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Abstract: Urethral stricture is a common urinary tract disorder in men that can be caused by iatrogenic
causes, trauma, inflammation, or infection and often requires reconstructive surgery. The current
therapeutic approach for complex urethral strictures usually involves reconstruction with autologous
tissue from the oral mucosa. With the goal of overcoming the lack of sufficient autologous tissue
and donor site morbidity, research over the past two decades has focused on cell-based tissue-
engineered substitutes. While the main focus has been on autologous cells from the penile tissue,
bladder, and oral cavity, stem cells from sources such as adipose tissue and urine are competing
candidates for future urethral regeneration due to their ease of collection, high proliferative capacity,
maturation potential, and paracrine function. This review addresses the sources, advantages, and
limitations of cells for tissue engineering in the urethra and discusses recent approaches to improve
cell survival, growth, and differentiation by mimicking the mechanical and biophysical properties of
the extracellular environment.

Keywords: urology; urethra; mesenchymal stem cells; smooth muscle cells; keratinocytes; urine-derived
stem cells

1. Introduction

Urethral stricture is a urinary tract disorder with an estimated incidence of 0.6% in
men, which can be the result of a variety of factors, including trauma, infection, and
iatrogenic causes [1]. Common to all of these conditions is that the formation of fibrous
scar tissue narrowing the urethral lumen can lead to symptoms such as incomplete bladder
emptying, increased frequency of urination, and difficulty or pain with urination, all of
which negatively impact the patient’s quality of life. If left untreated, strictures can lead
to complications such as incontinence, urinary tract infections, or even kidney failure [2].
In recent decades, the prevalence of strictures has remained at historically high levels.
According to statistics, the total cost of urethral strictures in the United States is more than
$6000 per affected person, with annual medical costs of nearly $200 million in 2009, and
spending is currently much higher [3]. Because urethral stricture imposes a significant
social and economic burden on individuals, families, and the health care system, the
medical community has turned its focus to finding new therapeutic solutions.

The current gold standard for the treatment of complex urethral strictures is urethro-
plasty with oral mucosa [4]. Oral mucosa has many properties that make it particularly
suitable for urethral reconstruction, as it adapts well to the moist environment of the ure-
thra, has high mechanical strength, and can be rapidly vascularized by blood supply from
the wound bed. It is also easy and quick to harvest, has a hidden suture line, and can lead
to long-term success rates of 80–85% [5]. However, only a limited amount of oral mucosa is
available for harvesting, and complications such as bleeding at the donor site, infection,
pain, parotid duct injury, graft contracture, and numbness may occur [6,7].

Tissue engineering is a promising approach to compensate for the lack of autologous
tissue and can avoid the complications associated with harvesting of the grafts [8–10].
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Tissue engineering approaches often require biodegradable scaffolds that can serve as guid-
ance and structural platforms for progenitor and stem cells to regenerate tissue [11]. The
simplest tissue engineering strategy for urethral reconstruction involves cell-free natural or
synthetic scaffolds [12]. Host cells infiltrate the scaffolds, which are remodeled and eventu-
ally replaced by the target tissue [13]. However, the success of acellular grafts depends on
a healthy urethral bed, adequate vascularity, and the absence of spongy fibrosis. Otherwise,
graft shrinkage, inadequate tissue regeneration, and uncontrolled fibrotic tissue formation
may occur [14]. Since the underlying pathologic process in stricture disease is ischemic
spongy fibrosis, the quality of the wound bed may be compromised [15]. Furthermore, this
simple strategy can only be used as a backup option in patients with short to moderate ure-
thral defects, as clinical data show that failures are common in patients with long strictures
(>4 cm) [16]. For the treatment of complex strictures, cell-based tissue-engineered con-
structs have been investigated. A systematic review has shown that cell-based grafts have a
5.7-fold higher long-term success rate than unseeded grafts [9]. Notably, cell-loaded grafts
have been shown to reduce the incidence of strictures, fistulas, and infections [14]. The most
likely explanation is that cellularization may promote vascularization and urothelial barrier
formation, both of which can effectively reduce local inflammation and fibrosis caused by
urine leakage [11]. Therefore, the selection of the appropriate cell type in conjunction with
a supportive scaffold is a crucial step in tissue engineering for urethral reconstruction [17].
While the use of cell-loaded scaffolds appears promising for the repair of complex urethral
strictures, the optimal conditions for cell maturation and differentiation are still not well
understood. The aim of this review is to describe the different cell types that can be used for
urethral reconstruction and the techniques and conditions that can be used to optimize the
proliferation, engraftment, and functional maturation of these cells. The review includes
cells with proven efficacy in clinical trials as well as cell types that have only recently been
studied in vitro and in preclinical testing but represent a potential source for clinical use.

