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Figure S1. ROC curves of pharmacophore models generated in LigandScout. The
performance of the pharmacophore models A) Pharm-A and B) Pharm-B was
estimated by ROC curve analysis using well-known active and inactive compounds
in a decoy set. The red and blue curves are the ROC curves for Pharm-A and Pharm-
B, respectively. Accuracy was calculated according to the following formula:

(TP+TN)/(TP+FP+TN+EN) [1].



(2 m
. - .
6 o

A\ - -

Figure S2. Structural alignment of hDHEFR crystals selected for the conformational
ensemble. A) Full and zoomed view of the three selected 3D structures (PDB
codes:1IKMV [2], 1U72 [3] and 3NXV [4]), emphasizing in the clustering of their
Phe31 side-chains (stick representation). Dunbrack, Dynameomics and Richardson
rotamers with highest probability (wire representation) are illustrated in gold, cyan
and lime green, respectively. B) Janin plot describing the Phe31 dihedral angles Chil
and Chi2. The combinations of these angles in the selected structures are illustrated

as dark red points.



Figure S3. Hierarchical clustering and multidimensional scaling on hit dataset
after virtual screening. Average hierarchical clustering (A) and multidimensional
scaling (B) generated in ChemMine Tools based on pairwise ligand similarity for 173
ligands. The polar tree layout representing the ligands in our dataset was generated
using the graphical software FigTree, and individual hit compounds at the end of
each branch are labeled and colored by lipophilicity (logP; internal colored circle)
and by molecular weight (MW; external colored circle). Hit compounds C1 and C2

are shown as shaded lines in (A) and as red-encircled spheres in (B).
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Figure S4. Chemical structures of hit compounds C1 and C2. The 2D chemical
structures of compounds C1 (ZINC00907702; 2-(4,6-diaminopyrimidine-1,3-diium-
2-yl)sulfanyl-N,N-diphenylacetamide) and C2 (ZINC20102709; N-[3-[[2-(4,6-
diaminopyrimidin-2-yl)sulfanylacetyl]amino]phenyl]adamantane-1-carboxamide),
identified after virtual screening procedures, were both prepared with

MarvinSketch v17.14, 2017, ChemAxon.
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Figure S5. Overlay of pharmacophore model Pharm-B with hits C1 and C2. These
hit compounds are showed aligned with PharmB model previously used in the
screening in both 3D (shown here as (A) for C1 and (C) for C2) and 2D
representations (shown here as (B) for C1 and (D) for C2), respectively. Hydrogen
bond donor (HBD), hydrophobic group (HY), and aromatic ring (AR) features are
colored green, gold and blue, respectively. Excluded volume spheres are

illustrated in gray color.
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Figure S6. Docking pose analysis for hit compounds C1 and C2 including (and not
including) water molecules. Superimposed 2D docked poses of MTX (A), hit
compounds C1 (B) and C2 (C), and a selected DHFR decoy (D) generated by the
program Ligplot+. H-bonds are shown as green dashed lines with their

corresponding distances in angstroms (A) and hydrophobic are indicated by spoked



arcs pointing towards each compound. Compounds C1 and C2 were predicted to
interact with a conserved water molecule in human DHFR active site (inside of
dashed line green circle), as observed also for MTX but not for the hDHFR decoy. A
structurally conserved water molecule was predicted to facilitate the interaction

with hDHFR active site residues Glu30 and Trp24.
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Figure S7. Docking pose analysis for hit compounds C1 and C2 by FlexX. 2D
docked diagrams generated by the program FlexX and visualized by PoseView for
either C1 (A) and C2 (B) bound into hDHFR active site. Both compounds were
predicted to interact with a conserved water molecule in human DHFR active site
(inside of a dashed line red circle in each case). H-bonds are indicated here as dashed

lines, and hydrophobic interactions are shown as green solid lines.
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Figure S8. RMSD plot of the backbone atoms of hDHFR. The RMSD calculation
was performed on the Ca atoms of hDHFR over 250 ns of MD simulations for the a)
unbound form, and the bound form complexed with b) MTX, c) C1 and d) C2. The
gray boxes in each graph represent equilibration time and, hence, this period was

not considered for further analysis.
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Figure S9. Potential energy plot obtained from the MD simulation for hDHFR.
Calculation of potential energy fluctuation curves was performed on the atoms of
enzymes hDHFR over 250 ns of MD simulations for the unbound form (A) and the
bound form complexed with active compound MTX (B) and the hit compounds C1

