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Abstract: Goat cheese is an important element of the Mediterranean diet, appreciated for its health-
promoting features and unique taste. A pivotal role in the development of these characteristics is
attributed to the microbiota and its continuous remodeling over space and time. Nevertheless, no
thorough study of the cheese-associated microbiota using two metaomics approaches has previously
been conducted. Here, we employed 16S rRNA gene sequencing and metaproteomics to explore the
microbiota of a typical raw goat milk cheese at various ripening timepoints and depths of the cheese
wheel. The 16S rRNA gene-sequencing and metaproteomics results described a stable microbiota
ecology across the selected ripening timepoints, providing evidence for the microbiologically driven
fermentation of goat milk products. The important features of the microbiota harbored on the
surface and in the core of the cheese mass were highlighted in both compositional and functional
terms. We observed the rind microbiota struggling to maintain the biosafety of the cheese through
competition mechanisms and/or by preventing the colonization of the cheese by pathobionts of
animal or environmental origin. The core microbiota was focused on other biochemical processes,
supporting its role in the development of both the health benefits and the pleasant gustatory nuances
of goat cheese.

Keywords: goat cheese microbiota; one health; metaproteomics; targeted metagenomics; cheese
microbiota; raw milk; animal infectious disease

1. Introduction

Goat cheese is a key element in the Mediterranean diet and is among the most fre-
quently consumed dairy products globally. The texture, flavor, and organoleptic properties
of the cheese depend on several factors, including (but not limited to) the cheesemaking
process, the animal breed, and the breeding management. Emerging evidence underlines
the pivotal role of the microbiota, and its continuous evolution, in the conditioning of a
cheese’s characteristics. The complex microbial diversity harbored in the milk converts
its components, mainly carbohydrates and proteins, into secondary products and/or sub-
strates that further trigger the growth and metabolism of microorganisms. This results
in the continuous restructuring of the microbiota and the accumulation of myriads of
molecules of microbial origin constituting the cheese mass, such as fatty acids, volatile
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organic compounds (VOCs), amines, ketones, free amino acids, phenols, alcohols, aldehy-
des, lactones, and sulfur compounds [1–4]. On the other hand, the presence of harmful
elements, either of animal or environmental origin, poses health and hygiene problems.
As of today, most commercial and large-scale cheese factories carry out milk treatment
procedures (e.g., thermization and pressurization) to standardize the milk quality and
drastically reduce the milk’s microbial load and diversity [5]. In contrast, the great majority
of traditional dairy products are still produced using raw milk [6], thus benefitting from
a high level of microbial biodiversity operating across the stages of the cheesemaking
process. Nevertheless, higher hygienic standards and precautions are required throughout
the whole production process [6,7].

Milk and cheese act as the “point of contact” between animal, human, and environ-
mental health; therefore, the accurate assessment of the microbiota contained in these
products is an important tool of One-Health relevance, besides being of great importance in
other respects, such as biosafety, technological processing, and nutritional and nutraceutical
value. The rapid advance of the metaomics discipline has enabled the detailed characteriza-
tion of the microbial communities harbored by virtually all ecological niches. Metagenomic
and metabolomic investigations are the most commonly employed approaches in cheese
microbiota research, providing information on the composition and genetic potential of
the sampled microbial community along with the overall array of metabolites produced
by the consortia of microorganisms associated with cheese. The supplementation of this
information with metaproteomics is desirable, as it would provide valuable information
on the protein repertoire and the biochemical pathways being effectively implemented by
the microbiota components under the sampling conditions. Nevertheless, metaproteomic
investigations of milk by-products are rare owing to the technical difficulties that prevent
the common adoption of the metaproteomics approach in the characterization of cheese
microbiota. To the best of our knowledge, only a few studies available in the literature
have employed metaproteomics for the investigation of cheese microbiota [8–10], and no
metaproteomics studies are available on raw goat milk cheese.

Considering the potential of studying cheese microbiota and the paucity of cheese
metaproteomics studies, we conducted 16S rRNA gene sequencing and a metaproteomics
study to obtain a comprehensive picture of a typical raw goat cheese microbiota in terms
of both composition and activity. This is the first metaomics-based study of a typical raw
goat milk cheese investigating the microbial community dynamics on the rind and in the
core of the cheese wheel across different ripening periods. Moreover, we provide insights
into the microbial interactions occurring among the naïve and environmental bacteria and
biochemical strategies for guaranteeing the biosafety of typical raw milk by-products.

2. Results
2.1. Metataxonomic Analysis of the Microbiota

The sequencing of the V3–V4 regions of the 16S rRNA gene identified an average of
27,500 reads per sample (20,000–35,000 reads). The median Good’s coverage of approxi-
mately 0.985 for both the rind and core sample groups (Additional File S1) was indicative of
a satisfactory nucleic acid extraction performance, and only a minor part of the 16S-based
information was neglected in the present approach. Analogous analytical evaluations
were conducted for the samples labeled on a ripening-timepoint basis (Additional File S1).
Sequencing reads were quality-filtered and trimmed before being binned into ASVs.

