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Abstract: Antifolates such as methotrexate (MTX) have been largely known as anticancer agents
because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of
action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human di‑
hydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven
ineffective against melanoma, and, therefore, inhibitors with a non‑classical lipophilic structure are
increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study,
we conducted a protocol combining virtual screening (VS) and cell‑based assays to identify new po‑
tential non‑classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68;
average MW = 378.34 Da), two—herein, called C1 and C2—exhibited activity against melanoma cell
lines B16 and A375 by MTT and Trypan‑Blue assays. C1 showed cell growth arrest (39% and 56%)
and C2 showed potent cytotoxic activity (77% and 51%) in a dose‑dependent manner. The effects
of C2 on A375 cell viability were greater than MTX (98% vs. 60%) at equivalent concentrations and
times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to
identify novel promising non‑classical DHFR inhibitors showing activity against melanoma cells.

Keywords: DHFR inhibitors; pharmacophore modeling; molecular docking simulations; virtual
screening; melanoma; drug screening assays; drug discovery

1. Introduction
Antifolates, one of the earliest drugs for treating cancer, are known to target the folic acid

cycle metabolism, in particular by inhibiting human dihydrofolate reductase (hDHFR) [1,2].
This is an NADPH‑dependent enzyme responsible for the conversion of dihydrofolate
(DHF) to tetrahydrofolate (THF), which is essential for DNA synthesis and cell prolifer‑
ation [3–6]. Classical antifolates as the well‑known DHFR inhibitors methotrexate (MTX)
and aminopterin (AMT) possess a p‑aminobenzoylglutamate side‑chain that enables them
to use the reduced folate carrier (RFC) and/or folate receptor (FR) transport systems to en‑
ter into cell and be metabolized by the enzyme folylpolyglutamate synthetase (FPGS) into
poly(γ‑glutamates) to ensure their cellular retention [7,8]. However, although the ‘classi‑
cal’ compounds have been successfully used in a broad variety of cancer types [9–11], they
are ineffective in melanoma—‑a lethal skin malignant tumor—precisely because of their
impaired cellular uptake and inadequate rate of polyglutamation, among other resistance‑
associated mechanisms [12,13]. This fact represents a daunting challenge, especially con‑
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sidering the public health threat that melanoma constitutes: it is highly metastatic, difficult
to diagnose, and has had a dramatically increasing incidence over the last half‑century com‑
pared with other cancers [14–16]. In this context, an alternative type of inhibitors known
as ‘non‑classical’ [17,18] could be used as a more helpful strategy. Since they exhibit a
lipophilic structure instead of the classical glutamate chain (Figure 1), they may enter tu‑
mor cells by passive diffusion and not depend on their need for polyglutamation [5,19].
Therefore, the identification of novel ‘non‑classical’ inhibitors represents an attractive ther‑
apeutic approach to circumvent melanoma‑specific resistance while still maintaining a
high affinity for their primary target.
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Figure 1. Classical and non‑classical human DHFR inhibitors. The 2D chemical structures of
methotrexate (ZINC01529323), edatrexate (ZINC01618702), pralatrexate (ZINC01536109), trimetrex‑
ate (ZINC00598852), piritrexim (ZINC00000640), and methylbenzoprim (ZINC03777839) were pre‑
pared with MarvinSketch v17.14, 2017, ChemAxon.

Virtual screening (VS) has proven an effective strategy to discover novel drugs against
melanoma—mong many other cancer types—by facilitating the evaluation of large collec‑
tions of small molecules and identifying candidates capable of binding to a clinical target
of interest [20–23]. Three approaches have become increasingly common in VS: pharma‑
cophore modeling, molecular docking, and molecular dynamics (MD) simulations. Phar‑
macophore modeling is based on an abstract description of the physicochemical features
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(typically shared by biologically active molecules) necessary for the interaction with a tar‑
get structure [24–26], while docking focuses on an estimation of both the preferred pose
adopted by a ligand when bound to a receptor and its corresponding binding energy [27–29].
By performing MD simulations, we gained a comprehensive understanding of the role
of key residues in the interaction between proteins and ligands as well as the conforma‑
tional dynamics of a protein in bound or unbound forms [30–32]. However, and most
importantly, a combination of pharmacophore modeling, docking, and MD simulations
has proven successful in VS campaigns during the last few years: it contributes to reduc‑
ing both the required computational effort and the number of false positives, providing a
promising or ‘elite’ set of hit compounds that may be worth considering to submit to an
eventual experimental validation [33–35].

The aim of this study was to identify virtual candidates of ‘non‑classical’ hDHFR in‑
hibitors potentially active against melanoma growth. We developed a pharmacophore‑
and docking‑based VS protocol to obtain a set of ‘non‑classical’ hits, two of which showed
cytostatic (C1) and cytotoxic (C2) effects on human A375 and mouse B16 melanoma cells.
This is the first report of potential hDHFR inhibitors derived from the combination of both
VS approaches.

