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Abstract: This study is preliminary to an experiment to be performed onboard the International
Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured
human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be
maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions
onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the
physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and
(Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation.
The results show that the human skin and vein specimens remained viable for more than 4 weeks,
with no substantial signs of damage in their tissues and cells. As a further clue about cell viability,
some typical events associated with wound repair were observed in the tissue areas close to the
wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein
wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers
eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system
for wound healing studies, not only for the scheduled space experiment but also for applications on
Earth, such as drug discovery purposes.

Keywords: wound healing; human skin; human vein; serelaxin; Zn-nonoate

1. Introduction

Long-term space missions to bring astronauts beyond the Earth’s orbit, to explore the
closer planets, have become a feasible objective for the near future. This has prompted
a surge in biomedical research in order to identify the possible risks and health issues of
exposing the human body to prolonged micro/low gravity conditions and to set up appro-
priate countermeasures, especially taking into account the limited availability of medical
resources onboard a spaceship. Studies on astronauts returning from missions onboard
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the International Space Station (ISS) have shown that prolonged exposure to micrograv-
ity can impair tissue homeostasis, thus negatively influencing bone and skeletal muscle,
hematopoiesis and immune response. Although studies on wound healing in humans or
in human tissues have never been conducted in space until now, the pathophysiological
alterations caused by space flight could impair the body’s resilience to injuries [1–3]. In
particular, the susceptibility of astronauts to trauma due to particular working needs and
conditions makes the impaired tissue response to wounds a major reason for concern [4],
as well as a priority subject for biomedical research funded by the national and interna-
tional space agencies. In this context, our research group is involved in an international,
multidisciplinary research project to investigate how human tissues, particularly the skin
and blood vessels, can adapt to microgravity conditions and how wound repair may be
influenced [5]. This study was selected by the European Space Agency (ESA) to be car-
ried out at the ISS and in parallel on Earth, tentatively in 2022 (ESA-AO-ILSRA-2014). It
exploits two ex vivo human organ models, namely whole-thickness skin and saphenous
vein bearing a standardized sutured wound, prepared from samples donated by volun-
teer patients subjected to mammary plastic or vascular bypass surgery. To ensure tissue
viability throughout the experiment (4 weeks), we have developed an automated tissue
culture chamber–which fits the ESA Biolab facility inside the Columbus module onboard
the ISS–and a new tissue culture technique that combines biochemical and biophysical
factors. The culture chamber is equipped with a device that can model physiological tensile
strength in the tissues and monitor its changes throughout the experiment, thus enabling
the study of tissue and suture mechanical properties. Mechanical factors are involved in
the regulation of many biological processes, wound healing included, which are crucial for
maintaining tissue homeostasis. Therefore, the modeling of physiological and mechanical
factors improves tissue culture survival. Moreover, new long-term culture media have been
created. They are based on standardized media, supplemented with substances previously
used to extend the viability of explanted organs scheduled for transplantation, namely
serelaxin and (Zn(PipNONO)Cl) [5]. Serelaxin, the recombinant form of human H2 relaxin
hormone suitable for pharmaceutical use, has been shown to induce protection against
ischemia–reperfusion injury by reducing cellular oxidative damage, apoptosis and inflam-
mation [6,7]. By the use of similar mechanisms, serelaxin has been shown to extend the
lifespan of liver and lungs to be transplanted [8]. Zn-metallononoate (Zn(PipNONO)Cl),
a nitric oxide (NO)-releasing molecule (Noxamet Ltd., Milan, Italy), has been shown to
promote endothelial cell survival and to induce the activation of H2S-dependent signaling
pathways, resulting in potent antioxidant and tissue-trophic effects in in vitro culture [9,10].
As a mandatory preliminary step to the true experiment, we have performed the present
study to ascertain whether our model is adequate to the purpose, and particularly whether
the wound healing process can take place, in full or in part, even in these long-term skin
and vein explants. To achieve this aim, at the end of the experimental period, key indicators
of cell function and tissue remodeling were investigated in tissue regions taken either in
close proximity to or at a distance from the surgical wound.

