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Abstract: The COVID-19 pandemic has evolved to immune escape and threatened small children and
the elderly with a higher severity and fatality of non-pulmonary diseases. These life-threatening non-
pulmonary COVID-19 diseases such as acute necrotizing encephalopathies (ANE) and multisystem
inflammatory syndrome in children (MIS-C) are more prevalent in children. However, the mortality
of multisystem inflammatory syndrome in adults (MIS-A) is much higher than that of MIS-C although
the incidence of MIS-A is lower. Clarification of immunopathogenesis and genetic susceptibility of
inflammatory non-pulmonary COVID-19 diseases would provide an appropriate guide for the crisis
management and prevention of morbidity and fatality in the ongoing pandemic. This review article
described three inflammatory non-pulmonary COVID-19 diseases including (1) meningoencephalitis
(ME), (2) acute necrotizing encephalopathies (ANE), and (3) post-infectious multisystem inflammatory
syndrome in children (MIS-C) and in adults (MIS-A). To prevent these life-threatening non-pulmonary
COVID-19 diseases, hosts carrying susceptible genetic variants should receive prophylactic vaccines,
avoid febrile respiratory tract infection, and institute immunomodulators and mitochondrial cocktails
as early as possible.

Keywords: coronavirus disease 2019 (COVID-19); meningoencephalitis (ME); acute necrotizing
encephalopathy (ANE); multisystem inflammatory syndrome in children (MIS-C); non-pulmonary
COVID-19; immunopathogenesis

1. Introduction

Coronavirus disease 2019 (COVID-19) has evolved from initial waves of mild pul-
monary diseases to the later waves of potentially fatal diseases of non-pulmonary en-
cephalopathies, and multisystem inflammatory syndrome in children (MIS-C) [1–4]. The
evolutional variants of SARS-CoV-2 have caused immune escapes of vaccines and mono-
clonal antibodies, resulting in incomplete herd immunity and periodic re-emergence [5,6].
The dynamic interactions among the herd immunity, virus variants, and environments such
as vaccination coverage, availability of monoclonal antibodies and antiviral medications,
and quarantine strategies have shaped the features of the COVID-19 pandemic in different
waves, showing a change from the initial higher fatality and lower transmission to a lower
fatality and more contagious [7,8]. However, the lower vaccination coverage and limitation
of anti-virus medication together with evolution of viral variants and lack of pre-existing
immunity of small children have made children susceptible to infection and vulnerable to
higher hospitalization rate [1–4,9–11].

The first notice for the threat of Omicron variants on children was raised by Ledford in
December 2021 after a surge of pediatric hospitalization in South Africa [12]. The increase
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of pediatric hospitalization was also later found in Europe, and higher morbidity and
fatality of pediatric encephalopathies are found in Hong Kong and Taiwan [13–15]. In Asia,
there was no COVID-19-related death of children reported before October 2021 in Korea,
January 2022 in Hong Kong, February 2022 in Singapore, or April 2022 in Taiwan [14–17].
The Omicron BA.2 pandemic appeared to be more neuropathogenic in children than the
earlier waves of Alpha and Delta COVID-19 pandemic [14,15].

The non-pulmonary encephalopathies and MIS-C in the later wave of Omicron sub-
variants have caused a high morbidity and mortality in children [14–17]. For instance,
there have been more than 30 deaths of children reported in Taiwan during the Omicron
COVID-19 outbreak between April and September 2022, of which more than one half
died of encephalopathies [15]. More importantly, adolescents and adults could have non-
pulmonary COVID-19 diseases such as acute necrotizing encephalopathies (ANE) [18–20],
and multisystem inflammatory syndrome in adults (MIS-A) [21–23]. Although the in-
cidence of ANE and MIS-A is lower in adolescents and adults, the mortality in MIS-A
is much higher than that in MIS-C [21,22]. Based on immunopathogenesis of the pul-
monary COVID-19 different from non-pulmonary COVID-19, this review article depicts
the dynamic clinical features and immunopathogenesis on non-pulmonary COVID-19
diseases and provides immunopreventive tactics for early prevention and treatment of the
potentially fatal hyperinflammatory non-pulmonary COVID-19.

2. Methodologies for Structured Literature Search on Non-Pulmonary COVID-19

In an observation of the dynamic change of COVID-19 in children evolving from early
mild pulmonary disease to later fatal non-pulmonary COVID-19 in Asia [14–17], we struc-
tured the review article of non-pulmonary COVID-19 into 5 sections including (1) dynamic
waves of non-pulmonary COVID-19, (2) immunopathogenesis, (3) predisposing factors,
(4) immunopreventive tactics, and (5) conclusions.

2.1. The Keywords for Collecting References for Depicting the Dynamic Waves of COVID-19

The keywords including COVID-19 and SARS-CoV-2 together with dynamic waves or
virus variants were input to PubMed Center and publisher websites for biomedical litera-
ture. These references were layout to the first section “dynamic changes from pulmonary
to inflammatory non-pulmonary COVID-19”.