2. Results
2.1. Generation and Validation of Pharmacophore Models and Preliminary Screening

Two hypotheses, called Pharm‑A and Pharm‑B, were generated. Pharm‑A consisted
of two HBD features pointed towards hDHFR active site residues Ile7 and Glu30, respec‑
tively, one HY feature, and seventeen exclusion volume spheres (Figure 2A). Pharm‑B de‑
scribed the same features as Pharm‑A but also included an aromatic ring (AR) feature from
the pyrimidine moiety (Figure 2B). The crystal 3D structure used for the generation of both
pharmacophore models included interaction with the most important hDHFR amino acid
residues (Table S1). Pharm‑B model exhibited better accuracy, specificity, and AUC/EF
values compared to Pharm‑A, especially at early stages (Figure S1 and Table S2). After the
VS, 371 compounds (0.28% of the screened database) were retrieved.
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Dunbrack, Dynameomics, and Richardson rotamers for the key active site residue Phe31, 

Figure 2. Pharmacophore models generated by the software LigandScout. Overlay of pharma‑
cophore models (A) Pharm‑A and (B) Pharm‑B with the well‑known active compounds aminopterin
(AMT) and piritrexim (PTX), respectively. Both of these compounds were used in the decoy set.
Pharmacophore features are colored as follows: hydrogen bond donor—HBD (green), hydrophobic
group—HY (gold), and aromatic ring—AR (blue). Gray spheres represent excluded volume. The
two H‑bond donor groups point to hDHFR active site residues Ile7 and Glu30 respectively.

2.2. Ensemble Generation and Docking‑Based Screening
After the alignment of 54 native co‑crystal hDHFR structures and the evaluation of

Dunbrack, Dynameomics, and Richardson rotamers for the key active site residue Phe31,
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we selected three structures to generate a conformational ensemble. These crystal struc‑
tures (PDB codes: 1KMV [36], 1U72 [37], and 3NXV [38]) which described a side‑chain con‑
formation very similar to the rotamers with the highest probability (Figure S2) were used
for docking procedures. Consequently, we retrieved a final hit dataset of 173 compounds.

2.3. Clustering and Selection of Hit Compounds C1 and C2
As shown in Table 1, the average molecular weight and logP of this hit dataset (af‑

ter docking) were 378.34 Da and 3.68, respectively, and the estimated average number of
rings was 3.42 (2.55 for aromatic rings). On the other hand, hierarchical and multidimen‑
sional clustering revealed a moderately high distribution for hit compounds (Figure S3).
We selected a couple of hits named C1 (ZINC00907702; 2‑(4,6‑diaminopyrimidine‑1,3‑diium‑2‑
yl)sulfanyl‑N,N‑diphenylacetamide and C2 (ZINC20102709; N‑[3‑[[2‑(4,6‑diaminopyrimidin‑
2‑yl)sulfanylacetyl]amino]phenyl]adamantane‑1‑carboxamide) for biological evaluation
(Figure S4), which were found in different clades or regions according to the clustering
(Tanimoto index: 0.28). The specific MW, logP, and the number of rings of these com‑
pounds are listed in Table 1. According to the prediction results by the web tool Property
Explorer, C1 and C2 exhibited no apparent toxicological molecular properties.

Table 1. Chemoinformatics analysis for hit dataset, C1, and C2 after the virtual screening.

Physicochemical Property Hit Dataset a C1 C2

MW (Da) 3.766 351.43 452.47
LogP 3.544 4.260 4.800

Number of rings 3.421 3 6
Number of aromatic rings 2.537 3 2

Molecular weight (MW), lipophilicity (logP), number of rings, and number of aromatic rings were listed for
the entire hit dataset as well as compounds C1 (ZINC00907702) and C2 (ZINC20102709). Molecular weight val‑
ues were calculated in Daltons (Da). a All the physicochemical properties for the hit dataset were estimated as
average values.

2.4. Re‑Docking and Analysis of Binding Mode and Energy of C1 and C2
The analysis via Relibase allowed the identifying of one structurally conserved water

molecule (HOH302 in the hDHFR co‑crystal structure with the best resolution—PDB ID: 1KMV).
Hence, this molecule was included in a re‑docking procedure. We found that the predicted
binding energy for all evaluated compounds (C1, C2, MTX, and hDHFR decoy) were sim‑
ilar to those obtained after the first docking protocol (Table S3). However, as expected,
the binding energy for C1 and C2 was predicted to be better than that for the hDHFR
decoy (though not as good as that for MTX). H‑bonding of C1 and C2 with various criti‑
cal binding pockets (herein, called BP site) residues such as Glu30 and Ile7 was observed
after docking (Figure 3), which was in good agreement with the analysis resulting from
the overlay of C1 and C2 with Pharm‑B model (Figure S5). Additionally, we observed
that the included water molecule mediated interaction between either C1 or C2 and the
hDHFR binding site residues Glu30 and Trp24, which was also observed for MTX (both
in docking pose and x‑ray crystal structure), but not for the hDHFR decoy (Figure 3). Hy‑
drogen bonding with Trp24 was observed only after re‑docking. Interestingly, hit com‑
pound C2 adopted a conformation known as ‘flip mode’ after the re‑docking including
this water molecule. A dramatic pucker in the diaminopyrimidine ring of C1 and C2 was
also observed. Pyrimidinyl and diphenylacetamide rings of C1 as well as pyrimidinyl and
aminophenyl rings (and adamantane‑1‑carboxamide moiety) of C2 were predicted to es‑
tablish hydrophobic contacts with Val8, Ala9, Leu22, Phe31, Phe34, Ile60, and Leu67 in the
same pocket (Figure S6). A good agreement was observed between these results and those
obtained after using FlexX (Figure S7).
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showed an RMSF profile very similar to the unbound system except the border between 
Loop I and helix-αB (both part in active site) and the FG loop (distal region of active site). 