2. Results
2.1. EU Set-Upg

The Experimental Units (EU) used for the experiments are composed of a stainless
steel frame, allowing the explanted skin specimens to be stitched onto micro-adjustable
support brackets made of biocompatible plastic, a culture chamber filled with enriched
incubation medium and a reservoir containing fresh medium to replace the exhausted
medium in the culture chamber via a peristaltic pump (Figure 1), designed to prevent
formation of air bubbles within the chamber. The body of the culture chamber and reservoir
are made of sterilizable, biocompatible plastic. External air can readily exchange with
the tissue samples via a gas-permeable silicone membrane, which also prevents bacterial
contamination. In previous experiments, we observed that oxygen consumption varied
depending on the tissue type, preservation conditions, time since collection, temperature
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and salinity. In general, oxygen consumption in tissue samples was ≤0.5 µmol/mL/h
(with salinity ranging from 0 to 10 g/L). The thickness (0.2 mm) and exchange surface
(3350 mm2) of the membranes used in the EU has an oxygen permeability of 16.2 cm3/h,
which largely fulfills the metabolic needs of the incubated tissues [5]. The mounted skin
or vein specimen is connected to a load cell (Burster Srl., Bergamo, Italy) capable of
continuously measuring and recording the tensile strength in a 0–20 N range during the
whole experiment by means of dedicated software developed by Kayser Italia. Electronics,
including a microcontroller, are assembled within the EU in an Advanced Experiment
Container (AEC), which has been sized and designed to fit and plug the Biolab slots onboard
the ISS (OHB, Bremen, Germany). In this way, the EU can be interfaced with the Biolab
controllers and pre-programmed software to receive commands, e.g., pump start/stop, load
cell operation, data acquisition, etc. For the present experiment, the AECs were connected to
a Biolab interface simulator. Both the experimental hardware and software worked properly
for the entire experimental period (a minimum of 28 days), performing turnover of the
incubation medium and recordings of tensile strength at the set time points with no need for
external adjustments.
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Figure 1. Representative photographs of the Experimental Unit (EU). (A) Detail of the stainless steel
frame during surgical manipulation; (B) EU with a mounted skin specimen and a sutured surgical
wound; (C) Two operating EUs assembled in an Advanced Experiment Container to be inserted into
the Biolab facility of the Columbus module at the ISS.
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2.2. Histology

Light microscopic examination of hematoxylin and eosin (H&E)-stained histologi-
cal sections of the skin specimens after long-term incubation in the enriched incubation
medium and a freeze-and-thaw cycle showed a substantially preserved architecture of the
epidermis, as well as the papillary and reticular dermis (Figure 2). In all of the specimens
the surgical wound was still clearly detectable, although the epidermal layer at the wound
edges appeared thicker and with more pronounced ridges than it did at a distance from the
wound (Figure 2A). At higher magnifications, epidermal keratinocytes showed a normal
appearance, the only detectable abnormality being a slight cytoplasmic vacuolation in
some supra-basal cells; in some specimens, melanin pigmentation was still visible in the
basal layer. Blood microvessels and dermal stromal cells also appeared well preserved
(Figure 2B). By comparison, a skin specimen incubated in a standard culture medium not
enriched with serelaxin and (Zn(PipNONO)Cl) showed prominent abnormalities, namely
diffuse cytoplasmic swelling of keratinocytes and detachment of the epidermis from the
underlying basement membrane (Figure 2C). Dermal blood vessels were barely detectable
and stromal cells often showed hyperchromatic, picnotic nuclei.
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Histological examination of H&E-stained saphenous vein sections subjected to the 
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cular wall layers or tunicae, the intima, media and adventitia (Figure 3). In particular, at 
higher magnification, a nearly continuous endothelium was observed, together with nor-
mally appearing smooth muscle and stromal cells (Figure 3B). By comparison, a vein spec-
imen incubated in a standard non-enriched culture medium showed a nearly complete 
disappearance of the endothelial layer (Figure 3C). 

Figure 2. Representative histological features of the skin specimens after long-term incubation,
freezing and thawing. (A) Transverse section across the surgical wound shows the epidermis nearby
with pronounced rete ridges (inset); pd: papillary dermis, rd: reticular dermis. (B) High magnification
of a skin specimen incubated in enriched medium showing a substantially normal epidermis, with
brown melanin pigment in the basal layer and scattered keratinocytes with vacuolated cytoplasms,
and preserved blood capillaries (arrow). (C) Same magnification of a skin specimen incubated in
non-enriched medium showing diffuse keratinocyte vacuolation and detachment of the epidermis
from the basement membrane (asterisks). H&E staining; bars = 100 µm.