2.2. The Keywords for Collecting References for the Immunopathogenesis of Non-Pulmonary COVID-19

To define the immunopathogenesis of non-pulmonary COVID-19, we input COVID-19
or SARS-CoV-2 as an initial keyword which was combined with meningoencephalitis,
encephalopathy, or multisystem inflammatory syndrome, and with mechanism or patho-
genesis to collect references for the second section “immunopathogenesis of inflammatory
non-pulmonary COVID-19 in children and adults”. To conquer the heterogeneity of di-
agnostic criteria of ME, ANE, and MIS-C, we included the references of ME defined with
pleocytosis in CSF without focal cerebral lesion on the imaging study, included the refer-
ences of ANE defined with the deep brain cell necrosis on the imaging study, and included
the references of MIS-C defining the criteria with fever at least 4 days and inflammatory
syndrome at least 2 systems after COVID-19 for two to six weeks.

2.3. The Keywords for Collecting References for Predisposing Factors of Non-Pulmonary COVID-19

To identify the predisposing factors of non-pulmonary COVID-19, we input COVID-19
or SARS-CoV-2 as an initial keyword, which was combined with meningoencephalitis,
encephalopathy, or multisystem inflammatory syndrome; and with immunodeficiency,
genetic association, metabolic disturbance, or mitochondrial dysfunction.

2.4. Collecting References for the Immunopreventive Tactics of Non-Pulmonary COVID-19

To formulate the immunopreventive tactics for non-pulmonary COVID-19, we input
COVID-19 or SARS-CoV-2 as an initial keyword, which was combined with active immu-
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nization, passive immunization, anti-virus replication, anti-inflammation, cytokine storm,
or mitochondria cocktails.

Taking together these structured references, we sketched a figure to address the dy-
namic changes from pulmonary to non-pulmonary COVID-19 in terms of transmission
and clinical features of pneumonia, encephalopathy, or MIS-C (Figure 1). We summarized
the pathogenesis of non-pulmonary COVID-19 diseases into a structured table describing
different immunopathogenesis, infection-associated hyperinflammation, race and inher-
itance, and immunotherapies for non-pulmonary COVID-19 (Table 1). Finally, we drew
a figure depicting the immunopreventive tactics for non-pulmonary COVID-19 by active
immunization, passive immunization, anti-leukocyte activation, anti-cytokine storm, and
correction of metabolism, which are different from the conventional anti-virus medication
for patients with pulmonary COVID-19.
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Figure 1. Clinical features in different pandemic waves of COVID-19. (A) Increase of transmission
rate from Alpha, Beta, Delta to Omicron; (B) decrease of low respiratory tract pneumonia from Alpha,
Beta, Delta to Omicron; (C) biphasic increase of MIS-C; (D) Increase of pediatric encephalopathies in
Omicron pandemic.

Table 1. Immunopathogenesis of non-pulmonary COVID-19 diseases.

Disease Aseptic Meningoencephalitis Acute Necrotizing Encephalitis Multisystem Inflammatory
Syndrome in Children

Immature immunity <5 Y, low antibody and high
viral load 0.5~8.5 Y, hyperinflammation 2~18 (8.5) Y,

post-infectious autoimmune

Infection-associated
hyperinflammation

Viral invasion or
infection-induced interruption
of BBB

Fever or virus sensor defect
linked to altered metabolism
and immunity

Autoimmune vasculitis and
thrombosis mediated by Th1
cytokine storm

Race
Genetics

All races
Developmental delay
of immunity

Asians
RANBP2, CPT2, SLC19A3, SCN1A

Hispanics, Asians
Immune/phagocytosis genes,
and TRBV11-2

Immunotherapies Active immunization
Passive immunization

Early immunomodulators
Mitochondrial cocktails

Early immunomodulators
Anti-thrombosis Rx.

Abbreviations: Y, year of age; BBB, blood–brain barrier; RANBP2, RAN binding protein 2; CPT2, carnitine
palmitoyltransferase II; SLC19A3, solute carrier family 19 member 3; SCN1A, sodium voltage-gated channel alpha
subunit 1; TRBV11-2, T cell receptor beta variable 11-2; Rx, treatment.
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3. Dynamic Changes from Pulmonary to Inflammatory Non-Pulmonary COVID-19

An emerging novel viral infection usually arises from microbial mutation or zoonosis
that causes cross-species human to human transmission [24]. The emerging infection
progresses from endemic to epidemic to pandemic depending on dynamic interactions
among herd immunity, viral virulence, personal protection equipment and environmental
lockdowns. Taking an influenza pandemic as an example, a novel cross-species influenza
virus that causes human to human transmission could raise a pandemic over 30% of the
population in the initial years because almost all humans are susceptible to the novel
influenza virus [25]. When an emerging variant of the influenza is introduced into a
susceptible population, it usually causes a pandemic with an attack rate of 10–30%, and
several re-emerging waves will follow until herd immunity over 60% is reached [26].

The COVID-19 pandemic has caused different waves of outbreaks from Alpha, Beta,
Delta, and Omicron variants [7–17,24,27–29], similar to a novel influenza pandemic [25,26],
which does not cease the spreading until 60–70% of population are affected by viral mutants.