Figure 3. Predicted binding mode of compounds C1 and C2 on human DHFR active site. Superim‑
posed 3D docked poses of the inhibitor MTX (A), hit compounds C1 (B) and C2 (C), and an hDHFR
decoy (D) interacting with the hDHFR active site. In each case, ligands from initial docking are dis‑
played in a yellow wire representation, and those from re‑docking (i.e., including a structurally con‑
served water molecule) are shown as white sticks colored by heteroatom. The structure of hDHFR
is represented as ribbons and the side chains of critical active site residues are shown as sticks col‑
ored by heteroatom. The original pose for MTX (PDB code: 1U72) is represented as an orange wire
(see panel (A)). H‑bonds are shown only for re‑docking poses and are displayed as blue continuous
lines. The main binding pocket (BP site) of DHFR is illustrated in all panels as a red discontinuous
curved line.

2.5. Molecular Dynamics Simulations
The resulting root‑mean‑square deviation (RMSD) for the backbone atoms of DHFR

(Figure S8) rapidly converged around 1.5 Å throughout most of the time course of the
simulations, especially after the first 20 ns. All protein‑ligand complexes proved to have
RMSD values similar to the unbound form of hDHFR. We also analyzed the per‑residue
root mean square fluctuation (RMSF) data to analyze differences between the systems, ob‑
serving notable fluctuations around residues 27–30 (reaching a peak around 3.8 Å) which
marks the end of Loop I and the beginning of the helix‑αB (Figure 4). This region, ob‑
served to be highly flexible in the unbound form of hDHFR, was shown to gain more
rigidness once the protein was in complex with any of the evaluated ligands, although
this rigidity was slightly lower for C1. On the other hand, a 310 helix near to helix‑αC,
helix‑αE, CD loop, and FG loop (these three latter according to the numbering stated
in [39]) were shown to be more rigid once the enzyme was complexed with any com‑
pound of the study compared to the unbound (free) form. It was interesting to note that
several binding site residues experienced major fluctuations upon binding of ligands (par‑
ticularly, for MTX and C2) in comparison to the unbound system The hit compound C1
showed an RMSF profile very similar to the unbound system except the border between
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Loop I and helix‑αB (both part in active site) and the FG loop (distal region of active
site). The potential energy and kinetic energy for hDHFR showed a fairly constant value
(Figure S9 and S10, respectively), which was in line with the total energy for both bound
and unbound forms (Figure S11). Volume plots indicated a constant value for the produc‑
tion phase of the simulations (Figure S12). After quickly reaching the target value (300 K)
during the heating phase, the temperature of the system remained stable throughout the
production phase (Supplementary Materials Figure S13). Finally, during the 250‑ns pro‑
duction running, the pressure and density of each protein and protein‑ligand system changed
only slightly, as expected (Figures S14 and S15, respectively).
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calculation for the free or unbound form, as well as the bound form complexed with C1, C2, and
MTX, are depicted by continuous lines in a black, green, blue, and red color, respectively. Specific
secondary structures are reported at the top of the graph.

2.6. Binding Free Energy and DFT Analyses
The MM‑PBSA results indicated favorable ∆G binding values for compounds C1 and

C2, although they were smaller compared to the reference active compound MTX
(Supplementary Materials Figure S16 and Table S4). Several residues implicated in the bind‑
ing energy contribution for the hit compounds C1 and C2 were also observed for MTX,
including Ile7, Phe31, Phe34, and Ile60. However, Leu22 and Pro61 were not observed
for MTX, and Arg32 (very important for MTX) was present in C2 but not in C1. Arg70,
as expected, was observed for none of the hit compounds C1 or C2, but it accounted for
a large energy contribution in MTX. Depending on the particularly evaluated protein–
ligand complex, these residues accounted for more than 3 kcal/mol contribution in ∆G
binding (Supplementary Materials Figure S17). As a further validation, electronic param‑
eters for MTX, C1, and C2 were reported according to DFT calculations. Interestingly,
the energy gap values of C1 and C2, based on HOMO and LUMO calculated values were
observed not only to be similar to each other but also proved to be considerably higher
(+50% approximately) compared to MTX (Table S4).
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2.7. ADME Profiling
On the other hand, the prediction of ADME properties provided complementary re‑