Data from the DNA-based investigations were assembled in data matrices according
to the Bray–Curtis similarity and the weighted and unweighted UniFrac, as depicted in
the PCO plots in Figure 1. Here, the sample ordination produced a scattered pattern of 16S
rRNA profiles, preventing a clear distinction between the microbial communities harbored
in the rind and the core samples, as well as between the microbiota at different cheese
ripening stages (p > 0.05).
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Figure 1. PCO plots of the 16S rRNA gene-sequencing data. The overall DNA-based dataset is visual-
ized as PCO plots according to Bray–Curtis similarity, unweighted UniFrac, and UniFrac. Blue framed
plots depict samples sorted according to the cheese-wheel depth (i.e., rind or core). Red-framed plots
depict samples stratified according to both the cheese-wheel depth and ripening timepoint.

The identified ASVs, sorted on a sample-label basis, portrayed a stable microbiota com-
position across the three ripening periods, as supported by ANOVA (30, 60, and 90 ripening
days, p > 0.05). On the other hand, the sorting of the OTUs based on the cheese-wheel depth
(i.e., core or rind) revealed tendentially different microbiota compositions at the taxonomic
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levels of family and genus (Figure 2), with the genus Lactobacillus and family Lactobacil-
laceae being overrepresented in the core-associated microbiota, thus driving the structural
alterations evidenced by the comparative evaluation of the microbial communities.
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Figure 2. Microbiota composition assessment by 16S rRNA gene sequencing. The bar charts visualize
the composition of the microbial community harbored in the rind and core of the cheese wheel regard-
less of the ripening timepoint. (A) Microbiota composition at the family taxon level; (B) microbiota
composition at the genus level. Higher taxonomic levels are displayed in both (A,B) when it was not
possible to attribute a family or genus to the OTU, respectively.

The taxonomic composition of the microbial communities was further employed as
the input for the assessment of the functional potential of the microbiota using PICRUST
analysis (Additional File S2). Altogether, no large differences were found in the comparative
evaluation of the functional potential of the microbiota colonizing the rind and the core
regions, as well as among the microbial communities at the different ripening timepoints.
These observations were statistically supported, as shown by the resemblance matrices
drawn according to Bray–Curtis similarity and the Euclidean distances of the microbial
communities’ functional profiles (Additional File S3).

2.2. Metaproteomics Investigation of the Microbial Communities

The investigation of the microbiota using metaproteomics relied on the identification of
approximately 3500 proteins among the samples extracted for different ripening timepoints
and cheese-wheel depths. A variable number of proteins was identified in each of the
sample groups considered in the study, with as many as 482, 500, and 484 unique proteins
for the core samples at 30, 60, and 90 days of ripening, respectively, whilst 225, 209, and
258 unique proteins were identified in the rind samples at 30, 60, and 90 days of ageing.
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Nevertheless, most of the identified proteins were shared between pairs of sample groups
in diverse combinations, as depicted in Figure 3, panel A. In line with the DNA-based
investigations, the visualization of the metaproteomic dataset as a PCO plot revealed a
scattered distribution of the samples as a function of the ripening period. Additionally,
arranging the samples according to the cheese-wheel depth resulted in a clear separation of
the metaproteomic profiles along the PCO1 axis (Figure 3, panel B). The clustering of the
rind and core samples was also supported by the ANOVA statistical test, with p < 0.01.
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Figure 3. Metaproteomics dataset. (A) The identified proteins. The Venn diagram displays the
number of proteins identified in each of the sample groups taken into consideration in the present
study. Specifically, the diagram shows the size of the metaproteome identified in the rind and core
samples at the ripening timepoints of 30, 60, and 90 days. (B) The ordination of the dataset in a
PCO plot, highlighting the clear separation of the rind and core samples according to their identified
protein repertoires.

