)). Gap-prepulse inhibition of acoustic startle reflex (GPIAS) was measured from day 1 to 8. 

Auditory brainstem response (ABR) thresholds were evaluated on day 0 as well as on days 7 and 8. 

4.6.2. GPIAS Measurement 

The GPIAS measurement method used in this study to measure the startle response 

was similar to that reported in our previous study [32]. In brief, the GPIAS system con-

sisted of a mesh cage with a vibration sensor, a noise box with an anechoic inner wall, an 

acoustic stimulator with a full-range loudspeaker (PM-5004 amplifier; Marantz, Kawa-

saki, Japan), a reference microphone (40 PH; GRAS, Holte, Denmark), a sensor signal ac-

quisition hardware tool (PC and NI PCIe-6321; National Instruments, Austin, TX, USA), 

and LabVIEW-based custom graphical user interface (GUI) software. Each rat was sub-

jected to a session comprising 15 gap-conditioned stimuli-evoked startle responses and 15 

responses with no gap. Additionally, two types of acoustic stimuli (gap and no gap) were 

given to rats in a random order. The inter-stimulus interval (ISI) of these acoustic stimuli 

was randomized between 17 and 23 s to eliminate the habituation effect that might arise 

from a fixed startle-stimulus interval [32]. In addition, the rats were placed in the cage for 

about 2 min before the first session to acclimatize them to the measurement environment. 

The two types of acoustic stimuli mentioned above included a continuous narrowband 

background noise with a 1 kHz bandwidth, 16 kHz center frequency, and 60 dB sound 

pressure level (SPL) and a short high-level sound as a startle stimulus (broadband noise 

burst, 50 ms in length, 105 dB SPL) [32,38]. The central frequency of the narrowband back-

ground noise used in the stimulation condition followed the typical GPIAS measurement 

conditions for the salicylic acid-induced SD-rat tinnitus model used in several previous 

studies [33,39]. 

The gap-conditioned stimulus included a silence prepulse and a gap starting 100 ms 

before the startle stimulus and lasting for 50 ms [32]. The GPIAS value was defined as a 

percentage of the reduction in the gap-conditioned stimulus response relative to the mag-

nitude of the no-gap-conditioned one [32]. 

4.6.3. ABR Measurement 

ABR was evaluated using a TDT system (Tucker-Davis Technologies, Miami, FL, 

USA) in an electrically sound-shielded sound-proof box. As shown in Figure 1, the meas-

urement of the ABR thresholds was performed on day 0 (before the drug administration), 

day 7 (end of the administration), and day 8 (one day after the drug administration). The 

measurement method was similar to that used in our previous study [30]. In brief, sub-

dermal needle electrodes were placed at the vertex (active) below the left pinna (reference) 

Figure 8. Schematic diagram of in vivo experimental procedure for investigating the tinnitus-
attenuating effect of resveratrol in Sprague Dawley (SD) rats. Drugs were administered from day 1 to
day 7 in the control and study groups (salicylate, RSV (resveratrol), and PBS (phosphate-buffered
saline)). Gap-prepulse inhibition of acoustic startle reflex (GPIAS) was measured from day 1 to 8.
Auditory brainstem response (ABR) thresholds were evaluated on day 0 as well as on days 7 and 8.

4.6.2. GPIAS Measurement

The GPIAS measurement method used in this study to measure the startle response
was similar to that reported in our previous study [32]. In brief, the GPIAS system con-
sisted of a mesh cage with a vibration sensor, a noise box with an anechoic inner wall, an
acoustic stimulator with a full-range loudspeaker (PM-5004 amplifier; Marantz, Kawasaki,
Japan), a reference microphone (40 PH; GRAS, Holte, Denmark), a sensor signal acquisi-
tion hardware tool (PC and NI PCIe-6321; National Instruments, Austin, TX, USA), and
LabVIEW-based custom graphical user interface (GUI) software. Each rat was subjected to
a session comprising 15 gap-conditioned stimuli-evoked startle responses and 15 responses
with no gap. Additionally, two types of acoustic stimuli (gap and no gap) were given
to rats in a random order. The inter-stimulus interval (ISI) of these acoustic stimuli was
randomized between 17 and 23 s to eliminate the habituation effect that might arise from a
fixed startle-stimulus interval [32]. In addition, the rats were placed in the cage for about
2 min before the first session to acclimatize them to the measurement environment. The two
types of acoustic stimuli mentioned above included a continuous narrowband background
noise with a 1 kHz bandwidth, 16 kHz center frequency, and 60 dB sound pressure level
(SPL) and a short high-level sound as a startle stimulus (broadband noise burst, 50 ms in
length, 105 dB SPL) [32,38]. The central frequency of the narrowband background noise
used in the stimulation condition followed the typical GPIAS measurement conditions for
the salicylic acid-induced SD-rat tinnitus model used in several previous studies [33,39].