Histological examination of H&E-stained saphenous vein sections subjected to the
same incubation protocol also showed a substantially preserved architecture of the vas-
cular wall layers or tunicae, the intima, media and adventitia (Figure 3). In particular,
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at higher magnification, a nearly continuous endothelium was observed, together with
normally appearing smooth muscle and stromal cells (Figure 3B). By comparison, a vein
specimen incubated in a standard non-enriched culture medium showed a nearly complete
disappearance of the endothelial layer (Figure 3C).
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Figure 3. Representative histological features of the saphenous vein specimens after long-term
incubation, freezing and thawing. (A) Longitudinal section across the surgical wound, indicated
by arrowheads; asterisk: lumen, tm: tunica media, ta: tunica adventitia. (B) High magnification of
a vein specimen incubated in enriched medium showing a nearly continuous layer of endothelial
cells (arrows). (C) Same magnification of a vein specimen incubated in non-enriched medium
showing diffuse endothelial loss, with only scattered residual endothelial cells (arrow). H&E staining;
bars = 100 µm.

2.3. Morphometric Analysis of Connective Tissue Fibers

Histological sections of the same skin specimens were then analyzed by histochemistry
and morphometry to investigate possible differences in dermal collagen and elastic fibers
that could be related to the wound healing process. The percent surface area of the
meshwork of picrosirius red (PSR)-stained collagen fibers was significantly decreased in
the papillary dermis close to the surgical wound, compared to that at a distance from
it, suggesting that collagen remodeling had occurred. On the other hand, no significant
differences were found in the percent surface area of the thicker collagen fibers in the
reticular dermis, regardless their proximity to the wound (Figure 4). Similarly, in the
reticular dermis, no significant regional differences of paraldehyde—fuchsin (PAF)-stained
elastic fibers were detected (Figure 5). In the papillary dermis, elastic fibers were too few
for a reliable morphometric analysis.
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Figure 4. Light microscopic appearance and morphometry of collagen fibers from skin areas located
close to and far from (3–5 mm) the surgical wound; pd: papillary dermis, rd: reticular dermis. The
collagen fiber meshwork is slightly, albeit significantly, reduced in proximity to the wound. PSR
staining; bars = 100 µm; values are mean ± s.e.m., n = 4, n.s. not significant.
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Figure 5. Light microscopic appearance and morphometry of elastic fibers in the reticular dermis from
skin areas located close to and far from (3–5 mm) the surgical wound. No substantial differences can be
seen or measured. PAF staining; bars = 100 µm; values are mean ± s.e.m., n = 4, n.s. not significant.
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Histochemistry and morphometry of the vein sections showed no significant differ-
ences in the percent surface area of PSR-stained collagen fibers and PAF-stained elastic
fibers between the tunica adventitia measured in tissue areas close to or far from the sur-
gical wound (Figures 6 and 7). Instead, a slight but significant reduction of the percent
surface area of the elastic fibers in the tunica media was detected in proximity to the wound
(Figure 7). This finding is consistent with the occurrence of extracellular matrix remodeling.
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Figure 6. Light microscopic appearance and morphometry of collagen fibers from vein areas of
the tunica adventitia located close to and far away (3–5 mm) the surgical wound. No substantial
differences can be seen or measured. PSR staining; bars = 100 µm; values are mean ± s.e.m., n = 4,
n.s. not significant.

2.4. Blood Microvessels and Stromal Cells

Small-sized blood vessels, already observed in the H&E-stained sections, were specif-
ically identified by fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin
(UEA) lectin and anti-α-smooth muscle actin (α-SMA) antibodies (Figure 8A). They were
mostly located in the papillary and upper reticular dermis and did not show any visual
differences between the tissue areas close to and far from the wound. Mast cells, identified
by FITC-labeled avidin, were found in the upper dermis, especially along blood vessels
and around adnexa (Figure 8B,C), as well as in the tunica adventitia of the vein samples.
Visually, those located in proximity to the wound appeared to contain fewer fluorescent
granules, suggesting that cell activation and granule release had occurred. Both of the
dermal layers harbored several spindle-shaped or stellate fibroblasts expressing the ac-
tivation marker heat-shock protein 47 (HSP47), which was also expressed by epidermal
keratinocytes. It was also noted that activated fibroblasts appeared to be more numerous
in the dermal areas close to the wound (Figure 8D,E). On the other hand, HSP47-positive
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fibroblasts were only seldom encountered in the vein samples. No α-SMA-positive stromal
cells identifiable as myofibroblasts were detected in any dermal or vein wall areas.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 7. Light microscopic appearance and morphometry of e lastic fibers from vein wall areas lo-
cated close to and far from (3–5 mm) the surgical wound. No substantial differences can be seen or 
measured in the tunica adventitia (ta), whereas in the tunica media (tm) the elastic fiber meshwork 
is slightly, albeit significantly, reduced in proximity to the wound. * lumen. PAF staining; bars = 100 
µm; values are mean ± s.e.m., n = 4, n.s. not significant. 