The taxonomic composition of the microbial communities determined by metapro-
teomics suggested a higher bacterial diversity, at the family level, when compared with
the companion DNA-based approach. An overview of the diversity indexes calculated for
the microbial communities over the diverse cheese-wheel depths and ripening timepoints
is provided in Additional File S4. The cumulative abundance of the proteins relative to
each bacterial family revealed differences (ANOVA, p < 0.05) in the composition of the
rind and core microbiotas. On the other hand, the overall microbiota architecture at the
diverse ripening timepoints was stable, as assessed by both the ANOVA and the pairwise
PERMANOVA statistical tests (p > 0.05). Considering the above observations, we focused
on the rind and core microbiota to define the bacterial families driving the differences
in the taxonomic structures of these microbial communities. Regardless of the ripening
timepoints, proteins belonging to the families Bacillaceae, Rhizobiaceae, Clostridiaceae,
Streptococcaceae, Caulobacteriaceae, Enterobacteriaceae, Moraxellaceae, Mycobacteriaceae,
Paenibacillaceae, Pseudomonadaceae, and Staphylococcaceae were overrepresented in
the core samples (p < 0.05), as reported in the volcano plot of Figure 4. Similarly, the
evaluation of the protein abundance profiles by least common ancestor according to linear
discriminant analysis (LDA) identified Paenibacillaceae and Vibrionaceae as the major
discriminating families, with the former being overrepresented in the core samples and the
latter being more abundant in the rind microbiota (Additional File S5).
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Figure 4. Microbiota composition based on the identified protein repertoire. (A) Quantitative
composition of the microbial communities harbored in the rind and core of the cheese wheel at 30,
60, and 90 days of ripening. T-tests on a sample group basis (i.e., rind and core) were performed to
highlight the contributors to the statistically significant differences in the structure of the microbiota
between the rind and the core. Single and double asterisks indicate p < 0.05 and p < 0.01, respectively.
(B) Volcano plot summarizing the bacterial families significantly overrepresented in the core samples
(green circles) according to the T-test analysis. Non-statistically significant bacterial families are
represented by red circles. The average intensity of each bacterial family is indicated by the diameter
of its circle.
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The functional characterization of the cheese microbiota was accomplished by sorting
the identified protein repertoire using a variety of protein ontology data repositories, such
as Gene Ontology (GO), PFAM, and TIGRFAM. A detailed overview of the functional
classification of the identified protein repertoire is provided in Additional File S6. Alto-
gether, the functional classification revealed differences in the activities of the rind- and
core-associated microbiota (p < 0.01) according to the functional classification data reposito-
ries. Besides ANOVA, further statistical evaluations underlined the “blind” grouping of the
microbial communities harbored in the rind and core of the cheese wheel according to their
different functional profiles. In line with the previous observations, no statically significant
differences were observed between microbial communities at the selected ripening time-
points (p > 0.05) (Additional File S7). Protein sorting based on the GO biological processes
provided an overview of the major functional concerns of the microbiota in the rind and
core samples. The rind-associated microbiota was intensively involved in the “antibiotic
catabolic process”, the “cellulose biosynthetic process”, the “glutamine metabolic process”,
and “histidyl-tRNA aminoacylation” as compared with its core counterpart. On the other
hand, the core microbiota was exclusively involved in biological processes such as “polyke-
tide metabolism” and “siderophore biosynthesis”. Additionally, the core microbiota was
much more involved in biological processes such as “carbohydrate derivative metabolism”,
“cell division”, and the “phosphorelay signal transduction system” (Figure 5). A deeper
investigation of the functional data elucidated the bacterial families principally involved
in the biological processes peculiar to each microbiota. In the rind microbiota, the family
Rhizobiaceae was the main player in the “antibiotic catabolic process”, suggesting that
bacterial organisms of environmental origin were the principal target of the antibiotic-based
defense. The “cellulose biosynthetic process” was led by the Enterobacteriaceae, whereas
the “histidyl-tRNA aminoacylation” biological process was accomplished by the Bacillaceae
and Clostridiaceae (Figure 5).

The functional characterization of the core microbiota highlighted the families Paeni-
bacillaceae and Bacillaceae as the major contributors to the “antibiotic biosynthetic process”
and “siderophore biosynthesis”, suggesting the role of these organisms in maintaining food
biosafety by outcompeting pathobionts. Additionally, the role of the core microbiota in de-
veloping the cheese’s organoleptic properties was primarily performed by Bacillaceae and
Rhizobiaceae, which were exclusively involved in the “lipid metabolic process”, whereas
“arginine biosynthesis” was mostly accomplished by Vibrionaceae and Enterobacteriaceae.
Additionally, members of the family Pseudomonadaceae were the major contributors to
the “7,8-dihydroneopterin 3-triphosphate biosynthetic process” (Figure 5).

Considering the dynamic structure and functions of the microbial communities in the
different cheese-wheel regions, the quantitative metaproteome was used to elucidate the
correlation network between the bacterial families in the cheese core and rind samples.

Interestingly, the bacterial families Enterobacteriaceae, Rhizobiaceae, Bacillaceae, and
Clostridiaceae showed a strong positive correlation with each other, supporting the pre-
vious observations regarding both the structural and functional makeup of the microbial
community harbored on the surface region of the cheese wheel (Figure 6A).

Regarding the core microbiota, the correlogram analysis indicated that the family
Paenibacillaceae was negatively correlated with most of the identified bacterial organisms
of likely environmental origin (e.g., Desulfuromonadaceae, Mycobacteriaceae, and Ricket-
siaceae), whilst it was positively correlated with other families such as Lactobacillaceae,
Enterococcaceae, and Bacillaceae. The family Bacillaceae, in turn, supported the microbiota
biodiversity by positively correlating with most of the bacterial families identified in the
survey. In addition, the bacterial families identified as playing a role in the development
of the cheese organoleptic properties (e.g., Bacillaceae, Rhizobiaceae, Vibrionaceae, and
Enterobacteriaceae) were linked to each other by positive correlations, both strong and
weak (Figure 6B).
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Figure 5. Functional characterization of the rind and core microbiota. The heatmap displays the
biological processes participated in by the microbiota of the core and rind. The figure details
the functional concerns of the bacterial families whose cumulative protein abundance was above
the pre-fixed threshold of 1% total protein abundance. The color scale is relative to the protein
abundance intensity.
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Figure 6. Correlogram analysis. The correlations computed among the members of the microbial
communities harbored in the rind and core of the cheese wheel are depicted in panels (A,B), respectively.