2. Overview of the Structure and Function of the Male Urethra

The urethra’s primary function is to transport urine from the bladder for excretion
from the body and, in males, to serve as a conduit for sperm [18]. The bulbar and penile
urethras are found in the anterior portion of the urethra, which is also known as the spongy
urethra because it is surrounded by the corpus spongiosum. The urethral epithelium and
lamina propria (mucosa), submucosa, and muscle layer are histologically present in the
spongy urethra. The epithelial layer of the urethra acts as a highly impermeable barrier to
the toxic substances contained in urine, and its histological profile varies from segment to
segment. While the mucosa near the bladder neck consists of transitional epithelium, the
anterior urethra is lined by pseudostratified columnar epithelium, and the external orifice
(meatus urethralis) is lined by stratified squamous epithelium [18]. The bulbar urethra is
small and fixed, whereas the penile urethra is long and mobile. Its length varies with the
length of the penis, stretching up to 40% of its original length during erection [19]. The
muscle layer is made up of smooth muscle cells and is surrounded by the outer circular and
inner longitudinal muscle layers. Various cell types play an important role in maintaining
the functionality of the urethra, as remodeling of the extracellular matrix (ECM) after
the injury occurs largely through a coordinated interaction between smooth muscle cells,
fibroblasts, and macrophages. Mechanical signals appear to play an important role in
maintaining cell phenotype and expression of ECM components [20].

3. Sources of Differentiated Cells

A variety of cell sources have been used to engineer urethral tissue constructs. In
general, these sources fall into two categories: differentiated cells and stem cells. Figure 1
provides an overview of the various sources that researchers have used or propose to use for
urethral tissue engineering. Differentiated cells are cells in the final stage of differentiation,
although they may undergo phenotypic changes under certain conditions (e.g., in vitro
culturing). Differentiated cells for urethral reconstruction mainly comprise mature cells
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obtained from the penile tissue, bladder, and oral cavity, including epithelial, fibroblasts,
epidermal, mesothelial cells, endothelial cells, and smooth muscle cells. The main types
of differentiated cells that have been used in urethral tissue engineering are described in
detail in the following subsections and summarized in Table 1.
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3.1. Urinary Mucosal Keratinocytes

With the primary goal of restoring impaired barrier function, a number of studies have
focused on the keratinocytes of the urethral mucosa. In a pioneering study by Romagnoli
and coworkers, autologous urethral keratinocytes were used to produce cell sheets that
restored normal urothelium and urinary function in boys with hypospadias [21]. The
feasibility of using autologous urethral keratinocytes was also demonstrated in a preclinical
study by Wang and coworkers, in which the authors seeded amniotic membrane scaffolds
with urethral epithelial cells to repair urethral defects in rabbits [22]. Urothelial cells (UC)
from bladder biopsies have also been shown to be potentially suitable for urethral tissue
engineering [23]. Preclinical experiments in rabbits showed that scaffolds seeded with blad-
der UCs were able to support epithelial integrity, stratification, and continuity with normal
urothelium [24]. Despite successful results with biopsy-derived UCs, these protocols are
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invasive because of the surgical procedure and trauma to the bladder and urethra. To
address this issue, bladder and urethral epithelial cells obtained by bladder irrigation have
been increasingly considered. These cells are capable of forming cell colonies with typical
epithelial growth morphology that are positive for pan-cytokeratin [25]. Although the
cells require a feeder layer for the establishment of primary cultures, propagation without
feeder cells could be performed up to 14 passages [26]. Using UCs obtained by bladder
irrigation, Fossum and coworkers successfully restored urethral function in patients with
severe hypospadias [27]. Preclinical studies in rabbits have shown that these cells have the
potential to form a stratified urothelium for the repair of long urethral defects [28]. Overall,
these studies have demonstrated that bladder irrigation is a viable and reliable source of
UCs and is more likely to be accepted by patients in the clinical setting than bladder biopsy.
A limitation is that autologous mucosal keratinocytes cannot be obtained from patients
with chronic inflammatory conditions of the urinary tract, e.g., lichen sclerosus.

3.2. Oral Mucosal Keratinocytes and Fibroblasts

Keratinocytes of the oral mucosa normally reside in a moist physiological environment
similar to that of the urinary tract and can differentiate into uroepithelium in a suitable
microenvironment. Oral keratinocytes can be obtained from a mucosal biopsy after enzy-
matic digestion of the epidermis, which has been mechanically separated from the dermis.
The main advantage of using oral keratinocytes is that they are easily accessible and can be
biopsied under local anesthesia. A study comparing biopsy specimens from the urethra
and oral mucosa found that both urethral and oral mucosal tissues from the same donor can
retain their stemness after primary culture and cell expansion [29]. Lingual keratinocytes
have also been shown to be an effective cell source for urethral regeneration [30]. Mukocell
is a commercial tissue-engineered graft comprising autologous oral epithelial cells on a
collagen matrix, which has been developed to avoid the complications associated with oral
mucosa harvest [31]. These grafts have shown promising clinical results in the treatment
of patients with urethral strictures [32–34], suggesting that commercial tissue-engineered
products may be a feasible alternative for urinary tract reconstruction in the future.