2.4. Blood Microvessels and Stromal Cells 
Small-sized blood vessels, already observed in the H&E-stained sections, were spe-

cifically identified by fluorescein isothiocyanate (FITC)-labeled Ulex europaeus agglutinin 
(UEA) lectin and anti-α-smooth muscle actin (α-SMA) antibodies (Figure 8A). They were 
mostly located in the papillary and upper reticular dermis and did not show any visual 
differences between the tissue areas close to and far from the wound. Mast cells, identified 
by FITC-labeled avidin, were found in the upper dermis, especially along blood vessels 
and around adnexa (Figure 8B,C), as well as in the tunica adventitia of the vein samples. 
Visually, those located in proximity to the wound appeared to contain fewer fluorescent 
granules, suggesting that cell activation and granule release had occurred. Both of the 
dermal layers harbored several spindle-shaped or stellate fibroblasts expressing the 

Figure 7. Light microscopic appearance and morphometry of elastic fibers from vein wall areas
located close to and far from (3–5 mm) the surgical wound. No substantial differences can be seen or
measured in the tunica adventitia (ta), whereas in the tunica media (tm) the elastic fiber meshwork is
slightly, albeit significantly, reduced in proximity to the wound. * lumen. PAF staining; bars = 100 µm;
values are mean ± s.e.m., n = 4, n.s. not significant.

2.5. Proliferating Epidermal Keratinocytes

Histological sections of the same skin specimens were then immunolabeled with anti-
Ki67 antibodies to identify proliferating cells. The percentage of Ki67-positive keratinocytes
over total cells was slightly, albeit significantly, higher in the epidermis of areas close to the
surgical wound than at a distance from it (Figure 9). As expected, Ki67-positive cells were
mainly located in the basal layer of the epidermis and at the periphery of the hair follicle
sheath, likely at the level of the so-called ‘bulge’, which is known to harbor epidermal stem
cells [11]. Scattered Ki67-positive cells were seldom found in the papillary dermis.
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Figure 8. (A) Small blood vessels in the upper dermis (arrows) labeled by FITC-conjugate UEA
lectin and anti-α-SMA antiserum. Mast cells, labeled by FITC-conjugated avidin, are located along
blood vessels (arrows) (B) and around hair follicles (hf) (C). Visually, those located in proximity
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2.6. Markers of Tissue Integrity and Functions

Protein lysates from skin and vein tissues taken far from or close to the surgical
wound were analyzed by western blotting to evaluate the expression of two key markers
of endothelial integrity and function, fibroblast growth factor 2 (FGF-2) and endothelial
nitric oxide synthase (eNOS), as well as the inducible inflammatory and tissue remod-
eling marker inducible nitric oxide synthase (iNOS) (Figure 10). These molecules were
detectable and measurable (as ADU) in all the samples, thus allowing reliable compar-
isons. In the skin samples, the levels of eNOS and FGF-2 were significantly higher in
the specimens taken in proximity to than distant from to the wound, while iNOS was
unchanged (Figure 10A,B). In the vein samples, eNOS and FGF-2 also attained higher levels
in the specimens taken in proximity to than distant to the wound, the eNOS differences
reaching statistical significance, whereas no substantial changes were detected for iNOS
(Figure 10C,D).
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Figure 10. Western blots and densitometric quantitation for the endothelial integrity and functional
markers FGF-2, eNOS and the inflammatory and tissue remodeling marker iNOS in the specimens of
skin (A,B) and saphenous vein (C,D) taken in proximity to (close) or distant from (far, 3–5 mm) the
surgical wound. β-actin was used as a loading invariant protein and assumed as reference control.
(A,C) Representative blots of 3 independent experiments; (B,D) Bar graphs showing quantitation of
the noted markers normalized to β-actin and expressed as fold-changes of the values measured in the
samples taken far from the wound. Values are mean ± s.e.m., n = 4; * p < 0.05; no marks, not significant.