In the beginning of COVID-19 pandemic, the transmission rate in children was much
lower than that in adults, but the transmission rates have surged dramatically in the latest
wave of Omicron pandemic (Figure 1A). Comparing to previous ancestors, Alpha, Beta,
and Delta variants, the new Omicron variants demonstrated mild upper respiratory illness
(Figure 1B), but severe non-pulmonary diseases, including multisystem inflammatory syn-
drome in children (MIS-C) (Figure 1C) and neurological involvement emerged prominently
in children (Figure 1D). It is believed that the dominant Omicron variants will eventually af-
fect most of the population, particularly infants and children are more vulnerable to severe
diseases due to risk factors of immature immunity, low rate of vaccination coverage, and the
social behavior on everything cosseting and something vulnerable to breakthrough [27–32].

Nevertheless, the Omicron variants have evolved into BA.1, BA.2, BA.3, BA.4, and
BA.5 subvariants associated with immune escape [31,32]. Interestingly, the severity of
MIS-C has significantly decreased over the pandemic waves of Alpha, Beta, Delta, and
Omicron [33–36]. This trend may be not applicable to other countries due to diverse
virus variants, and availability of vaccines and anti-virus drugs. In Asian countries where
strict quarantine regulations such as enforcement of face mask and maintaining social
distancing, the pandemic in children was skewed toward later transmission with Omicron
variants [14–17]. In fact, children are susceptible to infections with Omicron variants at
home where exposures were higher than transient exposures at school [12].

A higher hospitalization rate for children with infection of Omicron variants was
initially reported from Gauteng Province, South Africa, where 462 (18%) of hospitalizations
were patients less than 19 years of age, higher than those in the three previously pandemic
waves [32]. In two larger cohort studies of COVID-19 in children found that hospitalized
children aged < 2 years or with comorbidities were susceptible to severe COVID-19 and
potential fatality [1,2,33,34]. Higher severity and fatality of non-pulmonary disease have
been later found in Hong Kong and Taiwan where the Omicron BA.2 was prevalent [14,15].
Fortunately, COVID-19 mRNA vaccines have been authorized for children over 6 months of
age. However, it is also concerning that children and adolescents getting an infection within
a month after first dose of COVID-19 vaccination might be susceptible to myocarditis, which
is comparable to a higher rate of myocarditis occurring to children and adolescents with the
second dose of COVID-19 vaccination [27]. Although the severity of pulmonary COVID-19
had significantly decreased in the Omicron pandemic [1,2], however, the non-pulmonary
COVID-19 diseases such as ANE [18,19] and MIS-A [21,22] revealed a high morbidity
and mortality.

4. Immunopathogenesis of Inflammatory Non-Pulmonary COVID-19 in Children and Adults

Along the different waves of COVID-19 pandemic from Alpha, Beta, Gamma, to Delta
variants, the MIS-C prevalence significantly decreased [35,36]. However, in the current
wave of Omicron variants, higher transmission and hospitalization of children were promi-
nently complicated with non-pulmonary diseases [37–40], especially meningoencephalitis,
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ANE, and post-infectious autoimmune diseases such as MIS-C and acute disseminated
encephalomyelitis (ADEM) were noticed in the late waves of pandemic [39–45]. Moreover,
adolescents and adults are not spared from ANE or MIS in adults (MIS-A). Therefore,
everyone needs to know that non-pulmonary COVID-19 could occur to children, ado-
lescents, and adults. Understanding the clinical features and immunopathogenesis of
non-pulmonary COVID-19 in children and adults for early diagnosis and early treatment
is crucial to prevent morbidity and mortality. We here presented three non-pulmonary
COVID-19 diseases and tried to delineate the underlying immunopathogenesis for early
recognition and prevention of potential fatal non-pulmonary COVID-19 diseases.

4.1. Immunopathogenesis of Meningoencephalitis

In the initial outbreak of COVID-19, the attack rate of children below 19 years
of age were relatively lower, but higher rate of post-infectious autoimmune disease,
MIS-C [1–4,36,46]. Sporadic cases of the COVID-19 children with neurological manifesta-
tions or encephalitis were reported with favorable recovery, no matter if those with detectable
virus had RNA in CSF or not [47,48]. Common neurological manifestations of COVID-19
in children are conscious change, behavior change, vomiting, and/or seizure [39,40]. The
risk factors in infants and children, contributing to severe COVID-19, included premature
infants and children less than 2 years of age, who have immature immunity, and low
levels of immunoglobulin A and G production. In addition, children with comorbidi-
ties such as immunodeficiency, cerebral palsy or obesity are also risk factors to severe
COVID-19 [33,34,46–49].

COVID-19 associated with ME has been correlated to different mechanisms including
virus invasion into the brain via olfactory nerve or dissemination through hematogenous,
and immune-mediated cytokine storm or COVID-19-associated leukocyte activation, which
may interrupt the blood–brain barrier or induce inflammation. Clarification of the virus
or immune mediated mechanism is important for the therapeutic strategies with anti-
virus or anti-inflammation regimen. It remains unclear whether COVID-19 children with
ME are related to viral invasion or immune inflammation although immune-mediated
inflammation is preferred. In the literature review, there were limited cases of COVID-19
children with ME or neurological manifestations found to have virus invasion in CSF or
brain [39,40,47–50], suggesting immune-mediated mechanism is the major cause.