3. Discussion

The microbial consortia of milk and its by-products are important bioindicators of ani-
mal health and the microbial exchange occurring through the human–animal–environment
network. The fine orchestration of microbial metabolic functions is the foundation of the
cheesemaking technological process, including the development of the gustatory and/or
olfactive nuances peculiar to each cheese and the maintenance of the biosafety of dairy
products. Most typical cheeses are made with raw, unprocessed milk carrying a high
level of microbial diversity, whose importance is still largely debated. On the one hand,
employing milk rich in microbial biodiversity enables the control of food biosafety along
with the development of unique characteristics through the exploitation of the variable and
versatile arrays of metabolic routes. Contrary to this, a higher level of microbial diversity
might involve pathobionts and/or spoilage organisms; thus, a reduction in the naïve milk-
associated microbial flora is thought to be key for guaranteeing the quality and biosafety
of milk and its by-products [6,11]. Although both arguments are scientifically sound, the
myriad of variables influencing both the structural and functional networks of the micro-
biota make the effect of the microbial consortia on various aspects of the cheesemaking
process unpredictable. This prompted us to conduct a thorough investigation into each
microbiota to elucidate how the microbial interconnections were shaped throughout the
experimental duration.
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In this study, we conducted the first metaomics survey of the microbiota associated
with a traditional cheese made with raw goat milk. The cheese selected as the study model
was Caprino Nicastrese, an artisanal goat cheese produced in Calabria, in the south of
Italy. To the best of our knowledge, two studies have so far been performed implementing
“pre-omics” approaches to evaluate the presence of selected bacterial specimens [12,13], but
a comprehensive analysis of the typical goat cheese microbiota is lacking. The sampling
strategy we adopted relied on our initial hypothesis that cheese regions with diverse physic-
ochemical features (e.g., oxygen availability) would host different microbial communities,
whose overall metabolism was likely pivotal to specific aspects of the cheese. The ripening
timepoints selected in our study mirrored the variants of the cheese that are currently sold
(i.e., Caprino Nicastrese ripened at 30, 60, and 90 days).

Both DNA and protein datasets depicted distinct microbiotas in the rind and core of
the cheese wheel. The core-associated microbiota was characterized by the emergence of
new bacterial families (e.g., Brevibacteriaceae and Micrococcaceae) along with the increased
abundance of other bacterial families such as Lactobacillaceae and Paenibacillaceae. Altogether,
this elucidates how the ecological niche (i.e., cheese rind or core) shapes the microbiota
architecture and microbial metabolism to transform the dairy product and preserve it
from spoilage. Our observations diverged from other descriptions of the microbiota of
this cheese, which identify Lactobacillus spp. and Enterococcus spp. as the most abundant
organisms [12,13]. These variations in microbiota composition were primarily attributed to
the different investigation methods. Pino and colleagues [12] employed culture-dependent
methods, which intrinsically overestimate the most common bacterial organisms at the
expense of others. Additionally, farm-to-farm variability is to be expected due to the lack
of strict production specifications and the changing environmental variables that influence
the microbiota composition [12]. Moreover, this previous investigation did not distinguish
between core and surface microbiota while assessing the microbial consortia composition.
As the current study shows, the different cheese-wheel depths are associated with specific
microbiota compositions and functions. Altogether, these factors mean that the studies are
not easily comparable; rather, an integration and complementation of the outcomes should
be considered.

Different pictures of the general microbiota composition were drawn by the 16S rRNA
gene-sequencing and metaproteomics approaches. For instance, the family Streptococcaceae
was identified as the most abundant in the core and rind microbiota by the DNA-based
approach, whereas the most abundant protein profile belonged to the family Bacillaceae,
regardless of the cheese-wheel depth. Additionally, the taxonomic assessment by metapro-
teomics identified a higher bacterial heterogeneity at the family level than 16S rRNA gene
sequencing. The variations in the observations within the present study stemmed from
the different principles these methods are based on. Each method targets different bio-
logical macromolecules and thus presents diverse technical drawbacks [14]. In addition,
metaproteomics enables the identification of a higher level of bacterial complexity, since
the changes in the abundance of expressed proteins are detected earlier than the changes in
the number of DNA copies targeted by 16S rRNA gene sequencing [14–17].

Surprisingly, a stable microbiota composition was described by both 16S rRNA gene se-
quencing and metaproteomics in the samples stratified according to the ripening timepoint.
This observation was unexpected. In light of this, we believe that the major structural rear-
rangements occurred in the early stages of the cheesemaking process (i.e., before 30 days,
which was our earliest sampling timepoint), and that only minor reshaping took place
after the “microbiologically driven” ripening stage, resulting in no statistically significant
differences in the microbial consortia composition across the sampling timepoints. An
alternative/complementary interpretation of this outcome would support the slow and
continuous shaping of the microbiota, so that only a longer ripening window could high-
light any statistically significant structural changes. This view is also supported by a recent
study performed on Cheddar cheese made from raw milk. Here, the major shaping of
the microbial consortia occurred in the very early stages of the cheese production, and a
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relatively stable microbiota composition was reported over the next 26 weeks of ageing [18].
Another recent study on raw goat cheese ripened for 5–15 days reported a stable microbiota
composition, again supporting the notion of a slow-but-continuous shaping of the microbial
consortia [19].