sults (Table S5). In contrast to MTX and C2, the hit compound C1 was predicted to inhibit
cytochrome isoforms CYP1A2, CYP2C9, and CYP3A4. However, it was also predicted as
a non‑Pgp substrate estimated with a high GI absorption level and a much lower synthetic
accessibility score compared to the other evaluated compounds. On the other hand, C2 was
predicted as a non‑inhibitor of the inhibit cytochrome isoforms (excepting CYP3A4) but,
similarly to MTX, it was estimated as a Pgp substrate with a low GI absorption level, and a
considerably higher synthetic accessibility score. C1 successfully satisfied all the different
evaluated drug‑likeness scores, whereas C2 and MTX had one violation of Veber, Egan,
and Muegge rules in terms of their corresponding topological polar surface area (TPSA)
values. C1, C2, and MTX were all predicted as non‑BBB permeants that showed no struc‑
tural alerts in the base of both PAINS and Brenk rules. Remarkably, the bioavailability
score for C1 and C2 was dramatically higher (5 times greater) compared to MTX.

2.8. Biological Assay on Melanoma Cells
Following the selection and bioinformatics analysis of C1 and C2, these hit compounds

were subjected to biological assays on melanoma cells. In accordance with calibration
curves, linear relationships between formazan absorbance (OD 570 nm) and cell number
for both A375 (R2 = 0.9998) and B16 (R2 = 0.9995) cell lines were obtained (Figure S18). MTT
reductase activity of melanoma cell lines decreased after exposure to increasing concentra‑
tions of compounds C1 and C2. On average, for C1, cell viability on human and mouse cells
at 11 µg/mL was decreased by 39 ± 0.3% and 56 ± 0.2%, correspondingly, compared to
non‑exposed cells (control group) (Figure 5). Likewise, for C2, on average, cell viability on
human and mouse cells at 11 µg/mL decreased 77 ± 0.2% and 51 ± 1.0%, respectively, com‑
pared to unexposed cells. As shown in Figures 5 and 6, MTT reductase activity decreased
after human and mouse cells exposure to C1 or C2 for 48 h, compared to non‑exposed
cells. On the other hand, we observed a reduction in the number of cells excluding try‑
pan blue dye indicating a loss of cell viability. For C1, there was a decrease of 21 ± 8.1%
for 58 ± 17.5% for human (11 µg/mL) and mouse (2.75 µg/mL) cells (Figure 6), respec‑
tively, compared to unexposed cells. In comparison, for C2, a decrease of 98 ± 1.0% and
57 ± 25.0% was observed for human (11 µg/mL) and mouse (2.75 µg/mL) cells (Figure 7),
correspondingly, in comparison to unexposed cells. The LC50 value for C1 was estimated
to be 15.6 ± 1.1 µg/mL (44.39 ± 2.56 µM) and 8.6 ± 0.6 µg/mL (24.47 ± 1.71 µM) for hu‑
man and mouse cell lines, respectively. Likewise, the estimated LC50 value for C2 was
7.9 ± 0.7 µg/mL (17.45 ± 1.55 µM) and 11.0 ± 0.5 µg/mL (24.30 ± 1.10 µM) for human and
mouse cell lines, correspondingly.

We observed a reduction of MTT reductase activity in both human and mouse melanoma
cell lines after increasing exposure times to C1 or C2 (Figure S19). On average, cell viability
on human (A375) melanoma cells after an exposition period of 24 h (at 11 µg/mL) was
observed to decrease 36 ± 1% and 49 ± 2% for C1 and C2, respectively. However, for
C1, the cell number was recovered at 36 and 48 h. In contrast, exposure to C2 induced
much lower values than those observed at later times (66 ± 2% at 36h and 78 ± 3% at
48 h). We obtained similar results for mouse melanoma cells. As shown in Figure S20,
after the exposition to compound C1 at a concentration of 11µg/mL for 48 h, the number of
cells that excluded Trypan Blue dye declined in a similar but lower degree compared with
exposition to either MTX (21 ± 6% vs. 60 ± 12%) or AMT (20 ± 8% vs. 58 ± 10%), in all
cases having non‑exposed cells as a frame of reference. In contrast, after exposition to C2
at equal concentration and time, the human cell number declined much more dramatically
(98 ± 2%) compared with exposition to MTX and AMT, and C1.
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3. Discussion
This research work aimed to identify novel potential ‘non‑classical’ hDHFR inhibitors

by a pharmacophore‑ and ensemble docking‑based VS and to assess the effect of two of
them on the viability of human and mouse melanoma cells. To our knowledge, this is the
first report combining both VS approaches as a strategy to identify virtual candidates of
this enzyme, which represents a contribution to the search for new compounds against
hDHFR and melanoma.