4.2. Immunopathogenesis of ANE

Several pediatric encephalopathies of COVID-19 have been reported in the literature,
including meningoencephalitis, status epilepticus, Guillain–Barré syndrome (GBS), ADEM,
but not ANE [39,40,47–50]. ANE is not a new disease but mostly occurs in children with an
infectious disease, such as influenza, rotavirus, enterovirus, or herpes virus [51–56]. This
disease is more frequently reported from Asian countries, especially related to influenza
associated ANE, which is usually associated with a sudden onset of high fever, intractable
seizure, and progress to coma with a high fatality in a few days [51,52]. In Caucasians, ANE
is related to RAN binding protein 2 (RANBP2) gene mutations, called ANE type 1 (ANE1),
which could be familial and recurrent [53,54]. Interestingly, ANE is rarely identified in
the early waves of COVID-19 pandemic [39,40]. In a large cohort study, the neurological
symptoms in pediatric COVID-19 were mostly transient (88%), and the life-threatening
encephalopathies were 12%, in which most of the patients were MIS-C patients [40]. The
fatalities of neurological diseases of COVID-19 in children were 2 to 3% [39,40]. Although
the ANE was not described in the large cohorts of COVID-19, but sporadic case reports
associated with COVID-19 in children were reported with favorable outcomes [39,40,55,56].
In contrast, a severe form of acute hemorrhagic necrotizing encephalopathy (AHNE)
associated with COVID-19 in adults is more frequently reported with fatal outcomes [18].

The RANBP2 gene mutations have been associated with the ANE in children [53,54],
some other genes regarding metabolism or immunity, including neuronal sodium channel
alpha 1 (SCNIA) and carnitine palmitoyltransferase II (CPT2), human thiamine transporter 2
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(hTHTR2) have been also linked with the ANE after an infection [55,57,58]. In addition,
HLA genotypes (DRB1*09:01, DQB1*03:03) were also correlated with ANE in Japan [59].
The ANE associated with mutations of CPT2 and hTHTR2 are often sensitive to febrile
illness including febrile infections [55,57]. The ANE is mostly found in children, but
adults are not spared [19,20]. ANE in children is prevalent in Asian countries, including
China [60], Japan [61,62], and Taiwan [62,63], and most of the ANE in children are induced
by an infection, particularly influenza [60–63]. Early intervention of plasma exchange [60],
immunomodulation [62,63], or hypothermia [64] for the ANE was recommended to limit
mortality and morbidity. Since malignant fever and cytokine storm were prominent in ANE,
hypothermia [64] or plasma replacement [60] in addition to IVIG and methylprednisolone
pulse therapy have also been proposed to rescue the poor outcomes [60–63].

Further studies to identify genetic and mechanistic biomarkers are needed to prevent
the patients with ANE from mortality and morbidity. For those with genetic variants of
CPT2 and hTHTR2 leading to metabolic encephalopathies, early supplementation of mito-
chondrial cocktails such as biotin, thiamine, CoQ10, and L-carnitine might rescue the mor-
bidity and mortality of ANE [53–55]. For those who possess genetic variants of RANBP2,
SCNIA, or HLADRB1*0901 contributing to infection-associated hyperinflammation, early
administration of immunomodulation and/or hypothermia therapy is required [54,58,59].

4.3. Immunopathogenesis of MIS-C

There are many post-COVID-19 infectious immunological diseases have been reported
in the literature, such as MIS-C, ADEM, GBS, and transverse myelitis [39,40]. MIS-C is
a typical post-COVID-19 autoimmune disease because it occurs between 2 and 6 weeks
after COVID-19 infections. The clinical features of MIS-C are like those of KD, showing
prolonged fever, skin rashes, fissure lips, non-purulent conjunctivitis, and cardiovascular
involvement [65,66]. We have summarized the different phenotypes, laboratory data and
immune mechanisms between KD and MIS-C, and shown that MIS-C patients had the older
age, a history of COVID-19 two to six weeks before, coagulopathy with higher D-dimer
levels and thrombocytopenia [66]. We have taken an opportunity to compare the different
cytokine and chemokine profiles in blood between KD and MIS-C in Figure 2, showing
that the IL-12 and IFNγ levels in MIS-C were much higher than those in KD; vice versa,
the IFNα and IP-10 levels were much lower in MIS-C than in KD. This suggests that there
should be certain different immune alterations contributing similar phenotypes between
both diseases.

In fact, clinical features of MIS-C are closer to those of KD shock syndrome (KDSS),
which are prominently found in female Hispanos with older age, and more frequently
associated with thromboembolism and shock syndrome [65–67]. Fortunately, the fatality
of MIS-C has decreased from 2% down to 0.6% in term of early recognition and treatment
by IVIG and pulse methylprednisolone, and additional use of anakinra, anti-TNF or anti-
IL-6 while refractory, or use of anticoagulants while manifestation of thromboembolic
symptoms and signs [35,36,68,69]. The MIS variant in adults called MIS-A, although rare
and atypical symptoms of MIS, revealed a higher fatality between 5 and 7% [21–23]. The
MIS-A is also like another KD variant called atypical KD, which occurs to younger infants
and older children, or even adolescents and adults, with higher cardiac complications and
fatality [65–67]. This alerts clinicians that early diagnosis of MIS-C and MIS-A for early
treatment should be kept in mind but not delayed diagnosis waiting for more criteria of
definite diagnosis.