3. Discussion

The present study offers experimental evidence that, under the described culture
conditions, ex vivo human skin and vein specimens can be maintained in a viable state
for a long time, enabling them to activate some tissue-specific steps of wound healing. In
particular, the findings on the epidermis and dermis from areas located in close proximity
to the sutured surgical wound have shown activation of the keratinocyte stem cell compart-
ment and of dermal fibroblasts, as judged by Ki67 and HSP47 immunofluorescent detection,
accompanied by remodeling of the superficial collagen fiber network. Both of these features
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are typical of the wound healing process, as they predispose to epidermal cell migration
from the wound margins to achieve wound closure [12–14]. In this context, the observed
expression of HSP47 by both epidermal cells and dermal fibroblasts is particularly relevant:
this collagen-binding chaperonin has been reported to be induced by stress conditions,
when it plays a major role in the control of collagen biosynthesis by preventing the secretion
of abnormal procollagen [15]. Due to its collagen regulatory properties, HSP47 has been
shown to be up-regulated at both the transcriptional and translational levels during skin
wound healing [16]. Its detection in the tissues of the studied skin specimens is a major
piece of evidence in favor of the suitability of the present ex vivo model for wound healing
studies. Finally, the fact that mast cells show signs of degranulation, accounting for cell
activation, in the vicinity of the wound suggests that the activity of fibroblasts can also be
influenced by their mediators [17].

The data collected from the vein model also suggest that some of the known events
of vascular wall remodeling during wound healing have taken place: in particular, the
reduction of the elastic fiber network in the tunica media is consistent with extracellular
matrix degradation, which precedes its replacement with collagen (scarring) [18]. The slight
increase in the endothelial functional markers FGF-2 and eNOS and in the smooth muscle
activation marker iNOS in the specimens close to the wound also point to this conclusion.

Key features of our model that can account for its successful outcome are restoration
of physiological skin and vein tensile strength and enrichment of the incubation medium
with tissue protective substances. Concerning the first point, it has been demonstrated
that survival of explanted tissues was impaired if free biopsies were allowed to shrink,
while it was improved if biopsies were fixed onto a support to maintain the original tissue
geometry [19]. Our EU allows the stitching of excised specimens onto an adjustable frame
capable of restoring approximately their initial size and physiological intrinsic mechanical
forces, as well as the measurement and recording of their changes during the surgical
wounding, suturing and healing process. Concerning the second point, a series of studies
on cellular, isolated organ and animal models of ischemia/hypoxia followed by reperfu-
sion/reoxygenation have demonstrated that serelaxin acts at multiple levels in the complex
network of the mechanisms of oxidative damage during post-ischemic reoxygenation,
exerting marked protective effects [6,7]. With this background, since oxidative stress is
also a key factor underlying the progressive damage and viability loss of explanted organs,
serelaxin has been exploited as a protective supplement to the maintenance medium of
isolated organs before transplantation, with positive results [8]. Moreover, oxidative stress
has been identified as a pathogenic factor of microgravity-induced tissue damage [20]; thus,
serelaxin could be beneficial in more ways for tissue maintenance in the planned exper-
iments onboard the ISS. For the same reasons, metal–nonoates, which behave as potent
antioxidants by a molecular mechanism involving NO release and H2S increase [9,10],
can be helpful for this purpose. Indeed, the present findings confirm that serelaxin and
(Zn(PipNONO)Cl]) are useful pharmacological tools to extend the viability of the isolated
skin and blood vessel explants during the whole experimental period, as required for
the planned studies onboard the ISS. More generally, by preventing oxidative damage,
this culture medium, supplemented with serelaxin and and (Zn(PipNONO)Cl), could be
particularly suitable for culturing biological tissue and 3D tissue constructs onboard space
vehicles/stations in future deep-space missions.

A limitation of our model directly relates to the prolonged ex vivo conditions. In
particular, although the EU allowed an adequate O2 and metabolite supply for the metabolic
needs of the skin and vein specimens [5], the absence of blood perfusion deprived the
tissues of the substantial contribution of blood-borne inflammatory cells and mesenchymal
stem cells. Together with resident cells, these play an important role in wound healing by
the secretion of cytokines and growth factors that mediate inflammation and fibroblast–
myofibroblast trans-differentiation [21–23]. The absence of α-SMA-positive myofibroblasts
in proximity to the surgical wound can be explained by the lack of cytokine-mediated
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(e.g., TGF-β) induction by inflammatory cells which, in normal in vivo conditions, infiltrate
the wounded tissue [24,25].