Although model PharmA showed a slightly higher sensitivity after ROC curve anal‑
ysis, Pharm‑B was demonstrated to be a more appropriate query to use in the VS, because
it showed higher specificity, accuracy, and AUC/EF values, especially at early stages. Cer‑
tainly, high early AUC/EF values and low false positive rates—even at the risk of losing
some potential active molecules—have been highlighted as critical decision‑making crite‑
ria in VS campaigns [40–42], especially considering the eventual biological assays which hit
compounds are frequently submitted to. Furthermore, the AR feature present in Pharm‑B
(but not in Pharm‑A) facilitated the interaction with a greater number of critical active
site hDHFR residues and provided a “puckering” associated with an h‑bond geometry ad‑
vantageous for hDHFR binding [36]. On the other hand, the large differences among the
side‑chain angles of Phe31 rotamers corroborate the remarkable flexibility of this hDHFR
active site residue described in former reports [43–45] and, by extension, suggests that the
use of an ensemble‑docking strategy was appropriate to handle conformational changes
in this particular biological system.

Clustering and assessment of the physicochemical properties of compounds in the hit
dataset were critical to evaluate the performance of the VS strategy. The average MW and
logP of the hits indicate a great potential for the development of these compounds, consid‑
ering that these features usually increase during eventual hit optimization [46] and more
than three aromatic rings per molecule could be a disadvantage [47]. On the other hand, the
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significant chemotype diversity showed by the hit dataset indicates that the general VS ap‑
proach was successful in providing numerous different starting points (molecular diversity),
as recommended by [48], and validates the selection of C1 and C2 as representatives from
different clusters. We did not observe large differences in the binding pose of C1 and C2
after re‑docking procedures. However, the included water molecule was observed to be
involved in h‑bonds involving Glu30 and Trp24, indicating a role of this water molecule in
mediating critical protein‑ligand interactions. Strikingly, key differences observed for the
C2 binding pose after the inclusion of this water molecule suggest a role in the so‑called
‘flip’ mode (which implies a 180◦ rotation about the C‑2, NH2 bond) which has been pre‑
viously observed for MTX and other antifolates [49]. The h‑bonds were observed for MTX
but not for the hDHFR decoy, and the similar results obtained by FlexX further supported
these results.

According to the backbone RMSD profile data obtained from the MD simulations,
the enzyme hDHFR in its free and bound states is generally structurally stable. Although
MMPBSA data showed stronger binding energy for MTX compared to C1 and C2, the
corresponding binding energies of both hit compounds, very similar to each other, indi‑
cated that our VS procedure helped identify promising compounds, particularly consider‑
ing three facts. First, although we used MTX as a reference compound since it is a well‑
known classical hDHFR inhibitor and one of the drugs in the World Health Organization’s
list of essential medicines [50], a comparative framework of affinity with other compounds
(especially in development phase) is not necessarily intuitive because this drug exhibits a
very strong activity that achieves even low picomolar range concentrations [51]. Second,
it is worth mentioning that during the hit‑discovery stage we develop through this study,
compounds are typically obtained in the micromolar range and are only improved during
optimization [52,53]. Finally, and most important, it must be considered that the substi‑
tution of a glutamate moiety present in classical antifolates such as MTX for a lipophilic
moiety in C1 and C2 was expected to eliminate the salt bridge we observed between MTX
and hDHFR Arg70 in hDHFR and, therefore, dramatically diminish the predicted affin‑
ity of both hit compounds. Interestingly, the larger energy gaps observed for C1 and C2
compared to MTX suggest that these hit compounds have a low chemical reactivity and
high kinetic stability, increasing their potential to be further optimized and analyzed in
terms of their bioactivity [54,55]. On the other hand, the RMSF analyses for hDHFR in‑
dicate certain key roles played by regions such as Loop I, helix‑αB, and a short helix 310
near helix‑αC. These regions, observed to be more rigid in the bound form of the enzyme
in comparison with the unbound form, have been reported in recent studies and might
pinpoint specific residues into the active site of hDHFR fluctuate to accommodate these
compounds in the binding site [56,57]. Interestingly, the large Loop I has been reported to
include a left‑handed polyproline‑type helix only observed in vertebrate versions of this
enzyme [44]. We believe that these results are in good agreement with the energy contri‑
bution of hDHFR residues positively taking part of the mentioned regions such as Phe31,
Leu22, and Pro61, the two latter proving relevant in the energy contribution of protein–
ligand interaction for C1 and C2 but not for MTX. Phe31 has long been considered a gate‑
keeper residue for hDHFR (see Methods Section 4.4) whereas Pro61 might account for crit‑
ical interactions with aromatic moieties in both hit compounds, as has been indicated by
a number of studies during the last two decades [58–61]. As a complementary result, it is
intriguing to notice the promising ADME profile of both hit compounds C1 and C2, from
which should be highlighted their large predicted bioavailability despite their lipophilicity
(in comparison to MTX), a highly discussed topic in recent years [62,63].

