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Abstract: A high salt (HS) diet is associated with an increased risk for cardiovascular diseases
(CVDs) and fibrosis is a key contributor to the organ dysfunction involved in CVDs. The activation
of the renin angiotensin type 2 receptor (AT2R) has been considered as organ protective in many
CVDs. However, there are limited AT2R-selective agonists available. Our first reported β-substituted
angiotensin III peptide, β-Pro7-AngIII, showed high selectivity for the AT2R. In the current study, we
examine the potential anti-fibrotic and anti-inflammatory effects of this novel AT2R-selective peptide
on HS-induced organ damage. FVB/N mice fed with a 5% HS diet for 8 weeks developed cardiac and
renal fibrosis and inflammation, which were associated with increased TGF-β1 levels in heart, kidney
and plasma. Four weeks’ treatment (from weeks 5–8) with β-Pro7-AngIII inhibited the HS-induced
cardiac and renal fibrosis and inflammation. These protective effects were accompanied by reduced
local and systemic TGF-β1 as well as reduced cardiac myofibroblast differentiation. Importantly, the
anti-fibrotic and anti-inflammatory effects caused by β-Pro7-AngIII were attenuated by the AT2R
antagonist PD123319. These results demonstrate, for the first time, the cardio- and reno-protective
roles of the AT2R-selective β-Pro7-AngIII, highlighting it as an important therapeutic that can target
the AT2R to treat end-organ damage.

Keywords: fibrosis; AT2 receptor; inflammation

1. Introduction

Cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity
globally, which are often initiated by cardiac or renal insult and injury, that activates the
innate immune system to trigger inflammatory responses for tissue repair [1,2]. Repetitive
injury leads to dysregulated extracellular matrix (ECM) remodelling, including increased
tissue (TGF)-β1-mediated myofibroblast differentiation and reduced collagen degrada-
tion [3–6], which all contribute to accumulated collagen in organs (e.g., the heart and
kidneys), driving towards progressive cardiac and renal fibrosis, which eventually cause
organ dysfunction [7].

Current frontline therapies for cardiovascular diseases are largely dependent on the
blockade of the renin angiotensin system, including angiotensin type 1 receptor (AT1R)
blockers and angiotensin-converting enzyme inhibitors (ACEi). However, their abilities
to reduce organ damage are limited [8,9], highlighting the urgency of developing novel
therapeutic treatments for end-organ damage, including fibrosis.

The angiotensin type 2 receptor (AT2R) is upregulated following cardiovascular injury
in rodents [10–16] and well as in human cardiac biopsies [17–20]. The stimulation of the
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AT2R has been shown to be cardio- and reno-protective in various animal models in the
past decade [20–22]. However, there are limited AT2R-selective ligands that are currently
available. To address this issue, our group has synthesized a library of AT2R-selective
agonists based on the peptide sequence of AngIII peptide, which has a slightly higher
affinity for the AT2R over the AT1R [23], using a β-amino acid substitution strategy [24].
We have recently reported that a single β-substitution to the amino acid proline in position
7 of Ang III (β-Pro7-AngIII) resulted in a more than 20,000-fold AT2R/AT1R selectivity,
and this peptide evoked vasorelaxation in vitro and also reduced blood pressure in con-
scious spontaneous hypertensive rats (SHRs), which were blocked by the AT2R antagonist
PD123319 [25]. More recently, we reported that β-Pro7-AngIII improved renal function
by promoting renal vasodilation and natriuresis in normotensive rats, which were also
blocked by PD123319 [26].

To date, the chronic effects of β-Pro7-AngIII have not been examined. On the basis of
previous studies [21], we hypothesized that this peptide would exhibit anti-inflammatory
and anti-fibrotic effects. To this end, we now report the effects of the novel highly selective
AT2R agonist, β-Pro7-AngIII, on cardiac and renal inflammation and fibrosis following a
high salt (HS) diet.

2. Results
2.1. Blood Pressure and Body Weight

After 8 weeks on a HS diet, the systolic blood pressure (SBP) was similar to that of NS-
fed mice, and there was no significant effect of β-Pro7-AngIII on SBP (Figure S1). Cardiac
hypertrophy, measured by the left ventricular weight (VW) to body weight (BW) ratio, was
similar between groups: 3.74 ± 0.16 (NS); 4.10 ± 0.14 (HS); 4.00 ± 0.05 (HS+ β-Pro7-AngIII);
4.02 ± 0.16 (HS+ β-Pro7-AngIII+PD123319).