The functional characterization of the microbial communities was in agreement with
the previous observations made by grouping the samples according to the cheese-wheel
depth only. This clustering was entirely supported by the functional categorization of the
protein repertoire, underlining the different functional concerns of the microbiota harbored
in the rind and core of the cheese wheel.

The ontology of the rind protein repertoire identified a microbial community mostly
involved in the maintenance of food biosafety by preventing the cheese surface from being
colonized by foreign microbial organisms such as pathobionts or spoilage bacteria. This
microbial consortium was, indeed, involved in “cellulose biosynthesis”, a biological process
carried out by aerobic acetic acid bacteria that perform the oxidative fermentation of a
variety of sugar substrates and, once they have exhausted the lactose as the main carbon
source, produce cellulose as a by-product [20]. The bacterial cellulose produced on the rind
surface “wraps” the dairy product, providing physical support and facilitating symbiotic
interconnections among the microorganisms that preserve the food from colonization by
external microorganisms [21]. In line with the above, the overexpression of the “antibiotic
catabolic process” supported the occurrence of competition mechanisms between the naïve
and environmental flora, suggesting that the bacterial families encoding for this biological
process had experienced a chemical attack. Additionally, the increased abundance profile of
proteins related to the “glutamine metabolic process” might have indicated the involvement
of the rind microbiota in the biosynthesis of nitrogen-containing compounds, to which
are attributed several physiological and technological functions, such as antimicrobial
properties and the development of typical organoleptic features [22].

In comparison to the rind microbiota, the microbial community in the core of the cheese
wheel was more heterogeneous, in both structural and functional terms. The bacterial
involvement in the maintenance of product biosafety remained, although other biochemical
routes were employed. In addition, the core microbiota seemed focused on more complex
and diverse biological functions, ranging from the conservation of bacterial metabolism to
the array of processes involved in the development of the so-called “added values” of typi-
cal cheeses in both nutraceutical and sensorial terms. The metabolic processes performed
by the core microbiota indicated the greater participation of this microbial community in
biological processes such as DNA replication, protein biosynthesis, and cellular respiration.
The latter is interestingly represented by the case of H2O2 catabolic processes. Besides the
well-known role of hydrogen peroxide in microbial interactions [23,24], it is also one of the
major metabolic by-products of many lactic acid bacteria [25], as these often lack respiratory
chains and opt to reduce molecular oxygen to recycle NAD+ from NADH, with increased
energetic yield as compared to the classical fermentation process. Analogous cases of hy-
brid metabolism have been recently reported by Marco et al. [26] in Lactobacillus plantarum,
a microorganism with a pivotal role in fermented food production technology. Here, the
authors described how combining features of respiration and fermentation would improve
lactic acid bacteria function, thus enhancing product biosafety and quality [26]. The resis-
tance of lactic bacteria to hydrogen peroxide is granted by the absence of oxidant-sensitive
dehydratases and mononuclear Fe(II) enzymes [25,27]. Instead, the extensive involvement
of the core microbiota in the biosynthesis of Fe(III)-chelating substances produced by aero-
bic or facultatively anaerobic bacteria (i.e., siderophores) suggests the activation of hybrid
metabolism in the core microbial consortium, although tailored investigations would be
necessary to confirm this unconventional metabolic route.

The core microbiota was also focused on biological processes linked to the develop-
ment of the typical nutraceutical and gustatory characteristics of the dairy product, as
was supported by the overall involvement of the microbiota in the biosynthesis and/or
transformation of a variety of proteins, lipids, and amino acids. Specifically, the way
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in which bacterial activities related to lipid metabolism and fatty acid biosynthesis are
linked to improved organoleptic properties in cheese and dairy products has already been
described [28,29]. In addition, the microbiota involvement in the “arginine biosynthetic
process via ornithine” indicated the continuous control exerted by the whole microbiota
composition on the development of nutraceutical features, considering the role of or-
nithine in the production of bacteriocins and natural antibiotics. Additionally, arginine
affects a variety of human physiological processes, such as growth/tissue repair, immune
support, and cellular communications [30]. Moreover, the microbiota engagement in the
7,8-dihydroneopterin 3’-triphosphate biosynthetic process was suggestive of the production
of B-group vitamins and folate, whose health-promoting effects range from anticarcino-
genic activity to a reduced risk of cardiovascular diseases [31,32]. In line with biopterin
production, the thiamine production further supported the beneficial effects exerted by the
core-associated microbial community on the cheese organoleptic and health-promoting
characteristics [33,34].

4. Materials and Methods
4.1. Cheese Samples and Experimental Design

The present work explored the microbial community associated with a typical raw
goat milk cheese. Caprino Nicastrese cheese was employed as the study object, as an
example of a traditional raw goat milk cheese. Following collection, the raw goat milk
was coagulated for 60 min at 36 ◦C using 0.4 g/L goat rennet and without the addition
of any starter culture. The resulting curd was manually cut into rice-sized pieces, shaped,
and stored at room temperature for 48 h to drain out the residual whey. Cheese wheels
were then salted for 24 h in brine with 30% (w/v) NaCl. Finally, the cheese was ripened in
wooden axis in the storage basement of the cheese farms at 10–15 ◦C and 70–85% humidity.