In the early waves of COVID-19 pandemic, MIS-C is prominently found in Western
countries but not Asian countries [1,2,35,36]; however, there are more MIS-C patients found
in Asian countries in the later waves of COVID-19 pandemic with Omicron variants [14–17].
Apparently, the prevalence of MIS-C was not only associated with races but also virus
variants and different waves of pandemic under dynamic interactions between children
and environments.
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5. Predisposing Factors of Non-Pulmonary COVID-19 Diseases

Respiratory infectious diseases such as SARS-CoV-2, influenza and enterovirus in-
fections could develop acute and post-infectious non-pulmonary diseases including ME,
ANE, GBS, and ADEM. Recently, the incidence of MIS-C decreased in Western countries
but increased in Asian countries [14–17,35,36,68,69]. Both MIS-C and MIS-A could also
cause fatal outcomes due to post-infectious autoimmunity. Moreover, severe acute en-
cephalopathies in adults have been sporadically reported in adults [18–20], and COVID-19
encephalopathies with fatal outcomes were prevalent in Asian countries [14,15]. Taken
together, these non-pulmonary COVID-19 diseases tend to have predisposing factors re-
lated to (1) immature immunity, (2) metabolic disturbance linked to hyperinflammation, or
(3) genetic association.

5.1. Immature (Developmental) Immunity

The younger the age the higher proportion of non-pulmonary COVID-19 severity
has been described. Vaccine recipients are likely susceptible to breakthrough infections or
reinfections due to a rapid decline of neutralizing antibody titers directed against different
SARS-CoV-2 variants [70–72]. Moreover, only one third of BNT162b2 vaccine recipients
and one quarter of COVID-19 patients had neutralizing antibody titers above the protecting
titer of Omicron variants [70]. The neutralizing antibody titers against the Omicron variant
after vaccination was substantially lower than those against the ancestral virus or the
Beta variant.

We have previously shown small children had the higher viral load and longer shed-
ding time of H1N1 influenza infection [73]. Children less than 5 years old are susceptible
to enterovirus 71 (EV71) associated with delayed CD40L expression, which is involved in
the switch of IgM to IgG production [74]. Viral meningoencephalitis such as EV71 usually
occurs to children less than 5 years old [75]. In the COVID-19 pandemic, several studies
have also demonstrated that the younger the age revealed higher viral load and longer
virus shedding [76–78]. Recently, Torjesen reported that a steep rise in hospital admissions
of very young children in COVID-19 Omicron pandemic [79]. More importantly, children
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with severe COVID-19 disease were found to have lower regional and systemic immune
responses to SARS-CoV-2 [80]. Children with previous exposures to vaccines or earlier
waves of COVID-19 tended to have lower serum neutralizing antibody titers directed
against Omicron variants [70,72,81]. The immature immunity with low antibody titers,
higher viral load and altered hyperinflammation in children made them vulnerable to
severe non-pulmonary COVID-19 (Table 1).

5.2. Metabolic Disturbance Linked to Hyperinflammation

There are some genetic backgrounds vulnerable to infection or fever by which in-
nate immunity is linked to mitochondria dysfunction followed by proinflammatory re-
sponse [82]. The fact that limited patients with COVID-19 encephalopathies had detectable
SARS-CoV-2 in CSF or brain [39,40,47–50] suggested immune-mediated pathogenesis of
COVID-19 encephalopathy is likely the major mechanism. This is supported by most of the
studies demonstrating early immunomodulation of patients with encephalopathies could
rescue the patients from mortality and morbidity [58,60–62,83]. This altered hyperinflam-
mation in COVID-19 encephalopathies could be categorized into two potential mechanisms:
(a) infection immunity induces inflammation that interrupted BBB for cerebral edema and
inflammation, and (b) viral invasion to CNS results in inflammation. It is postulated that
a neurotrophic viral infection could invade CNS via olfactory nerve or hematogenous
dissemination that causes inflammation of blood brain barrier, neural cell apoptosis or
necrosis [82]. This has been shown in enterovirus 71 neurotropism for motor neurons in
the spinal cord and brainstem, responsible for encephalitis, showing pleocytosis of CSF,
brain stem involvement, pulmonary hemorrhage, and edema [75]. However, there are
very few studies demonstrating SARS-CoV-2 could cause neuronal cytotoxicity, and few
studies showing direct evidence on the SARS-CoV-2 invasion of CNS or reporting anti-virus
regimen rescued the children with encephalopathies. In contrast, certain ANE could be
rescued by fever control, early immunomodulation, or early administration of vitamin
cocktails for mitochondrial dysfunction [55,83–86].