2.2. Cardiac and Renal Fibrosis

Cardiac and renal fibrosis were measured using picrosirius red staining to estimate
collagen I and III [27] as well as by hydroxyproline for total collagen concentration [28].
HS increased cardiac and renal interstitial fibrosis by ~1.5 fold using both picrosirius
red staining and hydroxyproline measurements (Figures 1 and 2). This HS-induced car-
diac and renal fibrosis was inhibited by the novel AT2R-selective peptide, β-Pro7-AngIII
(Figures 1 and 2). Importantly, the anti-fibrotic effects caused by β-Pro7-AngIII were abol-
ished by the AT2R antagonist PD123319 using both fibrotic measurements (Figures 1 and 2).
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Figure 1. Representative (a) bright view and (b) polarized view for interstitial fibrosis sections 
stained with picrosirius red (indicated by red) in left ventricle (LV) obtained from male FVB/N mice 
fed on a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl) diet in the pres-
ence or absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day). Scale bar for all im-
ages = 50 μm. (c) Group data of % area of interstitial fibrosis in LV sections. (d) Total tissue collagen 
measured by hydroxyproline assay in LV tissue from same animal groups in which picrosirius red 
staining was performed (n = 7–8 per group). All data are expressed as mean ± s.e.m. * p < 0.05, ** p < 
0.01 vs. sham; # p < 0.05, ## p < 0.01 vs. HS; & p < 0.05 vs. HS+ β-Pro7-AngIII, determined by One-
Way ANOVA with Tukey correction for multiple comparisons. 

  

 

 

Figure 1. Representative (a) bright view and (b) polarized view for interstitial fibrosis sections stained
with picrosirius red (indicated by red) in left ventricle (LV) obtained from male FVB/N mice fed on
a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl) diet in the presence or
absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day). Scale bar for all images
= 50 µm. (c) Group data of % area of interstitial fibrosis in LV sections. (d) Total tissue collagen
measured by hydroxyproline assay in LV tissue from same animal groups in which picrosirius red
staining was performed (n = 7–8 per group). All data are expressed as mean ± s.e.m. * p < 0.05,
** p < 0.01 vs. sham; # p < 0.05, ## p < 0.01 vs. HS; & p < 0.05 vs. HS+ β-Pro7-AngIII, determined by
One-Way ANOVA with Tukey correction for multiple comparisons.
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Figure 2. (a) Representative images for interstitial fibrosis stained with picrosirius red (indicated
by red) in kidney sections obtained from male FVB/N mice fed on a normal salt (NS, 0.5% NaCl)
diet or mice fed on a high salt (HS, 5% NaCl) diet in the presence or absence of β-Pro7-AngIII (0.1
mg/kg/day) +/- PD123319 (1 mg/kg/day). Scale bar for all images = 50 µm. (b) Group data of %
area of interstitial fibrosis in kidney sections. (c) Total tissue collagen measured by hydroxyproline
assay in kidney tissue from same animal groups in which picrosirius red staining was performed
(n = 7–8 per group). All data are expressed as mean ± s.e.m. *** p < 0.001 vs. sham; # p < 0.05,
### p < 0.001 vs. HS; && p < 0.01 vs. HS+ β-Pro7-AngIII, determined by One-Way ANOVA with
Tukey correction for multiple comparisons.
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TGF-β1 is considered to be the major pro-fibrotic mediator for collagen synthesis
and fibrosis development [3,4]. The HS diet increased tissue TGF-β1 levels, measured
by immunofluorescence, in both the heart and kidney, which was attenuated by β-Pro7-
AngIII whereas the co-administration of PD123319 inhibited the effects of β-Pro7-AngIII
(Figure 3a,c and Figure 4a,b). Moreover, circulating TGF-β1 levels were significantly
inhibited by β-Pro7-AngIII compared with the untreated HS group (Figure 4c).
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Figure 3. Representative images for (a) TGF-β1 and (b) α-SMA in cardiac sections obtained from
male FVB/N mice fed on a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl)
diet in the presence or absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day).
Scale bar for all images = 50 µm. Group data of % area of (c) TGF-β1 and (d) α-SMA in cardiac
sections (n = 7–8 per group). All data are expressed as mean ± s.e.m. ** p < 0.01 vs. sham; # p < 0.05,
## p < 0.01 vs. HS, determined by One-Way ANOVA with Tukey correction for multiple comparisons.