Samples from the surface and inner mass (i.e., rind and core, respectively) of the cheese
wheels were aseptically collected with a sterile knife from 30-, 60-, and 90-day-ripened
cheese wheels. Biological replicates were sampled as defined in Figure 7 and transported on
ice to the laboratory for the subsequent isolation and analysis of the harbored microbiota.
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Figure 7. Experimental design and sampling strategy.

Bacterial fractions were isolated from the rind and core of the cheese wheel at 30,
60, and 90 days of ripening. Pooling was performed, with each pool including bacterial
extracts from three samples. Eighteen pools were subjected to 16S rRNA gene sequencing, 9
from the rind and 9 from the core. Each depth was composed of 3 sample pools taken from
cheese wheels ripened for 30, 60, and 90 days. The metaproteomics survey relied on a total
of 10 sample pools, 4 for the rind and 6 for the core depth. Two pools were considered from
each ripening timepoint of the core depth, whereas two pools were excluded in the rind
groups due to technical issues encountered during the analytical workflow. Specifically, one
pool was omitted from the pool at 60 days and one from the group at 90 days of ripening.
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4.2. Bacterial Fraction Enrichment

To avoid alterations to the microbiota composition and/or activity, all the steps of
the bacterial fraction enrichment were performed at 4 ◦C, with the temperature kept un-
der strict control. Briefly, independent aliquots of 0.5 g of each biological replicate per
sample type were finely grated and homogenized with 15 mL buffer containing 50 mM
Na2HPO4 and 0.1% Tween 80 at pH 8.0. Samples were then shaken on an orbital shaker at
1600 rpm for 10 min. Following this, the samples were centrifuged for 20 min at 2500× g.
The supernatant was collected in a new tube and subjected to four more rounds of shak-
ing/centrifuge/resuspension, whereas the pellet from each step was gently resuspended
and collected in a single clean “pool vial”. The “pool vial” was finally centrifuged at
12,000× g for 20 min, resulting in the collection of a bacterial pellet from an original amount
of 0.5g cheese aliquots [1,14,35].

The enriched bacterial fractions represented the common starting point for the two
analytical approaches employed in the present study: 16S rRNA gene sequencing and
metaproteomics (Figure 7).

4.3. 16S rRNA Gene Sequencing and Metataxonomic Analysis
DNA Extraction and Library Preparation

Cheese DNA was extracted from 9 rind and 9 core samples, respectively, 3 for each
ripening time point (Figure. 7) according to the EZ1 DNA Tissue protocol (Qiagen, Hilden,
Germany). Starting from 40 mg, 190 µL of buffer G2 and 10 µL of proteinase K solution were
added to each sample aliquot, before incubation at 56 ◦C in an Eppendorf® Thermomixer
until complete sample lysis, with vortexing 2–3 times per hour to disperse the sample.
Two hundred microliters of supernatant were transferred to a new 2 mL sample tube,
and the automated EZ1 extraction was finalized. The amplification of the V3–V4 variable
region from the bacterial 16S rRNA gene (∼460 bp) was carried out using the primers
16S_F 5′-(TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT ACG GGN
GGC WGC AG)-3′ and 16S_R 5′-(GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG
ACA GGA CTA CHV GGG TAT CTA ATC C)-3′, according to the MiSeq rRNA Amplicon
Sequencing protocol (Illumina, San Diego, CA, USA). The PCR reactions were set up using
2 × KAPA Hifi HotStart ready Mix kits (KAPA Biosystems Inc., Wilmington, MA, USA).
DNA amplicons were cleaned up using CleanNGS kit beads (CleanNA, Waddinxveen, The
Netherlands). A second amplification step was performed to obtain a unique combination
of Illumina Nextera XT dual indices for each sample. The final libraries were cleaned up
using CleanNGS kit beads; quantified by a Quant-iT PicoGreen dsDNA Assay Kit (Thermo
Fisher Scientific, Waltham, MA, USA); and normalized to 4 nM. To generate 250 × paired-
end 2 bp length reads, normalized libraries were pooled together and run on the Illumina
MiSeq platform, according to manufacturer’s specifications.

4.4. Biocomputational and Statistical Analysis for Cheese Microbiota Profile Analysis

QIIME2 was used to analyze the paired-end sequencing reads [36]. Quality control,
denoising, chimera removal, trimming, and the construction of the amplicon sequence
variant (ASV) table were performed by the means of DADA2, implemented as a plugin
in QIIME2 [37]. The taxonomy was assigned using a Naive Bayes model pre-trained on
SILVA through the QIIME2 plugin q2-feature classifiers [38]. Alpha and beta diversity
were computed by skbio.diversity using analysis of variance (ANOVA) and permutational
analysis of variance (PERMANOVA), respectively; the latter was applied on phylogeneti-
cally informed weighted and unweighted UniFrac and Bray–Curtis distance matrices [39]
with 9999 permutations to perform a paired comparison of the rind and core samples at
different timepoints. Principal coordinate analysis (PCoA) plots were used to illustrate
the beta diversity of samples. The ASV table was normalized using the cumulative sum
scaling (CSS) method [40]; hence, the Kruskal–Wallis test was applied to compare tax-
onomic differences at the phylum (L2), family (L5), and genus (L6) levels. Python 3.7
was used to perform ecological statistical analyses. Three different levels of statistical
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significance were identified based on different p values (p ≤ 0.001) and false-discovery rate
(FDR) thresholds (p ≤ 0.05, p ≤ 0.001) [41]. Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) [42], employing the Kyoto Encyclopedia
of Genes and Genomes (KEGG) orthologs (KO) database, was used to determine ASVs
and their microbiome functions. In addition, LEfSe (linear discriminant analysis effect size)
was independently used to determine the features most likely to explain the differences
between the rind and core of the cheese wheel at 30, 60, and 90 days of ripening.