A potential limitation of oral keratinocytes is their low proliferative capacity and
clonogenicity, which hinders their large-scale expansion in vitro that may be required for
clinical use. Keratinocytes can normally undergo only a few passages under very stringent
conditions as they are prone to apoptosis at low density and differentiation and senescence
at the confluence. To address these problems, an increasing number of researchers have
proposed a co-culture approach in which keratinocytes and fibroblasts are seeded onto
scaffolds. Fibroblasts support keratinocyte adhesion and survival by producing a number
of growth factors [35] and also promote terminal urothelial differentiation [36]. Preclinical
studies have shown that oral keratinocytes and fibroblasts can successfully repair long
urethral defects in a canine model [37]. Bhargava and coworkers have shown in clinical
studies that tissue-engineered grafts containing autologous oral epithelium and fibroblasts
enhance stratified urothelium formation and urethral function [38,39]. Overall, the results
support the co-culture of autologous oral keratinocytes and fibroblasts as a viable approach
for urethral regeneration.

3.3. Epidermal Keratinocytes

Epidermal keratinocytes can be easily isolated from the foreskin by a minimally
invasive approach and expanded in sufficient numbers. Epidermal cells are capable of
forming a thick epithelium resistant to a moist environment, which is critical in the urethra.
Fu and coworkers used decellularized bladder submucosa seeded with foreskin epidermal
cells to repair urethral defects in rabbits [40]. Although urethral continuity was successfully
restored, microscopic examination revealed that the graft had a traditional epidermal
arrangement rather than urethral transitional epithelium. Because biopsy of the foreskin can
lead to complications and deformities at the harvest site, biopsies from other hairless skin
sites may be useful. In a preclinical study, Rogovaya and colleagues used skin keratinocytes
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from rabbit ears for the successful regeneration of urothelium free of hair follicles [41].
However, the feasibility of using epidermal cells from sources other than the foreskin in
humans remains to be explored.

3.4. Mesothelial Cells

Omentum-derived mesothelial cells represent a promising cell source for regenerative
medicine applications, as studies have shown that these cells exhibit phenotypic plastic-
ity [42]. In urethral reconstruction, mesothelial cells isolated from omentum biopsies have
shown promise in preclinical studies. Gu and coworkers successfully repaired urethral
defects in a rabbit model using acellular bladder matrices seeded with autologous mesothe-
lial cells [43]. In another study by the same group, the authors fabricated granulation
tissue tubes that were lined with mesothelial cells prior to implantation. In addition to
the new urothelial formation, the cell-seeded grafts showed successful regeneration of
the smooth muscle layer and gradually remodeled to a normal urethral architecture [44].
While omentum-derived mesothelial cells may possess some advantages over urinary
tract-derived cells, long-term cultures of mesothelial cells appear to be challenging due to
early senescence, warranting further studies with this cell type.

3.5. Endothelial Cells

All organs contain endothelial cells (ECs), which play an important function in lining
arteries, veins, and capillaries that remove waste products from distal tissues, transport
immune cells, and supply oxygen and nutrients [45]. Vascularization is currently consid-
ered a critical factor for the successful regeneration of the urethra. Thus, ECs are emerging
as an important cell type in urethral tissue engineering due to their key role in promoting
angiogenesis. In this direction, Imbeault and colleagues developed a tubular urethral graft
by seeding human umbilical vein ECs on fibroblast sheets that were subsequently tubular-
ized and seeded with UCs [46]. Using a mouse implantation model, they demonstrated
that the endothelialized grafts significantly improved early vascularization and minimized
necrosis of the grafted cells. In another study, Heller and colleagues isolated human dermal
microvascular ECs from the foreskin, which were used to develop a prevascularized buccal
mucosal substitute that could be used for the repair of urethral defects [47]. In addition,
studies have shown that the administration of endothelial cells has a significant impact on
the restoration of erectile function in the reconstruction of corporal tissue [48,49]. Although
endothelial cells have been shown to play a crucial role in promoting angiogenesis, obtain-
ing primary ECs remains a challenge, mainly because of the great functional heterogeneity
depending on their location and the presence of contaminating cells [50]. These limitations
could be addressed by differentiating ECs from progenitor cells, such as endothelial colony-
forming cells (ECFCs), which can efficiently differentiate into mature ECs and promote
vascular formation in vitro and in vivo [51].