TGF-β1 promotes the differentiation of fibroblasts into myofibroblasts [5,6], which
are the major cellular driver for collagen production [29–31]. The expression of α-smooth
muscle actin (α-SMA) identifies the differentiated myofibroblasts [32,33]. Cardiac α-SMA
immunofluorescence was elevated by a 2-fold increase by the HS diet, which was signifi-
cantly inhibited by β-Pro7-AngIII in a PD123319-sensitive manner (Figure 3b,d).
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Figure 4. (a) Representative images for TGF-β1 in kidney sections obtained from FVB/N male mice
fed on a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl) diet in the
presence or absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day). Scale bar for
all images = 50 µm. (b) Group data of % area of TGF-β1 in cardiac sections. (c) Plasma TGF-β1 levels
(n = 7–8 per group). All data are expressed as mean ± s.e.m. * p < 0.05 vs. sham; # p < 0.05 vs. HS,
determined by One-Way ANOVA with Tukey correction for multiple comparisons.

2.3. Cardiac and Renal Inflammation

Cardiac and renal phosphorylated (p)-IқBα was measured by immunofluorescence as
a marker for NF-қB activity. In both the heart and kidney, HS significantly increased p-IқBα
by ~1.5 fold (Figure 5a,c and Figure 6a,c). The HS-induced p-IқBα was attenuated by
β-Pro7-AngIII in the heart and kidney, and these anti-inflammatory effects were inhibited
by PD123319 (Figure 5a,c and Figure 6a,c).

The macrophage marker F4/80 was readily detected in the kidney but not the heart;
the monocyte chemoattractant protein (MCP)-1 was therefore measured in the heart. HS
increased renal F4/80 immunofluorescence ~2.5-fold (Figure 6b,d), while MCP-1 was mod-
estly increased by HS in the heart (Figure 5b,d). Nevertheless, β-Pro7-AngIII significantly
reduced cardiac MCP-1 and renal F4/80 levels whereas PD123319 inhibited the effects of
β-Pro7-AngIII in these tissues (Figure 5d,b and Figure 6b,d).



Int. J. Mol. Sci. 2022, 23, 14039 6 of 12
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 6 of 12 
 

 

  

  

Figure 5. Representative images for (a) p-IκB and (b) MCP-1 in LV sections obtained from male 
FVB/N mice fed on a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl) diet 
in the presence or absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day). Scale bar 
for all images = 50 μm. Group data of % area of (c) p-IκB and (d) MCP-1 in LV sections from indi-
cated groups (n = 4–6 per group). All data are expressed as mean ± s.e.m. * p < 0.05 vs. sham; ## p < 
0.01 vs. HS; && p < 0.01 vs. HS+ β-Pro7-AngIII, determined by One-Way ANOVA with Tukey cor-
rection for multiple comparisons. 
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FVB/N mice fed on a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl) diet
in the presence or absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day). Scale
bar for all images = 50 µm. Group data of % area of (c) p-IκB and (d) MCP-1 in LV sections from
indicated groups (n = 4–6 per group). All data are expressed as mean ± s.e.m. * p < 0.05 vs. sham;
## p < 0.01 vs. HS; && p < 0.01 vs. HS+ β-Pro7-AngIII, determined by One-Way ANOVA with Tukey
correction for multiple comparisons.
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reno-protective effects, independent of systemic blood pressure. 
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Figure 6. Representative images for (a) p-IκB and (b) F4/80 in kidney sections obtained from male
FVB/N mice fed on a normal salt (NS, 0.5% NaCl) diet or mice fed on a high salt (HS, 5% NaCl) diet
in the presence or absence of β-Pro7-AngIII (0.1 mg/kg/day) +/− PD123319 (1 mg/kg/day). Scale
bar for all images = 50 µm. Group data of % area of (c) p-IκB and (d) F4/80 in kidney sections from
indicated groups (n = 6–8 per group). All data are expressed as mean ± s.e.m. ** p < 0.01, *** p < 0.001
vs. sham; ## p < 0.01 vs. HS; & p < 0.05, && p < 0.01 vs. HS+ β-Pro7-AngIII, determined by One-Way
ANOVA with Tukey correction for multiple comparisons.

3. Discussion

We have previously reported that β-Pro7-AngIII is a highly selective AT2R agonist
that acutely evokes vasodilation and natriuresis [25,26]. However, the chronic effects of
this AT2R agonist have not previously been described. In the present study, we report for
the first time that β-Pro7-AngIII is anti-fibrotic and anti-inflammatory against HS-induced
organ damage. These protective effects following AT2R activation were associated with
reduced myofibroblast differentiation and TGF-β1 levels. Of note, this AT2R-selective
peptide, at the dose that evoked anti-fibrotic and anti-inflammatory effects, did not affect
blood pressure, indicating that the activation of AT2R directly contributes to cardio- and
reno-protective effects, independent of systemic blood pressure.