MTT reductase activity allowed us to evaluate the effect on the growth and viabil‑
ity of human and melanoma cells after exposure to hit compounds C1 and C2. The simi‑
lar decreasing trend in cell viability that we observed for C1 compared to reference com‑
pounds MTX and AMT, as well as the recovery of cell growth at 36 and 48 h, indicated
a reversible cytostatic effect. This finding is in line with previous reports for MTX that
support this type of mechanism on mouse melanoma cell line B16 [13]. Likewise, the
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most remarkable decrease in cell viability caused by C2 compared to MTX and AMT sug‑
gested a significant cytotoxic activity. Intriguingly, this effect might be explained by its
adamantyl moiety, which has been previously reported for other highly potent anti‑cancer
compounds [64,65]. The direct count of cells excluding trypan blue (TP) represented an ad‑
ditional benchmarking to confirm these results. It will be valuable, however, to conduct
further studies giving insight into the inhibitory activity of these hit compounds and pro‑
viding a better understanding of their respective mechanisms of action mainly because of
two different facts. On the one hand, several “non‑classical” antifolates have been demon‑
strated as effective not only against other cancer types different from melanoma [66,67]
but also against infections caused by either bacteria [68] or parasites from Trypanosoma or
Plasmodium genres [19,69,70]. On the other hand, several antifolates have been observed
to be active against multiple enzymes in the folic acid cycle apart from DHFR such as
thymidylate synthase (TS), GAR formyltransferase (GARFT), or AICAR formyltransferase
(AICARFT) [51,71], reason by which we believe that C1 and C2 (or a series of analogues)
might be part of a multi‑targeted strategy intended to block simultaneously two or more
enzymes within the same metabolic pathway.

4. Materials and Methods
The general approach involved both computational and wet‑lab experiments for se‑

lecting and evaluating a couple of non‑classical lipophilic hit compounds. The strategy is
outlined in Figure 8.
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Figure 8. Schematic representation of the steps along the virtual high‑throughput screening (vHTS)
process. The general strategy involved the arbitrary selection of a set of drug‑like molecules retrieved
from the ZINC database, the combination of pharmacophore modeling and docking procedures,
the analysis of molecular descriptors (MW, LogP, Jaccard–Tanimoto coefficient), and the biological
evaluation of two non‑classical hit compounds.

4.1. Pharmacophore Models Generation
Pharmacophore modeling was developed using Ligand Scout v3.0 [72]. As input, we

employed the X‑ray crystallographic structure of human DHFR in complex with cofactor
NADPH and the competitive inhibitor SRI‑9662 (LII; PDB code: 1KMV [36]). This ternary
complex was selected because of its high near‑atomic resolution (1.05 Å; see Table S4) and
because of the non‑classical lipophilic character of the inhibitor. We considered H‑bond
donor (HBD), H‑bond acceptor (HBA), Negative ionizable (NI), positive ionizable (PI),
Hydrophobic (HY), and Aromatic Ring (AR) feature types in generating the pharmacophore
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models. Finally, exclusion volume spheres were also included to represent disallowed ar‑
eas in the protein.

4.2. Validation of Pharmacophore Hypotheses
We have validated the generated pharmacophore models using two different meth‑

ods: (i) the presence of chemical features critical to interact with key active site residues and
(ii) a decoy set. For the first approach, we used the software UCSF Chimera v.1.11.2rc [73]
to analyze 54 native co‑crystal structures downloaded from the Protein Data Bank. We
identified any h‑bonds according to the geometric criteria described by [74] and van der
Waals (vdW) overlaps only if equal or greater than 0.4 Å (allowance of 0.0 Å) according to
the formula: overlapij = rVDWi + rVDWj − dij − allowanceij [75]. Any hDHFR residue
implied in ligand interaction was collected and ranked according to its frequency among
the different crystallographic structures. For the second method, we used a decoy set con‑
sisting of 60 hDHFR known inhibitors with submicromolar potency retrieved from the
ZINC database [76–78] and 8144 hDHFR inactive compounds from the Directory of Useful
Decoys (DUD) [79]. We calculated receiver operating characteristic (ROC) curves [40], and
parameters such as accuracy, sensitivity, specificity, area under the curve (AUC), and en‑
richment factor (ER) were estimated (the latter two for 1%, 5%, 10%, and 100% of the database).

4.3. Pharmacophore‑Based Virtual Screening
After validation procedures, the pharmacophore model with the best performance

was used in a virtual database screening over a subset of 132,316 commercially‑available
drug‑like compounds retrieved from the ZINC database [76–78]. We considered as hits
only those molecules fitting all the features from the pharmacophore model. These hits
were used as input for subsequent molecular docking procedures.