3.6. Smooth Muscle Cells

Smooth muscle cells (SMC) in urethral reconstruction are primarily derived from the
bladder and corpus spongiosum. As the most important cell type in the muscle layer, they
are critical for improving elasticity and preventing lumen collapse [52]. In addition, SMCs
may help support the epithelial–mesenchymal interactions required for normal maturation
of the urothelium [53]. Feng and coworkers investigated the efficacy of using corporal
smooth muscle cells and lingual keratinocytes seeded onto a porcine acellular corpus cav-
ernosum matrix and showed that tissue-engineered grafts promoted a stratified epithelial
layer and organized muscle fiber bundles [54]. Another preclinical study demonstrated
that SMC grafts successfully regenerated urethral epithelium and smooth muscle layer in
rabbits [55]. A clinical study by Raya-Rivera and coworkers reported successful reconstruc-
tion of the urethra with autologous epithelial and bladder SMCs [56]. Overall, regeneration
of the muscle layer appears to be as important as epithelial regeneration in urethral repair,
as SMCs play a key role in maintaining mechanical properties, supporting epithelial matu-
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ration, and promoting vascularization. Therefore, further research efforts should focus on
methods to improve the contractile properties of the cells before implantation.

Table 1. Summary of main properties of differentiated cells used in urethral tissue engineering.

Cell Type Source Advantages Limitations Refs.

Mucosal
keratinocytes

Urethra -Accurate urethral phenotype -Trauma to the urethra
-Limited supply and expansion capacity [21,22]

Bladder (biopsy) -Successful preclinical results
-Minimally invasive

-Trauma to the bladder
-Invasive procedure [23,24]

Bladder
(washings)

-Ease of harvest
-Readily accepted by patients
-Successful clinical results

-Limited supply
-Requires feeder cells to establish culture
-Unavailable in certain patient groups

[25–28]

Oral mucosa

-Ease of harvest
-Phenotype adapted to
wet environment
-Successful clinical results

-Limited supply
-Poor proliferative capacity [29–34]

Fibroblasts
Oral dermis

-Support survival and adhesion
of keratinocytes
-Produce growth factors

-Limited supply [35–38]

Skin -Minimally invasive harvest -Not extensively characterized [39]

Epidermal
keratinocytes Foreskin/skin -Great proliferative capacity

-Adapted to wet environment

-Failure to develop transitional epithelium
-Biopsy may leave a scar
-Unavailable in circumcised patients

[40,41]

Mesothelial cells Omentum -Successful preclinical results
-Phenotypic plasticity -Limited supply and expansion capacity [43,44]

Endothelial
Cells (ECs) Blood vessels -Promote angiogenesis -Phenotypic and physiologic variability

-Few studies in relation to urethral repair [46–49]

Smooth muscle cells
(SMCs)

Bladder/ corpus
spongiosum

-Improve graft mechanical properties
-Promote angiogenesis and
epithelial maturation

-Trauma to the bladder/urethra
-Invasive procedure [52,54–56]

4. Sources of Stem Cells

Although autologous differentiated cells have been suggested to have some potential
for urethral regeneration, the invasiveness of the collection procedure, the low proliferation
rate, and the adverse effects on diseased donors, such as in cancer or inflammatory diseases,
remain serious drawbacks to contend with before a major clinical breakthrough is possible.
Consequently, interest has shifted to stem cells, which have a high expansion capacity,
can differentiate or transdifferentiate into all relevant phenotypes, and, not unimportantly,
can modulate regenerative processes through paracrine activity. There are many types
of stem cells, but, for the purposes of this review, only embryonic, induced pluripotent,
and mesenchymal stem cells will be discussed in more detail. The major sources and
characteristics of stem cells used in urethral regeneration are summarized in Table 2.

4.1. Embryonic Stem Cells (ESCs)

The cells in the inner cell mass of the blastocysts can be maintained in tissue culture
and multiply infinitely as pluripotent stem cells that are able to differentiate into cells
from any of the three germ layers, the endoderm, mesoderm, or ectoderm. Urothelial
differentiation from ESCs was first described by Oottamasanthien and coworkers using a
mouse model [57]. In vitro experiments later demonstrated the significant role of retinoic
acid in inducing the urothelial phenotype [58]. Following these achievements, a method
to differentiate the human urothelium was reported [59], and other urethra wall-relevant
cell types, such as the smooth muscle [60] and endothelial cells [61] were obtained as well.
Along with an unabating effort to deliver a product that conforms to the therapeutic criteria
by, e.g., introducing xeno-free culture models with extracellular matrices, biosynthetic
surfaces, or chemically defined media, there is a good prospect that the concerns regarding
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ethics, histocompatibility, and the teratocarcinoma formation [62] will be overcome and the
ESCs will eventually see successful use for urethral repair.