Another cause for the ostensible absence of myofibroblasts could be the lack of me-
chanical stresses that are normally present and continuously operating in vivo, for example,
due to joint movements. It is well known that myofibroblast differentiation is strongly
stimulated by mechanical forces [26] and fibrotic scars generally occur in body regions par-
ticularly exposed to mechanical stress [27]. Our future studies will focus on the application
of discontinuous mechanical stresses to our ex vivo models, which also appear suitable for
studying how mechanical forces may influence wound healing.

Because of the above-described limitation, as well as the fact that the remodeling
phase of wound healing takes place beyond the time frame of the current ex vivo model,
only part of the complex cellular and molecular mechanisms of wound healing can be
investigated. However, the described ex vivo long-term human skin and vein models
represent useful experimental tools to dissect and better understand the mechanisms of
wound healing. For instance, the modest or absent inflammatory reaction may be an
opportunity to study tissue regeneration. In fact, it has been well assessed that scarring is
controlled by myofibroblasts differentiated and activated by a strong inflammatory reaction
to tissue injury, while regeneration is instead associated with poor inflammation [28].

In conclusion, beside the specific goal of carrying out the planned experiment onboard
the ISS, this whole-tissue human skin/vein model may represent a valuable alternative
to in vitro keratinocyte/fibroblast co-cultures or in vivo rodent models for the study of
wound healing and, possibly, a valuable option for drug development purposes.

4. Materials and Methods
4.1. Specimen Sampling and Handling

Skin biopsies (2 cm length) taken at surgery (n = 4) were carefully purged of subcu-
taneous fat, rinsed in PBS and stitched with 3.0 non-absorbable nylon suture onto square
frames specifically developed to stretch the tissue, simulating physiological tensile strength,
and to monitor its changes during wound healing (Kayser Italia Ltd., Livorno, Italy). Then,
the frames with the skin biopsies were placed in transport containers filled with modified
RPMI and kept at 4 ◦C for 17 days to simulate the time period between collection of biop-
sies at Careggi University Hospital (Florence, Italy) and preparation of sutured wound
models at the launch site (Kennedy Space Center, Cape Canaveral, FL, USA), including the
sample shipment time. A similar procedure was used to prepare saphenous vein biopsies,
about 2 cm long and with a 0.5 cm diameter, which were stitched with 6.0 non-absorbable
polypropylene suture onto the ends of the frames and cultured in the conditions described
below. At day 18, to simulate the preparation of the wound models at the launch site, 1 cm
long incisions were made on the skin biopsies with a scalpel and these were then sutured
with 3.0 non-absorbable nylon thread to reproduce a surgically closed skin wound. The
vein samples were cut transversely in the middle and sutured with 6.0 non-absorbable
polypropylene thread to reproduce an end-to-end vascular anastomosis. Then, both of the
sutured wound models were put into the in-flight experiment hardware: each sample was
placed in the culture chamber of an experiment unit (EU), filled with modified DMEM
incubation medium. The EUs were placed in pairs (1 skin and 1 vessel) in experimental
containers (ECs) and kept at 24 ◦C for 6 h (to simulate the handover from the launch site to
the ISS). Finally, the ECs were incubated at 32 ◦C for 9 to 12 days (to simulate the in-flight
experiment on board the ISS). The actual in-flight experiment will last from 4 to 9 days
(the various samples will be retrieved at different times to evaluate different phases of
wound healing). In the present ground simulations, the longest incubation time was chosen
to ensure adequate viability of the experimental models. At the end of experiment, the
specimens were frozen at −80 ◦C directly in the medium-filled culture chambers. After
2–10 weeks (to simulate the return to Earth and trans-continental transport to the PI’s labo-
ratory) each frozen sample was cut into 2 halves, orthogonally to the surgical wound: one
was gently thawed by immersion in Immunofix (Bio-Optica, Milan, Italy) formaldehyde-
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based fixative solution at 4 ◦C and then processed for conventional light microscopy,
i.e., dehydrated, embedded in paraffin and cut into 5 µm-thick sections, while the other
was kept frozen for molecular analyses.