Chronic HS intake has long been recognized as a major contributor to the development
of CVDs globally [34,35]. A chronic HS diet induced cardiac and renal fibrosis in both
hypertensive and normotensive animals [36–39]. Ferreira et al. reported that a HS diet (4%)
significantly increased cardiac interstitial fibrosis in WKYs that was independent of blood
pressure [36]. Similarly, we found that a HS diet (5%) increased cardiac and renal interstitial
fibrosis in FVB/N mice without elevating blood pressure [40]. A HS diet increased cardiac
and renal inflammation as well as fibrosis within 4–5 weeks [40–42]. In the current study,
β-Pro7-AngIII was administered after the mice were already on a HS diet (5%) for 4 weeks;
therefore, the ability of the novel AT2R-selective ligand to reverse established fibrosis was
investigated, although we did not measure fibrosis directly after 4 weeks of HS diet in the
current study. Impressively, β-Pro7-AngIII appeared to reverse the HS-induced fibrosis
back to NS levels in both the heart and kidney, whereas these anti-fibrotic effects were
blocked by the AT2R antagonist, PD123319, confirming that the anti-fibrotic effects induced
by β-Pro7-AngIII were via AT2R activation. Consistent with the current findings, Patel et al.
reported that chronic C21 treatment reduced HS-induced renal fibrosis in obese Zucker
rats [43]. We have recently reported that the AT2R-selective peptide CGP4211 also reversed
HS-induced fibrosis in the same model [40]. Therefore, our current findings are consistent
with other evidence of AT2R-mediated anti-fibrotic effects in other disease models [21,22],
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including reduced cardiac fibrosis following MI injury [44,45] and in SHR-SP [46] and
reduced renal fibrosis in diabetic rodents [47,48] and SHR-SP [49].

TGF-β1-induced myofibroblast differentiation induces excessive collagen production
and results in organ fibrosis [3–6]. As expected, we found that HS-induced organ fibrosis
was closely related to increased TGF-β1 levels in the heart and kidney. Indeed, this
increased myofibroblast differentiation in the heart would have contributed to the HS-
induced cardiac fibrosis. While TGF-β1 activates Smad complexes that translocate across
the nuclear membrane to regulate collagen gene expression directly [50], TGF-β1 also
activates many other Smad-independent, pro-fibrotic pathways such as the extracellular
signal-regulated kinase (ERK), c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated
protein kinase pathways [50] that may contribute to pathophysiological effects. In any case,
consistent with the anti-fibrotic effects, β-Pro7-AngIII inhibited HS-induced cardiac and
renal TGF-β1, as well as circulating TGF-β1 levels, which agrees well with the previous
studies showing that AT2R stimulation inhibits TGF-β1 levels [40,44,47,51,52].

Chronic inflammation has been considered to be the primary trigger for fibrosis devel-
opment [1,2]. HS-induced organ inflammation has been reported in many hypertensive
animal models [53–55]. In the current study, we found that HS increased cardiac and renal
inflammation (increased NF-κB activity and macrophage infiltration) in normotensive mice.
Under these conditions, β-Pro7-AngIII reduced cardiac and renal inflammation, which was
entirely consistent with an AT2R-mediated effect, as reported using other AT2R-selective
agonists such as C21 and CGP42212 in other disease models [48,49,51,56–58]. The fact that
PD123319 significantly inhibited the anti-fibrotic and anti-inflammatory effects caused by
β-Pro7-AngIII in the majority of cases, or resulted in the combination treatment being not
different from HS alone, confirmed the involvement of AT2R in the current study. The
use of PD123319 to confirm an AT2R-mediated mechanism was necessary, particularly
since a number of previous studies investigating the chronic effects of C21 did not include
PD123319 [21].

In conclusion, we demonstrated that the novel AT2R-selective agonist β-Pro7-AngIII
inhibited HS-induced cardiac and renal fibrosis and inflammation in a PD123319-sensitive
manner. Collectively, these findings have established that the acute AT2R-mediated effects
of this peptide [25] have translated into cardiac and renal anti-fibrotic and anti-inflammatory
effects following chronic treatment with β-Pro7-AngIII. These findings further highlight
the AT2R as a novel therapeutic target for the treatment of cardiac and renal diseases.

4. Materials and Methods
4.1. Materials

β-substituted angiotensin peptide synthesis, including β-Pro7-AngIII, had been de-
scribed in detail previously [25,59]. PD123319 was purchased from Sigma-Aldrich (St. Louis,
MO, USA).