4.2. Induced Pluripotent Stem Cells (iPSCs)

Because iPSCs can be individually tailored by reprogramming the patient’s own
somatic cells, researchers have been provided with a powerful tool that is not burdened by
the serious obstacles associated with the ESCs, such as the ethical and histocompatibility
problems [63]. The iPSCs have been eagerly explored by several groups in the field of
urethral reconstruction, and it has been consistently concluded that it is feasible to induce
and drive them along the urothelial specification pathway [59,64,65]. Nevertheless, there are
still some unresolved issues, including low reprogramming and differentiation efficiency
and tumorigenicity, that need to be resolved before the full clinical potential of iPSCs can
be realized [66].

4.3. Mesenchymal Stem Cells (MSCs)

In general, these cells have a mesodermal tri-lineage differentiation potential into
the bone, cartilage, and fat, and exhibit a limited capacity to transdifferentiate. They are
important for the homeostasis of different stem cell niches through their paracrine and
immunomodulatory activities and direct intercellular contact, which is why they are widely
spread throughout the body. Depending on the origin, many different variants can be found
within this category, and most of them have been investigated for urethral reconstruction.
The review will further focus on the following six types, including bone marrow-derived
stem cells (BMSCs), adipose-derived stem cells (ASCs), urine-derived stem cells (USCs),
hair follicle-associated stem cells (HFSCs), amniotic fluid-derived mesenchymal stem cells
(AF-MSCs), and umbilical cord-derived mesenchymal stem cells (UCB-MSCs). The last
type represents a distinct heterogeneous category since many reports do not rigorously
differentiate between the cells originating from the dermal mesenchymal compartment and
the hair shaft epithelial stem cells and progenitors.

Regarding BMSC, Tian and coworkers have shown that using co-culture and con-
ditioned medium protocols, these cells were able to differentiate into both urothelial-
and SMC-like cells [67]. Another report documented the benefits of BMSC in healing
wound-associated inflammation in a rat model [68]. Despite the clear potential, there are
issues primarily associated with the collection, such as low cell yields or procedure-related
morbidities, that may be of concern, especially when considering broader practical use [69].

The ASCs, on the other hand, can be isolated from subcutaneous adipose tissue
with up to 500-fold higher yield without increasing the risk of complications [70]. Over
400,000 liposuction procedures are performed each year, with up to 3 L of lipoaspirate
discarded after each procedure [71]. It is possible to collect up to 6 billion ASCs after a
single passage by collecting and processing all discarded tissue [72,73], and this easy acces-
sibility made ASCs highly sought after for regenerative purposes. Studies have shown that
ASCs can be differentiated into urothelial-like cells under appropriate microenvironmental
conditions, and a co-culture format with UCs and/or conditioned medium appears espe-
cially effective [74–76]. There is additional evidence that the ASCs can undergo epithelial
trans-differentiation in a three-dimensional (3D) arrangement using scaffolds, either decel-
lularized or synthetic [77,78]. Since the ASCs have also been demonstrated to yield upon
induction a smooth muscle phenotype [79–81], they appear to be an appealing source even
for highly intricate urethral engineering applications. Aside from differentiation, ASCs
can secrete a variety of biologically active molecules, such as growth factors, cytokines,
and chemokines, promoting an anti-inflammatory environment, angiogenesis, and wound
healing. Interestingly, ASCs are not only a source of cells for urethral reconstruction but
they can be induced to synthesize ECM scaffolds [82]. It should be underscored that such
scaffolds are autologous, and this presents a significant benefit when it comes to biocom-
patibility issues and surgical success rates [83]. Taken together, despite many beneficial



Int. J. Mol. Sci. 2022, 23, 14074 8 of 17

features, the procedures required for the in vitro differentiation of ASCs into UCs or SMCs
are complex and do not offer a distinct advantage over the autologous UCs or SMCs [5].

USCs appear to be another particularly attractive stem cell for urethral reconstruction.
They have a high potential for self-renewal and differentiation, anti-inflammatory and
anti-fibrotic properties and, in contrast to the archetypal BMSCs and ASCs, can be obtained
non-invasively and, thus, at low cost [84,85]. In addition, the donor’s age, gender, or health
status, with the exception of urinary tract infection and anuria, does not seem to play a role,
and the USC cultures have been successfully established even from donors with end-stage
bladder cancer [86]. The USCs display a high level of stemness and proliferative capacity so
that a single 24 h urine collection can yield over three passages of more than 1 × 108 cells,
which is enough for nearly any application [87–89]. Apart from being an almost limitless
source, the USCs were demonstrated to differentiate into functional UCs [86], SMCs [86],
and endothelial cells [90] to support urothelial mucosa, muscle wall, and blood vessels,
respectively. These properties were further explored in a 3D setting, where Wu and
coworkers were able to produce a tissue construct that was reminiscent of the native
urothelial and SMC layers [91]. In summary, the USCs represent an excellent source for
urological tissue engineering applications. They are innate to the urinary tract and, thus,
can survive exposure to urine similarly to healthy UCs. However, the viability in urine
may be compromised unless appropriate environmental control is in place, which is why
more research on the storage and transfer methods is needed.