Given the fact that patients with infection-associated ANEs usually have malignant
fever and intractable seizure with hyperinflammation, we could postulate that an infection-
induced fever and/or metabolic disturbance may be linked together to induce rapid
hyperinflammation (Table 1). This is supported by two lines of evidence: (a) hypother-
mia therapy could effectively decreased temperature, lactic acidosis and inflammatory
mediators in ANE patients, and (b) some reports showed early administration of carni-
tine, biotin, and thiamine could rescue patients with infection-induced ANE for favorable
outcomes [55,84–86]. Taken together, it is believed that early recognition of genetic variants
which are sensitive to fever and/or metabolic mitochondrial dysfunction with hyperin-
flammation may be subject to rescue of infection associated ANE by avoidance of fever,
and correction of mitochondrial dysfunction (Table 1).

5.3. Genetic Association of Severe Non-Pulmonary COVID-19 Diseases

Many genetic variants of immune genes and virus receptors have been associated
with morbidity and mortality of certain emerging infections, including HIV, dengue, and
coronaviruses [87–91]. It remains unknown what genetic variant(s) is(are) involved in the
pathogenesis of COVID-19-associated ANE. The RANBP2 gene mutations increase the
susceptibility to recurrent episodes of ANE with respiratory viral infections, particularly
influenza infection [58,83]. RANBP2-associated ANE is more prominently found in Cau-
casians and called ANE1 [53,54]. Influenza-associated ANE is more prevalent in Asian
countries than that in Western countries, but fewer cases were associated with RanBP2
mutation [53,54,60–62,83,85,92,93]. It is surprising that ANE children were not reported in
some large cohorts of COVID-19 neurological involvement in the early waves of COVID-19
pandemic in Western countries, but were more prevalent in late waves of COVID-19 Omi-
cron variants in Asian countries [14–17,39,40]. In addition to RanBP2 mutations, HLA,
CPT2, SCN1A, and SLC19A3 mutations have been associated with influenza or COVID-19-
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associated ANE (Table 1) [53,55,57,59,93–95]. Interestingly, these genes associated with
ANE are sensitive to infection, fever, and metabolic mitochondrial dysregulation of in-
flammation [56–58,94]. CPT2 is sensitive to fever associated with lower enzyme activity
contributing to mitochondrial dysfunction with oxidative stress and inflammation [95,96].
Mutation of SCN1A is associated febrile seizure, and SLC19A3 is associated with defective
thiamine transportation for mitochondrial energy supply via acetyl-CoA metabolism [55].
As mentioned above, hypothermia therapy or correction of biotin, thiamine, and carnitine
could raise better outcomes of ANE [55,64,84–86]. Children carrying fever- or metabolic-
sensitive genetic variants should receive prophylactic vaccines, encourage them to avoid
respiratory tract infections, at least influenza and coronaviruses, and to actively control
initial fever and administer biotin, CoQ10, vitamin B6, carnitine, and/or thiamine in
24 h [84–87].

The MIS-C is a new disease occurring between 2 and 6 weeks after a SARS-CoV-2 infec-
tion, suggesting a post-infectious autoimmune disease. The early cytokine storm profiles of
MIS-C were similar, but certain different, to those found in KD (Figure 2) [65,66,97]. A study
with 39 MIS-C patients showed that one quarter of MIS-C patients harbored heterozygous
missense mutations in primary hemophagocytic lymphohistiocytosis (pHLH) genes (LYST,
STXBP2, PRF1, UNC13D, AP3B1) or the HLH-associated gene DOCK8 (four variants) [98].
Patients with defects in SOCS1, XIAP, or CYBB exhibiting downstream activations of IL-18,
oncostatin M, and nuclear factor κB were also reported in MIS-C patients [99]. In con-
trast, adult COVID-19 patients with MIS-A have been associated with autophagy genes
(LGALS8, TECPR1), viral restriction factor genes (PLIN3, EXOSC5, RNASE2), and immune
responses (ERAP1, SIGLEC15, GAB2, GOLGA4, SNX3) in addition to Kawasaki disease
genes (PEAR1, ERAP1) [100].

In a multi-omics study with 76 MIS-C patients compared to 100 COVID-19 children,
Sacco, et al. reported that the T cell clone carrying T cell receptor beta chain variant 11-2
(TRBV11-2) expression was prominently present in MIS-C patients rather than in non-MIS-C
COVID-19 patients, and presence of auto-antibodies directed against several self-antigens
have been reported in MIS-C patients [101]. This suggests the Vβ chain encoded by
TRBV11-2 (Vβ21.3) strongly interacts with the superantigen-like motif of SARS-CoV-2
spike glycoprotein, mediating expansion of TRBV11-2 T cells. It is, however, debatable to
recognize whether the S epitope of SASR-CoV2 associated with autoreactive T cell clone is
mechanistic pathogenesis of the MIS-C. If the S epitope could induce autoreactive T cell
expansion for MIS-C, the COVID-19 vaccines, such as Novavax, made in full length of
Spike antigen would be also possible to induce the MIS-C. In fact, there is no case report of
MIS-C associated with COVID-19 vaccination; COVID-19 vaccination even protects against
rather than induces MIS-C [102]. These immunological features of MIS-C were studied
in the early waves of COVID-19 pandemic with the Wuhan strain and the Alpha variant.
The effects of the Delta and Omicron variants on innate and adaptive immune responses
in patients with COVID-19, MIS-C, and MIS-A remains to be determined. The complex
associations suggest the development of MIS-C and MIS-A might require not only single
gene mutation, but also combining two or more variants of immune genes.