4.4. Generation of Conformational Ensemble
In order to consider the flexibility of the enzyme during docking, we employed a

two‑step procedure in UCSF Chimera v.1.11.2rc [73] to construct an ensemble of protein
structures [80]. Initially, we developed an alignment of native co‑crystal hDHFR struc‑
tures downloaded from Protein Data Bank using as reference the hDHFR X‑ray structure
with the highest resolution available (PDB code: 1KMV [36]). Next, we examined the
Dunbrack [81], Dynameomics [82], and Richardson [83] rotamers for Phe31, a residue that
has been previously observed to exhibit important side‑chain conformational transitions
and is considered a gatekeeper residue [4]. After visual inspection and construction of a
Janin plot [84], we selected three hDHFR structures with Phe31 side‑chain position nearest
to the rotamers with the best probability (above 5%) and retained them to generate our
conformational ensemble.

4.5. Ensemble‑Based Molecular Docking
Remarkably, several studies have shown that the performance of docking may be re‑

markably improved by using multiple structures to consider receptor flexibility (which is
frequently referred to as ensemble docking) [85,86]. Hence, hit compounds resulting from
the previous pharmacophore‑based VS were docked to the generated ensemble of human
DHFR structures using the program AutoDock v4.2 [87] and a modified version of the
open‑source bash script Docker 1.0 [88]. Protein preparation and refinement were carried
out using AutoDockTools v1.5.6rc3 [89]. We considered for further analysis only those
compounds with binding energy equal to or lower than a score threshold of −9 kcal/mol.
These hits were ranked according to their corresponding binding energy values and clas‑
sified to that 3D structure (from the ensemble) with the best of these values. We visually
inspected each docking pose to verify the appropriate binding orientation of hits into the
binding site of the corresponding hDHFR structure.
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4.6. Hit Dataset Clustering and Analysis
ChemMine Web Tools [90] and FigTree [91] were used to generate and visualize a hi‑

erarchical clustering and a multidimensional scaling (MCS) of the hit dataset after docking.
Molecular weight, logP, and the number of rings (including aromatic) of each compound
as well as the average values for the hit dataset were calculated. Finally, we selected a cou‑
ple of compounds (here referred to as C1 and C2) for biological evaluation based on these
properties. Molecular similarity and potential side effects for C1 and C2 were estimated
using the Jaccard‑Tanimoto coefficient [92]) and the Property Explorer Applet, which is
freely available at [93].

4.7. Re‑Docking with Conserved Water Molecules and Binding Pose Comparison
The incorporation of structurally conserved water molecules able to mediate ligand–

receptor interactions has been increasingly discussed in VS campaigns [94,95]. Therefore,
any structurally conserved water molecules mediating ligand interactions with hDHFR
were identified in this study using the database Relibase [96]. Any possibly found water
molecule was maintained in the hDHFR 3D structure and employed in a re‑docking of hit
compounds C1 and C2 using the program Autodock v4.2. The hDHFR inhibitor methotrex‑
ate (MTX) and one inactive compound used previously in the decoy set (ZINC00000960;
(E)‑3‑[(6S,6aR)‑4‑hydroxy‑11‑keto‑3,6‑dimethyl‑5,6,6a,7‑tetrahydropyrrolo [2,1‑c][1,4]benzodiazepin‑
8) were included in docking as positive and negative controls, respectively. For compara‑
tive purposes, we used the docking program FlexX (BioSolveIT, Sankt Augustin, Germany),
to automatically include and freely rotate water molecules in docking procedures [52].

4.8. Molecular Dynamics (MD) Simulations
The structures of hDHFR docked along with hit compounds C1 and C2 were used

as starting points for MD simulations along with the protein–ligand complex of hDHFR
co‑crystallized with MTX playing a role as control. We used both Amber ff14SB and GAFF
force fields for the protein and the ligand, respectively [97,98], and we calculated ligand
charges at the Hartree–Fock (HF) level using a 6‑31 G* basis set as default parameters of
Gaussian 16 package [99]. Then, the MD setup and the corresponding simulations were set
up using GROMACS v2018 [100–102]. We employed cubic boxes, solvation with explicit
TIP3P water molecules [103], and a concentration of 0.15 M for the neutralization step by
Na+ and Cl− ions. Energy minimization was carried out on all protein–ligand systems
with 5000 steps of steepest descent [104], followed by a heating process represented in a
canonical (NVT) ensemble for 100 ps. Two subsequent equilibration steps were performed
in an isothermal‑isobaric (NPT) ensemble (100 ps each one) using a Berendsen barostat and
a modified Berendsen thermostat (V‑rescale) [105,106]: in the first equilibration step, both
the protein backbone and the corresponding ligand were restrained, whereas during the
second equilibration step, only the corresponding ligand was restricted. The temperature
was kept to 300 K with a mesh spaced for 0.16 nm, and the pressure was kept at 1 atm. Bond
lengths were constrained during the simulations using the LINCS algorithm [107]. Finally,
a 250 ns production simulation was carried out for all systems in an NPT ensemble (no
backbone restraining) running on a Linux workstation using an Intel Xeon Gold Processor
5118 SP 2.3 GHz (3.2 GHz Turbo) with 24 Dual Cores and 64 GB of RAM, as well as two
NVIDIA Titan XP GPUs with 12GB GDDR5X 3840 CUDA cores. The van der Waals (vdW)
interactions were cut off at 1.0 nm, and long‑range electrostatic interactions were calculated
by the Particle Mesh Ewald (PME) [108] with a cut‑off of 1.0 nm.