Regarding the hair follicles, there is limited data, yet HFSCs have been shown to be
able to support a urothelial-like phenotype in tissue culture or urothelium-like stratified
constructs on the scaffold construct [92,93]. In light of the previously documented plasticity
of cells in the hair follicle dermal papilla and sheet [94], it is plausible that it is these MSCs
that respond with trans-differentiation, but proof remains to be provided. From a practical
point of view, HFSCs are definitely attractive because their source is easily accessible. On
the other hand, the difficulties related to the limited isolation yield and the general lack
of deeper understanding make these cells only a second choice for any urethral tissue
engineering project.

Table 2. Summary of main properties of stem cells used in urethral tissue engineering.

Cell Type Source Advantages Limitations Refs.

Embryonic stem cells (ESCs) Human embryos
-Can be differentiated to any cell type
in the urethra
-Suitable for in vitro models

-Ethical issues
-Malignant potential
-Time-consuming differentiation process

[57–61]

Induced pluripotent stem
cells
(iPSCs)

Reprogrammed cells
from adult tissues

-Can be differentiated to any cell type
in the urethra
-Suitable for in vitro models
-No ethical issues
-Can be used for patient-specific grafts

-Low reprogramming and
differentiation efficiency
-Malignant potential
-Time-consuming differentiation process

[58,64,65]

Mesenchymal stem cells
(MSCs)

Bone marrow (BMSCs) -Extensively characterized
-Promote neovascularization

-Invasive procedure
-Some donor morbidity
-Low yield

[67,68]

Adipose tissue (ASCs)

-Extensively characterized
-Easy to harvest
-Highly abundant
-Low donor morbidity
-Broad paracrine effects

-Inhomogeneous cell population [74–79]

Urine (USCs) -Non-invasive harvest
-Great proliferative capacity

-Compromised viability after long
exposure to urine
-Not extensively characterized

[86,90,91]

Hair follicles
(HFSCs)

-Minimally-invasive harvest
-Great proliferative capacity

-Limited supply
-Not extensively characterized
-More studies are needed in relation to
urethral repair

[92,93]

Amniotic fluid
(AF-MSCs)

-Great proliferative capacity
-Differentiation potential toward
urothelial lineage

-Limited supply
-Not extensively characterized [95]

Umbilical cord blood
(UCB-MSCs)

-Mostly similar to BMSCs
-Easy to harvest
-Great proliferative capacity

-More studies are needed in relation to
urethral repair [96]
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The other two MSCs, including those found in the amniotic fluid and umbilical cord,
share many common features because they originate in extraembryonic gestational tissue.
In general, both AF -MSCs and UCB-MSCs provide an optimal balance between quality
and ethics, as they are abundant and pose minimal ethical and legal issues. Importantly,
they have been successfully induced in vitro in urothelial mimicking phenotypes [95,96]
and further data demonstrate their potential to repopulate scaffold constructs in vivo [97].
Another advantage of these MSCs is that they represent an allogeneic cell source that
could be used “off the shelf” after the identification of cell lines with potentially higher
efficacy. Although current clinical results suggest that allogeneic MSCs are safe and provide
clinically meaningful efficacy [98], treatment with allogeneic cells still poses the risk of
developing long-term alloreactivity, which requires better long-term monitoring of any
unexpected adverse reactions in clinical trials [99]. As with MSCs as a whole, further
research is required before pregnancy tissue-derived MSCs are accepted as a clinically
viable modality.

5. Cell Preconditioning Approaches

A number of preconditioning and engineering strategies have been developed in recent
years with the goal of maintaining cell viability, improving cell survival, enhancing cell
maturation and differentiation, and promoting angiogenesis. Some of the most prominent
are dealt with in more detail below.

5.1. Biomimetic Microenvironmental Approaches

It is desirable for any urethral engineering application that the biopsy samples are best
possible protected en route from the donor. With this in mind, researchers have recently
demonstrated that the transport of oral tissue samples using thermoreversible gelation
polymers provides an optimal environment for preserving the viability of oral epithelial
cells intended for tissue-engineered grafts [100]. Scaffolds that mimic the natural physical
environment of cells are also critical to support cell survival, attachment and synthesis of
ECM, prevent apoptosis, and facilitate cell migration. In this context, nanofibrous scaf-
folds fabricated by electrospinning of biopolymers provide an architecture that mimics
the ECM and enables the incorporation of relevant biomolecules during the fabrication
process [101,102]. Wang and coworkers have demonstrated the successful reconstruction
of the urethra in a rabbit model using poly-L-lactic acid (PLLA) scaffolds seeded with
ASCs [78]. Electrospun silk fibroin scaffolds have also shown excellent results in urethral
reconstruction [103]. Interestingly, three-layer electrospun scaffolds that mimic the architec-
ture of the native urethra seeded with oral fibroblasts and keratinocytes not only supported
better cell attachment and proliferation but also possessed the mechanical properties of
natural tissue [104].