4.2. Animals and Treatments

Male FVB/N mice aged from 10 to 12 weeks were obtained from the Monash Animal
Research Precinct (Clayton, Victoria, Australia) and were housed in the Department of
Pharmacology animal holding facility. All experimental procedures outlined below were
approved by the Monash University Animal Ethics Committee (under MARP/2013/118).
Mice were housed in standard mouse cages at 21 ± 3 ◦C, with a 12 h light/dark cycle
with free access to food and water. Mice were fed with a HS diet (5% NaCl; SF05-038
diet containing 5% NaCl; Specialty Feeds Western Australia) for 4 weeks before drug
administration. Thereafter, mice were randomized into treatment groups for another
4 weeks while on a HS diet and treatments were administered via mini osmotic pumps
implanted subcutaneously. The randomized groups were: HS + saline, HS + β-Pro7-AngIII
(0.1 mg/kg/day), or HS+ β-Pro7-AngIII (0.1 mg/kg/day) + PD123319 (1 mg/kg/day)
from weeks 5–8. Another group of mice were fed with a normal salt (NS; 0.5% NaCl) diet
for 8 weeks. All treatment groups were randomly allocated and investigators were blinded
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to treatments and subsequent analysis. The doses were chosen based on a similar dose of
β-Pro7-AngIII shown acutely to evoke vasodepressor effects in vivo [25].

4.3. Blood Pressure and Body Weight Measurements

Systolic blood pressure (SBP) was measured every 2 weeks, starting from week 0
(prior to HS diet) until week 8, using tail cuff plethysmography (MC4000 BP Analysis
Systems; Hatteras Instruments Inc., Grantsboro, NC, USA). At least three cycles (with five
measurements in each cycle) were performed and averaged for each animal at each time
point. Body weight was measured every 2 weeks from week 0 (prior to HS diet) until
week 8.

4.4. Analysis of Extracellular Matrix (ECM) and Inflammation

After week 8, mice were humanely killed by isoflurane overdose, and heart, kidneys
and plasma were collected for ex vivo measurements. The left ventricle (LV) was sepa-
rated into three portions; apex, mid-zone and base. One section from the mid-zone of the
left ventricle (LV) and left kidney were embedded in OCT and immersed in methylbu-
tane/isopentane (Merck) for slow freezing using liquid nitrogen. Next, 5 µm sections were
cut using a Cryostat (Leica; CM1860) for both heart and kidney. Cardiac interstitial collagen
deposition was identified from frozen sections that were stained with 0.05% picrosirius red
(Polysciences Inc., Warrington, PA, USA). At the same time, a section from the mid-zone of
the left kidney was fixed with 10% formalin for 24 h before picrosirius red staining (Monash
Histology Platform).

Frozen cardiac and renal sections (5 µm) were used for immunofluorescence staining.
Specific markers with relative antibody concentrations are summarized in Supplemental
Table S1. All images were taken under 200 × magnification and quantified from an average
of 6–8 fields of view for each heart and kidney section using Image J software.

The hydroxyproline content was also measured in both heart and kidney [52,60].
Equivalent tissue portions of kidney tissue (containing cortex and medulla) or left ventricu-
lar tissue (apical region) were lyophilized to dry weight, hydrolyzed in 6 M hydrochloric
acid, and the collagen concentration was then calculated according to the hydroxyproline
values [61].

4.5. Plasma TGF-β1 Measurement by ELISA

Plasma TGF-β1 levels were measured using a mouse TGF-β1 ELISA kit (R&D Systems;
MB100B) according to the manufacturer’s specifications. TGF-β1 in plasma samples were
activated by 1 N HCl followed by 1.2 N NaOH/0.5 M HEPES. A final dilution factor of 90
was applied in this assay as per the manufacturer’s instructions.

4.6. Statistical Analysis

All results were expressed as mean ± standard error of mean (s.e.m.). All statistical
analyses were performed using the Prism program (GraphPad Prism software, version
9; San Diego, CA, USA). All statistical comparisons except SBP were conducted using
One-Way analysis of variance (ANOVA) followed by Tukey’s post-hoc correction test for
multiple comparisons between groups. SBP analysis was performed by two-way repeated
measures ANOVA which allowed for within- and between-group analysis over time. For
all results, p < 0.05 was deemed statistically significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232214039/s1. Figure S1: Effect of systolic blood pressure;
Table S1: Primary and secondary antibodies for immunofluorescence staining.

https://www.mdpi.com/article/10.3390/ijms232214039/s1
https://www.mdpi.com/article/10.3390/ijms232214039/s1
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