(C) and C2 (D).
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Figure S10. Kinetic energy plot obtained from the MD simulation for hDHFR.
Calculation of kinetic energy fluctuation curves was performed on the atoms of
enzymes hDHEFR over 250 ns of MD simulations for the unbound form (A) and the
bound form complexed with active compound MTX (B) and the hit compounds C1

(C) and C2 (D).
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Figure S11. Total energy plot obtained from the MD simulation for hDHFR.
Calculation of total energy fluctuation curves was performed on the atoms of
enzymes hDHFR over 250 ns of MD simulations for the unbound form (A) and the
bound form complexed with active compound MTX (B) and the hit compounds C1

(C) and C2 (D).
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Figure S12. Volume plot obtained from the MD simulation for hDHFR.

Calculation of volume fluctuation curves was performed on the atoms of enzymes

hDHEFR over 250 ns of MD simulations for the unbound form (A) and the bound

form complexed with active compound MTX (B) and the hit compounds C1 (C) and

C2 (D).
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Figure S13. Temperature plot obtained from the MD simulation for hDHFR.
Calculation of temperature fluctuation curves was performed on the atoms of
enzymes hDHFR over 250 ns of MD simulations for the unbound form (A) and the
bound form complexed with active compound MTX (B) and the hit compounds C1

(C) and C2 (D).
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Figure S14. Pressure plot obtained from the MD simulation for hDHFR.

Calculation of pressure fluctuation curves was performed on the atoms of enzymes
hDHEFR over 250 ns of MD simulations for the unbound form (A) and the bound

form complexed with active compound MTX (B) and the hit compounds C1 (C) and

C2 (D).
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Figure S15. Density plot obtained from the
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MD simulation for hDHFR.

Calculation of density fluctuation curves was performed on the atoms of enzymes

hDHEFR over 250 ns of MD simulations for the unbound form (A) and the bound

form complexed with active compound MTX (B) and the hit compounds C1 (C) and

C2 (D).
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Figure S16. Binding energy plot for hDHFR. Binding energy calculation was

o

Time (ns)

carried out for hDHFR over 250 ns of MD simulations in complex with reference

compound MTX (A), C1 (B), and C2 (C).
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Figure S17. Contribution of each residue of hDHFR to ligand binding.

Contribution from each residue was estimated for hDHFR over 250 ns of MD



simulations complexed with MTX (A), C1 (B) and C2 (C). The horizontal

discontinuous lines in each graph represent an energy value equal to -3 kJ/mol.
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Figure S18. Calibration curves for dose-dependent assays. Absorbance versus cell

number for human (A375; left panel), and mouse (B16; right panel) melanoma cell

lines is plotted. The number of cells is directly proportional to the level of the

formazan product generated (R?>=0.9998 and R?=0.9995 for A375 and B16 melanoma

cells, respectively) after quantification at 570nm.
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Figure S19. Time-dependent effect of compounds C1 and C2 on human
melanoma cell line A735. Cell viability determined by MTT reductase activity
after exposure to hit compounds C1 (gray-colored line) C2 (black-colored line) during
a period of 12, 24 36 and 48 hours, respectively. The concentration used for each

compound was 11 ug/mL.
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Figure S20. Effect on A375 cells after exposure to C1 and C2 compared to MTX and
AMT. Human (A375) melanoma cells were seeded into a 48-well plate overnight
and cell viability was determined by MTT reductase activity and trypan blue (TB)

exclusion assay after exposure to hit compounds C1 and C2, as well as reference



compounds MTX and AMT, at a concentration of 11 ug/mL during a period of 48
hours. A moderate reduction on cell viability was estimated for human melanoma
cells after exposure to hit compound C1, but to a lesser extent compared to that
observed for MTX and AMT. Conversely, a remarkable reduction on cell viability
after exposure to hit compound C2 was estimated, which was higher than that

observed for reference compounds (see text for details).
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Table S1. Analysis of critical amino acid residues for hDHFR inhibition. A total
of 54 native co-crystal structures in Protein Data Bank was analyzed in order to
determine the amino acids interacting with different DHFR inhibitors. Any marked
amino acid is an indication of its role in protein-ligand interaction in the

corresponding PDB structure.