Natural scaffolds obtained by the decellularization of tissues may also provide an
inductive environment to support cell attachment and maturation prior to implantation.
In a preclinical study, type I collagen cell carriers (CCC) with stratified multilayered
autologous urethral epithelium were used to perform urethroplasty in minipigs [105]. The
implanted grafts successfully integrated into the host with concomitant development of
junctional complexes and differentiation, suggesting that the collagen matrix may improve
graft stability. Although the results of using scaffolds that mimic the native architecture of
the urethra are promising, it must be emphasized that most preclinical studies have been
performed in animal models with transient urethral defects. However, these animal models
are very different from patients in whom the pathogenic condition for urethral stricture is
scarring of the corpus spongiosum leading to fibrosis.

5.2. Surface Modification and Cell Seeding Technology

Despite the encouraging results obtained so far with unmodified synthetic and natural
scaffolds in the field of urethral regeneration, new preconditioning strategies, such as the
incorporation of bioactive molecules and the optimization of cell seeding technology are be-
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ing considered. One such strategy is to functionalize the surface of synthetic scaffolds with
naturally occurring ECM molecules or peptide sequences to enhance cell adhesion. Using
this approach, Uchida and coworkers modified the surface of polycarbonate-urethane-urea
scaffolds, known to have mechanical properties similar to those of bladder tissue, with
fibronectin and gelatin, which improved the affinity of urothelial and bladder smooth
muscle cells [106]. The porosity of a scaffold is primarily responsible for the infiltration of
stromal cells. However, even in scaffolds with high porosity, spontaneous infiltration takes
a long time. Therefore, methods have been developed in which dynamic culture increases
cell infiltration of scaffolds [107]. Compared with static seeding techniques, agitation and
centrifugation result in better infiltration as far as the stromal cells are concerned, however,
when it comes to the other cell types relevant to urethral regeneration more work needs to
be done [108,109].

5.3. Scaffold-Free Approaches

Cell sheet engineering is a technique widely used in regenerative medicine, including
urethral reconstruction. Cells are grown in culture surfaces containing a temperature-
responsive polymer, the poly-N-isopropylacrylamide (PIPAAm). At 37 ◦C, the PIPAAm
forms a dense membrane that supports cell attachment and proliferation [110]. When
the temperature drops below its critical temperature (32 ◦C), the polymer swells and
becomes hydrophilic, leading to spontaneous detachment of the cell layer [111]. This
approach allows harvesting of the cells and deposited ECM without proteolytic treatment,
maintaining cell adhesion molecules and important growth factors bound to the ECM. Zhou
and coworkers used a dog model to demonstrate the utility of the cell layer technology in
urethral reconstruction. They created tissue constructs from ASCs, oral mucosal epithelial
cells, and fibroblasts that were successfully used for structural and functional regeneration
of the urethra [29]. Compared to conventional scaffold materials, cell sheets exhibit higher
cell concentration, more uniform cell distribution, higher cell viability, and no immune
system activation caused by scaffold materials. Cell sheets in clinical use today are derived
from autologous cells, which reduces the risk of immune rejection, but the current cost
required to produce patient-derived cell sheets severely limits their widespread use. Off-
the-shelf allografts may be an option in the future; however, further research is needed to
determine how to manage risks associated with immune rejection and/or transmission
of infection.

5.4. Bioprinting

Bioprinting is a relatively new technology, but it already has shown great potential
for producing complex cell-laden constructs that can be tailored to specific needs [112].
A unique advantage is that it can be used to create different cellular structures to mimic
the complexity of natural tissues, which is not possible with conventional scaffold-based
technology [113]. Using 3D printing technologies, Zhang and coworkers fabricated a struc-
ture mimicking the structural and mechanical properties of the rabbit urethra [114]. A
3D-printed spiral tubular scaffold served as a support for two cell-loaded hydrogel layers
in the outer and inner surfaces, containing SMCs and UCs, respectively. Although the
maturation of the cells was not investigated, this study provided the first proof of concept
that bioprinting is a promising approach to assembling the different layers of the urethra in
predefined spatial patterns. In another study, Pi and coworkers developed a multichannel
coaxial extrusion technique for printing tubular structures with multiple circumferen-
tial layers. With this technology, and using a sodium alginate and gelatin methacrylate
(GelMA) blend bioink loaded with human UCs and SMCs, they printed tubular structures
that mimicked urethral tissue [115]. Their results show that bioprinting not only allows
for high structural fidelity but also that the cells retain the ability to proliferate and dif-
ferentiate. These results support the use of bioprinting in urethral tissue engineering, but
issues, such as biomaterial selection, fine-tuning of printing parameters, crosslinking time,
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and mechanical properties need to be addressed to optimize the functional performance
of the constructs.