6. Immunopreventive Tactics of Severe Non-Pulmonary COVID-19 Diseases

A non-pulmonary COVID-19 is usually induced by SARS-CoV-2 infection, followed
by viral spreading while innate immunity cannot limit the virus replication. Hosts with
certain genetic variants might cause malignant fever and mitochondrial (Mito.) dysfunction
associated with hyperinflammation resulting in ANE in deep brain regions (Figure 3,
left panel). The viral spreading can be interrupted by adaptive immunity such as T cell
immunity resulting in clearance of viral spreading for recovery. Hosts with altered immune
reactions could cause cytokine storm or T cell over-activation such as production of IFNγ

and hemophagocytosis under impairment of T regulatory cells (Treg), resulting in MIS-C or
MIS-A (Figure 3, right panel). Based on the altered infection immunity specified, we could
raise six immunological tactics to prevent the severe non-pulmonary diseases as follows:
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Figure 3. Prevention of severe non-pulmonary COVID-19 diseases. A COVID-19 disease is usually
induced by SARS-CoV-2 infection, followed by viral spreading while innate immunity cannot limit
the virus replication (Virus Replic.). Patients with certain genetic variants might cause malignant
fever and mitochondrial (Mito.) dysfunction, associated with hyperinflammation resulting in acute
necrotizing encephalopathy (ANE) in deep brain regions. The viral spreading can be interrupted by
adaptive immunity such as T cell immunity resulting in recovery. Altered immune reactions could
lead to (→) cytokine storm or T cell overactivation such as production of IFNγ and hemophagocytosis
under impairment of T regulatory cells (Treg), resulting in MIS-C or MIS-A. Based on the altered
infection immunity proposed here, we could prevent the severe non-pulmonary diseases as follows:
[A] virus neutralization by active and passive immunization for limiting viral transmission by
effective neutralizing antibodies; [B] anti-virus replication (Virus Replic.) by small molecules, such
as paxlovid or remdesivir; [C] early reduction of viral load by monoclonal antibodies or trispecific
DARPin; [D] targeting altered immune reaction and cytokine storm by inhibition of leukocyte
activation; [E] immunoregulation (
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6.1. Virus Neutralization by Active and Passive Immunization

Given the safety consideration, vaccine availability for children, particularly for infants,
is authorized late, so the herd immunity in adults is important for protecting infants
and children from infections. Similarly, passive immunization with specific monoclonal
antibodies is also authorized late for children and infants. Although the SARS-CoV-2 has
evolved into immune escape of vaccines and monoclonal antibodies, the current vaccines
remain effective on reducing morbidity and mortality. In the COVID-19 pandemic, family
contacts are more important than school contacts for the social distancing in family is much
shorter than those in schools, especially while a school policy restricts affected children
from school. The herd immunity in the household (family and daycare centers) would
be important for providing protection of children from COVID-19. In addition, since
application of monoclonal antibodies and anti-virus drugs are limited for small children,
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it is also important to prepare a convalescent plasma with high neutralizing antibody
titers directed against homologous virus variant for preventing infants and children with
immunodeficiency or immunocompromised situation from severe COVID-19.

For newborns and premature babies, the prevention of COVID-19 should be started
from maternal vaccination. Pregnant mothers should have a full course of vaccination
with the boosting dose in the third trimester, which will ensure the effective neutralizing
antibodies for newborns and infants via transplacental transportation of IgG. Thus, next
generation of COVID-19 vaccines should be made available for pregnant women as fast
as possible.

6.2. Anti-Virus Replication by Small Molecules

The SARS-CoV-2 Omicron variants have evolved to immune escape of immunization
and high transmission rate through upper but not lower respiratory tract infection [103].
Antiviral drugs have been shown to block viral replication and to reduce viral load, re-
sulting in decrease of morbidity and mortality. Currently, three anti-virus drugs including
Paxlovid (nirmatrelvir and ritonavir), Lagevrio (molnupiravir), and Veklury (remdesivir)
maintain actively against different SARS-CoV-2 variants including Omicron BA.2 and
BA.5 [104]. Remdesivir is the one with emergency use authorization to children under
age 12, based on a bridge clinical trial with 53 children between ages one month and
twelve [105]. For children with ANE, the immunomodulation and supplementation of
mitochondrial cocktails within 24 h are shown to rescue certain portion of children with
better outcomes [84]. There is no report regarding whether remdesivir could rescue children
with ANE.