4.2. Bioreactor Development

The bioreactor has been developed by Kayser Italia, following the requirements indi-
cated by the scientific team. The culture chamber, the frame conferring mechanical support
to the tissue specimens, the system including the medium reservoir and the electronically
controlled peristaltic pump for medium circulation, the gas-permeable membrane, the
electronically controlled load cell connected to the frame for modeling the physiological
tensile strength in the tissue, and the monitoring of this throughout the culture period have
been developed as previously described [5]. All of the bioreactor components in contact
with the tissues and culture media are biocompatible.

4.3. Enriched Long-Term Incubation Media

Two modified incubation media were used in the experiments, namely RPMI (Sigma-
Aldrich, Milan, Italy) for maintenance of the sample at 4 ◦C and DMEM (Sigma-Aldrich)
for incubation of the samples at 24–32 ◦C. RPMI was supplemented with 120 µg/mL lin-
comycin (Pfizer, Latina, Italy), 10 µg/mL colistin (Accord Healthcare Italia S.r.l., Milan,
Italy) and 50 µg/mL vancomycin (Hikma Italia S.p.a., Pavia, Italy); DMEM was supple-
mented with 8 µL/mL 20% bovine serum albumin, 0.4 µg/mL hydrocortisone (Sanofi S.r.l.,
Anagni, Italy), 0.12 UI/mL insulin (Ely Lilly, Sesto Fiorentino, Italy), 100 UI/mL G penicillin
(Sigma-Aldrich), 20 µg/mL gentamycin (L.F.M., Milan, Italy), 1 µg/mL amphotericin B
and 50 µg/mL ascorbic acid (Sigma-Aldrich). Both media were enriched with substances
previously used to protect explanted organs for transplantation purposes, namely serelaxin
(60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), with the aim of extending the viability of
the ex vivo organ specimens during the experimental period. The currently used concen-
trations of serelaxin and (Zn(PipNONO)Cl) have been chosen based on those that exerted
significant tissue protective effects in the above cited studies [8–10].

4.4. Histology and Morphometric Evaluation of Collagen and Elastic Fibers

Histological sections, 5 µm thick, were cut from the paraffin-embedded samples.
Some of them were stained with H&E and observed using light microscopy. Histological
images were acquired using a microscope equipped with a Visicam TC10 tablet camera
(WWR International, Milan, Italy). Others were stained with 0.2% PSR for 60 min., a
histochemical method specific for collagen fibers. Staining of the sections was performed
in a single session, to minimize artifactual differences. In each skin specimen, 2 photomi-
crographs, including the papillary and reticular dermis, were randomly taken from areas
in close proximity to or distant from (3–5 mm) the surgical wound; in each vein specimen,
2 photomicrographs of the tunica media and 2 of the tunica adventitia were randomly
taken from areas in close proximity to and distant from (3–5 mm) the surgical wound.
In both instances, a Nikon DS F12 CCD camera connected to a Nikon Eclipse E200 light
microscope with a 40× objective (each micrograph: 57,700 µm2) was used. On each image,
4 regions of interest (ROI), 1500 µm2 each, were randomly chosen: here, the surface area
of PSR-stained collagen fibers was selected by thresholding (to exclude the PSR-negative
amorphous ground substance and cells) and measured using ImageJ 1.53 k software
(http://imagej.nih.gov/ij (accessed on 2 October 2021). Values are expressed as percent
area of collagen fibers over total tissue area. In the vein samples, only the tunica adventitia
close to or far from the wound was selected for the measurements, since collagen fibers are
chiefly present in this layer. Another series of histological sections was used to assess the
percent area of elastic fibers, stained histochemically with 0.5% PAF for 5 min, applying a
similar morphometrical method and sampling procedure. In the skin samples, only the
reticular dermis close to or far from the wound was selected for the measurements, since
elastic fibers in the papillary dermis were too few to give reliable results.

http://imagej.nih.gov/ij
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4.5. Fluorescent/Immunofluorescent Detection of Mast Cells, Blood Vessels and Fibroblasts