4.5. Metaproteome Extraction and Quantification

Bacterial pellets obtained via the above-described bacterial fraction enrichment proto-
col were resuspended in protein extraction buffer (7M UREA, 2M Thiourea, 4% CHAPS)
and subjected to 6 cycles of 1 min bead beating (Minilys, Bertin Tecnologies, Montigny-
le-Bretonneux, France), interspersed with 1 min resting on ice. Bead-beating steps were
performed by shaking each sample at 4000 rpm with an equal amount (1:1 v/w) of 0.1 mm
zirconium silica beads. Following bead beating, the samples were heated up to 60 ◦C
for 10 min and centrifuged for 20 min at 12,000× g and 4 ◦C. The supernatant containing
the extracted metaproteome was collected in a clean tube and further processed for the
metaproteomic analytical workflow.

Extracted proteins were quantified using Bio-Rad Protein Assay Dye Reagent Concen-
trate (Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions. Approxi-
mately 50 µg of the extracted proteins was precipitated by incubation (30 min at 4 ◦C) with
precooled 20% trichloroacetic acid (TCA) and kept for further processing.

4.6. Trypsin Digestion and Mass Spectrometry Analysis

Precipitated proteins were digested in solution. Briefly, 50 µg of total proteins for
each sample was treated for disulfide bond reduction with 10 mM DTT for 1 h at +37 ◦C
and alkylated with 20 mM IAA at +37 ◦C for 1 h in the dark. Iodoacetamide excess was
removed by the incubation of the sample with 1.61 mM DTT at +37 ◦C for 20 min. Sample
digestion was carried out overnight at +37◦ C using trypsin in a 1: 50 (w/w) ratio with
respect to the protein content. Enzymatic digestion was stopped by the addition of 0.1% FA
(v/v). Tryptic peptides were purified and desalted using self-assembled C18 Stage Tips [43].
Tips containing the C18 membranes with the bounded peptide mixture were eluted with
5% acetonitrile (5% ACN/0.1% TFA), dried in the vacuum centrifuge, and stored at −20 ◦C
until mass spectrometry measurements.

Prior to MS/MS measurement, the dried peptide mixture was suspended in 0.1% FA
and loaded onto a precolumn Acclaim PepMap100 C18 (5 µm, 100 Å, 300 µm i.d. × 5 mm)
(Thermo Scientific, San Jose, CA, USA). Following 5 min of trapping, operating at 10 µL/min
in eluent A, peptides were separated by an Easy-Spray PepMap C18 column (2 µm 100 Å
15 cm × 50 µm ID) with a Thermo Scientific Dionex UltiMate 3000 RSLC nano system
(Sunnyvale, CA, USA).

Analyses were performed using an aqueous solution of FA (0.1%, v/v) as eluent A and
ACN/FA (99.9:0.1, v/v) as eluent B in the following gradient elution: (i) 5% of eluent B
(7 min); (ii) from 5 to 35% of eluent B (113 min); (iii) from 35 to 99% of B (15 min); (iv) 99%
of B (10 min); (v) from 99 to 5% of B (2 min); (vi) 5% of B for column conditioning (13 min).
The column was kept at 35 ◦C and operated at a flow rate of 300 nL/min; the injection
volume was set at 5.0 µL.

Peptides were directly eluted into Orbitrap Elite nanoESI-MS/MS (Thermo Fisher
Scientific, Waltham, MA, USA). Tandem mass spectrometry measurements were performed
in positive full-scan acquisition mode in the 350–2000 m/z range and with a resolution
power of 60,000. The nanoESI tuning parameters were as follows: capillary temperature
250 ◦C, source voltage 1.5 kV, sheath gas 0, auxiliary gas 0, and S-lens RR level 50%. MS/MS
analyses were performed in data-dependent scan (DDS) mode by selecting and fragmenting
the twenty most intense multiple-charged ions of the collected full-scan spectra using
collision-induced dissociation (CID, 35% normalized collision energy) with a resolution



Int. J. Mol. Sci. 2022, 23, 14131 15 of 18

power of 60,000. Only precursors with a charge state of 2–7 and an intensity above the
threshold of 5 × 103 were collected for MS/MS. The DDS parameters were set as follows:
exclusion mass width relative reference mass in the low and high range 10 ppm, minimum
signal threshold (counts) 500, default charge state 2, activation time 10 ms [44].