The gap-conditioned stimulus included a silence prepulse and a gap starting 100 ms
before the startle stimulus and lasting for 50 ms [32]. The GPIAS value was defined as
a percentage of the reduction in the gap-conditioned stimulus response relative to the
magnitude of the no-gap-conditioned one [32].



Int. J. Mol. Sci. 2022, 23, 14183 10 of 12

4.6.3. ABR Measurement

ABR was evaluated using a TDT system (Tucker-Davis Technologies, Miami, FL, USA)
in an electrically sound-shielded sound-proof box. As shown in Figure 1, the measurement
of the ABR thresholds was performed on day 0 (before the drug administration), day 7 (end
of the administration), and day 8 (one day after the drug administration). The measurement
method was similar to that used in our previous study [30]. In brief, subdermal needle
electrodes were placed at the vertex (active) below the left pinna (reference) and the
electrode was inserted under the right ear (ground). The stimuli consisted of click and tone
bursts (8, 16, and 32 kHz) with reducing levels in the range of 10–90 dB of 5 dB intervals to
determine the lowest intensity level. Each measurement point was recorded and averaged
1000 times. The stimuli were presented at a rate of 19 s and the acoustic stimuli were
calibrated before the measurement of each group.

4.6.4. Preparation of Free-Floating Sections

For the histological examination of their brain tissue, the rats were sacrificed 2 days
after the last injection of each drug or vehicle. They were anesthetized and perfused with
4% paraformaldehyde (PFA) in PBS (pH 7.4). Their brains were immediately removed,
stored in 4% (w/v) PFA in PBS for 2 days at 4 ◦C, suspended in 30% (w/v) sucrose for
4 days, and then embedded in an optimum cutting temperature compound (Miles Inc.,
Elkhart, IN, USA). Using a sliding microtome (SM2010R; Leica Microsystems, Wetzlar,
Germany), the brain hemispheres were coronally sectioned for the auditory cortex at ap-
proximately 4.30–5.30 mm caudal to the bregma. Free-floating serial sections (30 µm thick)
were collected into 10 PBS-filled wells.

4.6.5. Immunohistochemistry

The brain samples were collected and fixed using 4% (w/v) PFA in PBS. The samples
were immersed in 30% (w/v) sucrose for at least 4 days, following which they were
sectioned into coronal slices (30 µm thick) using a frozen sliding microtome (SM2010R) and
stored in PBS at 4 ◦C. To disable the intrinsic peroxidase activity, the sections were incubated
in 0.3% (v/v) hydrogen peroxide in distilled water for 20 min. This was followed by 1 h
of blocking with 5% (v/v) normal goat serum (Vector ABC Elite Kit; Vector Laboratories,
Burlingame, CA, USA) in 0.3% (v/v) Triton X-100. The sections were then incubated
with a rabbit anti-NMDAR2B antibody (1:200; Abcam, Cambridge, UK) diluted with an
antibody dilution buffer (Invitrogen) at 4 ◦C overnight. After washing, the sections were
reacted with biotinylated goat anti-rabbit IgG (Vector ABC Elite Kit; Vector Laboratories)
for 1 h and washed again. The sections were then incubated for 1 h at RT with an avidin–
biotin–peroxidase complex (Vector ABC Elite Kit; Vector Laboratories) according to the
manufacturer’s instructions. After washing, the diaminobenzidine substrate (DAB kit;
Vector Laboratories) was used as the chromogen to visualize the signal.

The immunoreactivity of NMDAR2B in the auditory cortex subregions was analyzed
by measuring the intensity of the NMDAR2B-immunopositive reaction with ImageJ soft-
ware. Coronal sections (30 µm thick) were selected approximately 2.5–3.6 mm posterior to
the bregma in each brain and the intensities in the subregion were assessed. The intensity
levels were expressed as a mean ± standard error (SE; n = 4 rats/group).

4.7. Statistical Analysis

An analysis of variance (ANOVA) with Tukey’s HSD post hoc test (three or more
groups) was conducted using GraphPad Prism to determine the statistical significance. If
the p-value was less than 0.05, it was considered to be statistically significant.

5. Conclusions

Our results provide evidence that RSV may reduce salicylate-induced tinnitus in rats.
Further studies should determine the potential therapeutic effects of RSV in clinical settings.
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