Histological sections (5 µm thick) were cut from te paraffin-embedded skin and
vein samples and used for detection of different stromal cell types using specific fluores-
cent markers, as follows: FITC-labelled avidin (1:400) for mast cells [29]; FITC-labelled
UEA lectin (1:10) for blood vessels [30]; rabbit polyclonal anti-HSP47 (1:50 Abcam, Milan,
Italy) followed by FITC-labelled goat anti-rabbit antibodies (1:32 Abcam) for activated
fibroblasts [31]; and goat polyclonal anti-α-SMA (1:400 Abcam) followed by FITC-labelled
rabbit anti-goat antibodies (1:175 Abcam) for both blood vessels and myofibroblasts [32].
In some slides, nuclei were counterstained in red with propidium iodide. Before each
immunolabeling, antigen retrieval was performed using 0.1 M citrate buffer at 96 ◦C for
10 min. The fluorescent markers and the primary antisera were applied overnight at 4 ◦C,
and the secondary antisera for 2 h at 37 ◦C. Omission of the primary antibody was used as a
negative control for the immunofluorescence reactions. The labelled sections were viewed
and photographed using a Zeiss Axioskop UV microscope equipped with a digital camera
and Axiovision 4 software (Zeiss, Jena, Germany) or a Leica TCS SP5 confocal microscope.
Unless otherwise stated, all reagents were from Sigma-Aldrich.

4.6. Evaluation of Proliferating Epidermal Keratinocytes

Migration of newly formed keratinocytes to fill the skin defect is a key early step of
wound healing [12,14]. To assess whether this phenomenon also occurred in our ex vivo
model, a series of sections from the paraffin-embedded specimens was immunostained to
reveal the Ki67 nuclear proliferation antigen. Briefly, the sections were subjected to antigen
retrieval as described above, incubated overnight at 4 ◦C in rabbit polyclonal anti-Ki-67
antiserum (Sigma-Aldrich), and diluted at a ratio of 1:50 in PBS with 3% bovine serum
albumin. An immune reaction was revealed by sequential incubation (at room temperature)
in biotinylated goat anti-rabbit antiserum (Thermo Fisher Scientific, Milan, Italy; 1:600,
30 min), avidin/peroxidase complex (Thermo Fisher Scientific, 10 min), and DAB substrate
kit (Abcam, Cambridge, UK; 5 min) as chromogen. Nuclei were counterstained with
hematoxylin. In each skin specimen, the percentage of Ki67-positive nuclei over total nuclei
of basal/suprabasal keratinocytes was counted by a trained observer directly from a light
microscope with a ×40 objective, in at least 2 microscopic fields, in close proximity to or
distant from the surgical wound.

4.7. Western Blotting

Western blotting analysis was performed on frozen samples of skin and vein, as
described [33], taken in proximity to (close) or distant from (far, 3–5 mm) the surgical wound.
Protein extraction was achieved upon disruption and homogenization of the specimens
using a TissuesLyser II (Qiagen, Germantown, MD, USA). Samples were frozen/unfrozen
twice in liquid nitrogen and then sonicated on ice for a total of 2 min, with a 15 s run and
15 s pause to limit heating. Tissue lysates were centrifuged at 16,000× g for 20 min at 4 ◦C
and the supernatants were then collected. Protein concentration was determined using
the Bradford method. Electrophoresis (50 µg of protein/sample) was carried out in 4–12%
Bis-Tris Gels (Life Technologies, Carlsbad, CA, USA). Proteins were then blotted onto
nitrocellulose membranes and incubated overnight with the following primary antibodies:
anti-eNOS (mouse, 1:1000, cat. no. 612656, BD Transduction Laboratories, Franklin Lakes,
NJ, USA), anti-iNOS (rabbit, 1: 1:500, cat. no. sc-651, Santa Cruz Biotechnology, Dallas, TX,
USA), anti-FGF-2 (mouse, 1:500, cat. no. 05-118, Merck KGaA, Darmstadt, Germany), and
anti-β-actin (mouse, 1:10,000, cat. no. MABT825, Merck KGaA). Immune reactions were
detected by an enhanced chemiluminescence system (Biorad, Hercules, CA, USA). The
results were normalized to those obtained with anti-β-actin antibodies (mouse, 1:1000, cat.
no. 612656, BD Transduction Laboratories). Immunoblots were analyzed by densitometry
using Fiji software (64-bit Java 1.8.0_172), and the results, expressed as arbitrary density
units (ADU), were normalized to β-actin.
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4.8. Statistical Analysis

The experimental values were expressed as the mean ± s.e.m. of the 4 different skin
or vein specimens, each assumed as the test unit. Statistical comparison of data measured
close to or far from the wound was performed by using Student’s t test for unpaired values,
assuming p ≤ 0.05 as significant. Calculations and graphical rendering was carried out
with Prism 5.0 software (GraphPad Dotmatics, Boston, MA, USA).
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