4.7. Bioinformatics Data Analysis and Data Integration
4.7.1. Protein Identification and Quantification

MS raw spectra were processed through Proteome Discoverer and MaxQuant soft-
ware following a two-step database-dependent search (DDS) approach, as reported previ-
ously [15]. Briefly, raw files were first processed by Thermo Proteome Discoverer software
(v.2.2) and searched against the UniProt KB bacteria database. Methionine oxidation was
set as the variable modification and the carbamidomethylation of cysteine as the fixed mod-
ification. The SequestHT node thresholds were set to “automatic”, and a filter considering
only entries with at least one peptide per protein was chosen. All other filters and settings
of the software were kept as default, including protein grouping with peptide confidence
set as “high” and a delta Cn of 0.1. The percolator node supporting a strict maximum
parsimony principle was activated with a false discovery rate of 1%.

The first DDS enabled the assessment of the microbial community composition at the
family level, leading to the construction of a smaller in-house database accounting for the
bacterial families identified in both the metaproteomics and 16S rRNA gene-sequencing
investigations. The customized database was employed in the second DDS of the MS raw
data performed on MaxQuant (v 1.6.17.0) set to LFQ modality for peptide identification
and protein inference and quantification. Cysteine carbamidomethylation was set as the
fixed modification and methionine oxidation as the variable modification. Two missed
cleavage sites were allowed for in-silico protease digestion, and peptides had to be fully
tryptic. All other parameters of the software were set as default, including peptide and
protein FDR < 1%, at least 1 peptide per protein, precursor mass tolerance of 4.5 ppm after
mass recalibration, and a fragment ion mass tolerance of 20 ppm. The mass spectrometry
proteomics data were deposited into the ProteomeXchange Consortium via the PRIDE
partner repository with the dataset identifier PXD032280.

4.7.2. Ecological and Functional Characterization of Microbiota by Metaproteomics

Information on the taxonomic composition of the microbiota, as assessed by the
identified protein repertoire, was gathered from the protein annotation of the UniProt
KB database, whereas the quantitative microbiota composition was determined based on
the LFQ intensities relative to each bacterial member on a family basis. The logarithmic
transformation of the cumulative intensities on a family basis was accomplished while
comparing the microbiota composition in the diverse sample groups.

Identified protein repertoires were functionally categorized into biological processes
and molecular functions according to the Gene Ontology (GO) data repository. Abundance
profiles of the identified proteins (LFQ values) were subjected to statistical investigation
using Primer7 v.7 statistical software (PRIMER-E, Plymouth, UK). Principal component
analysis (PCO) was conducted based on the square root transformation of the protein
LFQs. Statistical differences across the samples were calculated by performing ANOVA
and PERMANOVA. Parametric T-tests assessing the discriminating role of the bacterial
families in the microbiota composition were conducted, and the results were visualized
in iMetalab using shiny apps (https://shiny.imetalab.ca/). Linear discriminant analysis
effect size (LEfSe) was calculated using the galaxy platform (https://usegalaxy.org). Heat
maps visualizing microbial community composition across the samples and the functional
classification of the identified proteins were drawn using heatmap.2, provided by the
gplots package implemented in R v.4.2.0 software (http://www.R-project.org). Correlation
analysis was performed through the corrplot package implemented in R v.4.2.0 software
(http://www.R-project.org).

https://shiny.imetalab.ca/
https://usegalaxy.org
http://www.R-project.org
http://www.R-project.org
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5. Conclusions

This is the first metaomics-based study of a typical raw goat milk cheese. Goat cheeses
are commonly consumed and popular for their gustatory properties and health benefits.
The combination of 16S rRNA gene sequencing and the metaproteomic approach enabled
the in-depth characterization of the composition and activity of the microbiota at different
cheese-wheel depths and provided insights into the structural dynamics of the microbial
community during ripening. Altogether, this explorative study provided basic knowledge
on the microbial community harbored in this fascinating dairy product and offered sug-
gestions for further objective-tailored research lines. The biological functions expressed by
the investigated microbiota are certainly of interest in the context of the biological safety
of traditional products, including the development of strategies and precautions to keep
the risk of zoonoses and/or foodborne diseases to a minimum. In addition, understanding
the contribution of the microbiological footprint to the development of the flavor and
texture of this cheese could greatly influence cheesemaking technology by informing micro-
biota modulation practices aimed at amending the quality and standardization of typical
dairy products.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232214131/s1. Additional File S1. Good’s coverage of the
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the sequencing data in the rind samples. B-panel displays the distribution according to the cheese
wheel depth and ripening timepoints. Additional File S2. Metabolic potential of the microbial
communities. The functional potential of the metabolic community is predited via PICRUST analysis
of the microbiota harbured on the rind and core (upper stacks) and in the micrbiota of the rind and
core at hte ripening timepoints of 30, 60 and 90 days (lower stacks). Additional File S3. Functional
dataset visualization. PCO plot are relative to the samples stratified according to cheese wheel
depths (A-panel) and cheese wheel ad ripening timepoints (B-panel). Additional File S4. Microbial
community richness and evenness indexes. Additional File S5. Linear Discriminant Analysis among
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