5.5. Bioreactors

Bioreactors are systems that provide a more physiologically relevant environment for
cultures compared to traditional static conditions and allow for organ modeling in vitro. By
regulating pH, temperature, oxygen partial pressure, cell perfusion, and external mechani-
cal stimuli, these systems support tissue development by providing the biochemical and
physical regulatory signals required for cell proliferation, differentiation, and ECM produc-
tion [116]. Simultaneous application of biophysical and biochemical stimulation signals in
the bioreactors results in synergistic responses that are expected to significantly improve
the functional properties of the cells [117]. Wang and coworkers investigated the feasibility
of dynamic mechanical stimulation to promote smooth myogenic differentiation of ASCs
seeded on polyglycolic acid (PGA) [118]. After one week of static culture, tubular cell-PGA
constructs were induced by 5-azacytidine (5-aza) and stimulated in a pulsatile flow bioreac-
tor for five weeks. Histological examination revealed that the urethral-shaped constructs
contained smooth muscle-like cells and well-oriented collagen fibers. Similarly, Yang and
colleagues were able to employ the pulsed-flow conditions to achieve the formation of a
fully developed multilayer UC epithelial layer within the tubular collagen scaffold [119].
In line with this study, Versteegden and coworkers developed a system to mimic the urine
flow stress on the human urethra, demonstrating that mechanical stimulation is critical for
maintaining a tight epithelial layer [120]. While significant progress has been made in the
design, construction, and application of bioreactors for urethral tissue engineering, most
bioreactors are currently dedicated devices with low-volume output. The optimal culture
conditions for different cell types on different scaffolds need to be further optimized.

5.6. Addition of Bioactive Factors

Recent studies have shown that growth factors can be incorporated into the tissue-
engineered constructs to meet cell growth and maturation requirements, and also to support
the development of a functional vasculature that is critical for graft survival [29,121,122].
For example, Loai and coworkers, when experimenting with a bladder acellular matrix
scaffold coated with VEGF, achieved the formation of new blood vessels as well as urothelial
and smooth muscle layers in the constructs engrafted in rats and pigs [123]. In an attempt
to provide for a more sustained signaling, a recombinant VEGF protein containing the
collagen-binding domain (CBD-VEGF) was devised, and indeed it was documented as
superior to simple VEGF in terms of neovascularization in a dog model [124].

Before urethral regeneration can become embraced as a reliable option, there is the
critical issue of stricture recurrence due to tissue fibrosis, which needs to be resolved. The
TGF-β1 is believed to be the culprit, thus targeting its receptor and/or signaling pathways
appears of key importance, as exemplified by targeting the canonical Wnt regulatory path-
way [125,126]. In this context, Zhang and coworkers introduced the Wnt pathway inhibitor
ICG-001 into electrospun scaffolds [127]. Urethrography results showed patent urethra
in all rabbits of the ICG-001 group, in contrast to the control group where the urethral
strictures and fistulas were frequent. Li and coworkers produced a tissue-engineered
urethral graft using oral keratinocytes and fibroblasts transfected with TGF-β1 siRNA [128].
The result was a decrease in collagen deposition, effectively inhibiting fibrosis. Overall,
the results of these studies indicate that targeted delivery or inhibition of growth fac-
tors in the tissue-engineered grafts is a valid approach that may translate into improved
in vivo performance.

6. Concluding Remarks and Perspectives

Due to a number of shortcomings in the practical application of autologous grafts and
cell-free scaffolds, tissue engineering with cells remains an important research direction
for large urethral defects. In this review, the main cell types and current techniques in the
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field of urethra tissue engineering have been recapitulated. Although a number of scaffold
materials, cell types, and tissue engineering techniques have been developed, there is still
no consensus on the choice of specific options.

The differentiated cells isolated from patient biopsies and bladder irrigation are cur-
rently the mainstay source, however, the focus is shifting towards the somatic stem cells, in
particular the ASCs and USCs, due to their wide differentiation and trans-differentiation
ability and an extensive biological regulatory potential. While autologous cells remain the
preferred cell source, future efforts should focus on evaluating allogeneic cells that could
help increase the availability and efficacy of urethral regeneration therapies. In addition to
cells, the scaffolds are central to regenerative efforts since they can alter cellular responses
in a decisive manner. Consequently, a major impetus is being dedicated to the development
of scaffolds that better mimic the ECM in terms of microstructure and surface chemistry,
and especially the advent of the 3D bioprinting technology opens up solutions that were
hitherto inconceivable. In perspective, further research is needed to create microenviron-
mental conditions conducive to the different urethral cell phenotypes, which requires the
development of dedicated biomaterials and manufacturing processes.
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