Parameter Values

Pharm-A Pharm-B

Molecules in database (D) 8204 8204
Total actives in database

(A) 60 60
True positives (TP) 40 36

True negatives (TN) 6874 7680
False positives (FP) 1270 464
False negatives (FN) 20 24
AUC 1% ? 0.13 0.79

AUC 5% 0.78 0.95

AUC 10% 0.87 0.95

AUC 100% 0.78 0.70

EF 1% *® 1.70 13.30

EF 5% 6.70 8.00

EF 10% 5.50 7.40

EF 100% 4.30 7.40
Sensitivity © 0.67 0.60

Specificity ¢ 0.84 0.94




Table S2. Statistical parameters from screening compounds in decoy set. * Area
under ROC curve: YN¥_, TPR(x)[FPR(x) — FPR(x — 1)] [5]; ® Enrichment factor:
[(TP*D)/((TP+FP)*A))] [6]; < Sensitivity, also called Recall or True Positive rate (TPR):
[TP/(TP+FN)] [5]; ¢ Specificity, also called True Negative Rate (TNR): [TN/(TN+FP)]

5].

Water molecule hDHFR
inclusion Affinity Measurement C1 C2 MTX decoy
Binding energy
YES (kcal/mol) -9.73 -10.78 -12.95 -8.53
Ki (nM) 73.94 50.13 0.32 560.64
Binding energy
NO (kcal/mol) -9.95 -10.95 -12.36 -8.45
Ki (nM) 5117 159  0.87 643.11

Table S3. Predicted binding energy and Ki among hit compounds C1, C2, MTX
and a hDHFR decoy. Binding energy was measured in kcal/mol and inhibition

constant (Ki) values were calculated in nanomolar (nM) scale.



MM/PBSA AG bind LUMO Energy gap

Ligand (kcal/mol) HOMO (eV) (eV) (eV)
MTX -103.432 +/- 0.368 -0.784 4.339 5.123
C1 -20.068 +/- 0.148 -6.690 1.052 7.742
C2 -20.480 +/- 0.161 -6.602 1.290 7.892

Table S4. Results of MM/PBSA and electronic parameters calculated for active

compound MTX and hit compounds C1 and C2. Binding energy was measured in



kJ/mol and HOMO, LUMO and energy gap values were all estimated in electron

volts (eV).



Properties MTX C1 C2
Pharmacokinetics | GI absorption | Low High Low
BBB permeant No No No
P-gp substrate Yes No Yes

CYP1A2
inhibitor No Yes No

CYP2C9
inhibitor No Yes No

CYP3A4
inhibitor No Yes Yes
Drug-likeness Lipinski Yes Yes Yes
Ghose Yes Yes Yes
Veber No Yes No
Egan No Yes No
Muegge No Yes No

Bioavailability

score 0.11 0.55 0.55
Medicinal PAINS alerts No No No

Chemistry
Brenk alerts No No No

Synthetic

accesibility 358 290 557

Table S5. ADME properties of the active compound MTX and the hit
compounds C1 and C2 identified after the VS procedures. The different
properties associated with pharmacokinetics, drug-likeness, and medicinal

chemistry were estimated using the web-server SwissADME [7].



PDB Resolution

ID (A) Ligand
1KMV 1.05 LII
1KMS 1.09 LIH
5HSR 1.21 63Y

3FS6 1.23 DH1
3GHW 1.24 GHW
2W3B 1.27 VG9
3NTZ 1.35 3TZ
3NUO 1.35 3TU
3NXR 1.35 D2D
3NXX 1.35 D2D

Table S6. Top 10 highest resolution hDHFR crystal structures. Every hDHFR 3D
structure is reported in terms of its corresponding 4-character unique PDB ID,

resolution (A) and its co-crystallized ligand.
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