6.3. Early Reduction of Viral Load by Monoclonal Antibodies or Trispecific DARPin

In addition to antiviral drugs, there are also other ways to reduce viral load and viral
spreading. Most of the monoclonal antibodies used to reduce viral load in SARS-CoV-2
Alpha or Delta variants are no longer used for Omicron variants [103,106]. Currently,
Bebtelovimab is the only monoclonal antibody authorized to treat Omicron patients with
immunocompromised conditions in non-hospitalized patients [107]. It is not guaranteed
that novel Omicron subvariants wouldn’t develop immune escape of the Bebtelovimab and
beyond. Another way to reduce viral load is to use Ensovibep, which is a trispecific DARPin
designed to bind serum albumin and three domains of SARS-CoV-2 spike antigen [108].
Ensovibep appeared to lower the risk of hospitalization, emergency room visits, or death
from COVID-19 by 78% [109]. Hopefully, this novel design available for blocking viral
entry without immune escape, reducing viral load, and decreasing hospitalization in adults
and children.

6.4. Targeting Altered Immune Reaction and Cytokine Storm

In early waves of the COVID-19 pandemic, adult respiratory distress syndrome (ARDS)
due to cytokine storm was the main cause of morbidity and mortality. Tocilizumab
(Actemra), an anti-IL-6 receptor antibody, has been shown to reduce mortality in hos-
pitalized patients in the first 2 days of ICU admission [110]. The FDA has also approved
Olumiant (baricitinib), a Janus kinase inhibitor (JAKi), for treating severe COVID-19 pa-
tients with cytokine storm [111]. Tocilizumab can be used in children under age 12, but
not yet Olumiant. Another disease modifying agent for cytokine storm of COVID-19 is
Sabizabulin, which is a microtubule inhibition agent useful for suppressing leukocyte
activation and reveals a good clinical efficacy for severe COVID-19 [112].

6.5. Immunoregulation of Inflammatory Non-Pulmonary COVID-19

Since inflammatory non-pulmonary COVID-19 diseases are quite different from those
in pulmonary COVID-19, different immunopathogenesis of COVID-19 diseases require
different immunomodulations. For those with ANE, early pulse of methylprednisolone
and hypothermia therapy should be instituted within 24 h [83,85]. Moreover, patients
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with ANE related to fever-sensitive or mitochondrial dysfunction should be administered
with mitochondrial cocktails including biotin, thiamine, L-carnitine, and CoQ10 [55,84–86].
For those with post-infectious autoimmunity in children such as MIS-C, IVIG and pulse
methylprednisolone are the mainstream of medications. In addition, the cell therapy with
mesenchymal stem cells (MSCs), which can enhance regulatory functions of Treg cells, has
been shown promising on rescue of COVID-19 patients with ARDS [113–115]. Whether the
MSCs therapy could rescue patients with ANE deserves further studies.

6.6. Fever Control and Preservation of Mitochondrial Functions

One possible mechanism for infection associated ANE is depletion of energy resulting
from fever induced mitochondrial dysfunction with oxidative stress and hyperinflamma-
tion [56,94–96]. Since infants and young children with respiratory infections tend to have
fever, small children carrying fever-sensitive or metabolism-defective genes such as CPT2
and SLC19A3 could compromise mitochondrial functions of neuron cells on transporta-
tion of thiamine or carnitine, resulting in hyperinflammation due to oxidative stress and
deprivation of energy production. Prevention of febrile infection associated ANE would
require early detection of fever-sensitive genetic variants for avoiding infection, and early
administration of nutrient supplements of mitochondrial metabolism [84–86].

7. Conclusions

An emerging infection usually breaks out in a population who have naïve immunity
to the pathogen. In the early pandemic, the quarantine regulations including isolation, face
masks, social distancing, and lockdown are important to block the pandemic until herd
immunity is built up. Ideally, prophylactic vaccines are the best strategy to block pandemic.
It is fast enough that humankind has DNA, RNA, and protein vaccines of COVID-19 made
useful for preventing people from hospitalization and mortality. Unfortunately, ongoing
SARS-CoV-2 variants reveal immune escape from the vaccines made in original strain and
subvariants. Several waves of outbreaks have occurred in different countries depending
on dynamic interactions among viral variants, quarantine isolation, lockdown, active
immunization, passive immunization, and early anti-virus medications. The greater the
later virus variants the higher the transmission rate (reproduction number) is. The Omicron
BA.5 variant after the Alpha, Beta, Gamma, and Delta had the highest transmission rate
and immune escape of vaccines. The late emergency use authorization of vaccines for
children has resulted in low levels of neutralizing antibody titers, higher viral load, and
more non-pulmonary diseases. This situation would make patients with immunodeficiency
just as bad as hyperinflammation leading to severe non-pulmonary inflammatory diseases
such as ANE, MIS-C, and MIS-A (Table 1; Figure 3). Fortunately, children receiving mRNA
vaccines appeared to reduce occurrence of MIS-C. Whether the mRNA vaccines protect
children from ANE remains to be determined. Moreover, adolescents and adults could have
ANE or MIS-A, which could cause a higher mortality, requiring early recognition and early
treatment to reduce the mortality. The combined treatment of IVIG and methylprednisolone
with and without cardiovascular supports could effectively rescue the patients with MIS-C
or MIS-A; however, it remains unclear what regimen is suitable to rescue patients with
ANE because of its elusive immunopathogenesis of hyperinflammatory mechanisms. The
prevention of severe ANE might not be rescued by early use of anti-virus agents, but rather
early use of mitochondrial cocktails and immunomodulators.
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