4.9. Binding Free Energy Calculations
The free binding energy of hits C1 and C2 as well as the well‑known hDHFR in‑

hibitor MTX was calculated by the method MM‑PBSA (Molecular Mechanics [MM] with
Poisson–Boltzmann Surface Area) [109]. To achieve this goal, we used the software G_mmpbsa [110]
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in each evaluated enzyme‑inhibitor complex. The process to estimate the binding‑free en‑
ergy ∆Gbinding can be summarized as:

∆Gbinding = ∆EMM + ∆Gsolvation

EMM = Ebonded + Enonbonded = Ebonded + (EvdW + Eelec)

Gsolvation = Gpolar + Gnonpolar

where ∆EMM includes the energy of both bonded and non‑bonded interactions according
to MM force‑field typical parameters, and ∆Gsolvation represents the sum of electrostatic
and non‑electrostatic contributions to the solvation‑free energy.

4.10. Density Functional Theory
Density Functional Theory (DFT) calculations have arisen as a valuable method to pro‑

vide information regarding the electrostatic characteristics of compounds, and therefore,
we used docked conformations of hit compounds C1 and C2 along with active compound
MTX as inputs for these calculations. Geometry optimization was carried out using Truh‑
lar’s M062X functional and the basis set 6‑31G [111]. The obtained geometry was used for
a single‑point calculation using the double hybrid B2PLYP‑D3 functional and the basis set
6‑31G [112]. Afterward, three quantum chemical descriptors, namely, the highest occu‑
pied molecular orbital (HOMO), least unoccupied molecular orbital (LUMO), and energy
gap (DE) [113] were calculated for all compounds. This provided information about the
capacity of the compounds to transfer their energies from a HOMO (electron donor) to a
LUMO (electron acceptor) [114].

4.11. Chemoinformatics Analysis
We estimated ADME properties of the hit compounds C1 and C2 along with the active

compound MTX via the open‑access web server SwissADME (http://www.swissadme.ch/;
(accessed on 30 October 2022)) [115] directly from the molecular structure of the hit com‑
pounds in terms of three categories: pharmacokinetics, drug‑likeness, and medicinal chem‑
istry. In the first one, gastrointestinal (GI) absorption, blood–brain barrier (BBB) permeabil‑
ity, and Pgp interaction (known to expel molecules from the brain) were estimated [116],
as well as the potential inhibition of three different cytochrome P450 isoforms: CYP1A2,
2C9, and 3A4 [117]. For the second category, we estimated the number of violations for ei‑
ther Lipinski [118], Ghose [119], Veber [120], Egan [121], and Muegge [122] rules as well as
the corresponding bioavailability score (likelihood of a compound to exhibit a bioavailabil‑
ity higher than 10% in rat or measurable Caco‑2 permeability) [123]. Finally, in the third
category, we predicted any PAINS [124] or Brenk [125] structural alerts and estimated a
corresponding synthetic accessibility score using a predetermined scale ranging from 1.0
for ‘very easy’ compounds to 10.0 for ‘very difficult’ compounds [115].

4.12. Cell Cultures and Experimental Design
Human and mouse melanoma cell lines (A375 and B16, respectively) were grown in

Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with Fetal Bovine Serum
(FBS) (10% final concentration). Cells were treated with various concentrations of hit com‑
pounds C1 and C2 (Princeton Biomolecular Research, Inc.; purity level >90%) retrieved
from the VS process. Methotrexate (MTX) and aminopterin (AMT) (Sigma Aldrich, Inc.,
Burlington, MA, USA), a pair of well‑known human DHFR inhibitors, were included in
the study for comparison purposes. All of the compounds were dissolved in DMSO at
a final concentration of 0.2% (v/v) before addition to the cells in microtiter wells. Addi‑
tionally, cell viability was determined at the highest drug concentration tested (11 µg/mL)
for all compounds at different times (12 h, 24 h, 36 h, and 48 h) post‑treatment (each
sample was analyzed in triplicate). We visualized the cells not exposed (control group)
and the cells exposed to compounds C1, C2, MTX, or AMT using an inverted microscope

http://www.swissadme.ch/
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(Nikon Microscope Eclipse Ti, Tokyo, Japan) and then we photomicrographed all experi‑
mental groups (Nikon Digital Sight DS U3, Tokyo, Japan).

4.13. Determination of Cell Viability by MTT and Trypan Blue Assays
Cell viability was determined by MTT (3‑[4,5‑dimethylthiazol‑2‑yl]‑2,5 diphenyl tetra‑

zolium bromide) reduction assay (Sigma Aldrich, Inc.) [126,127]. Calibration curves were
constructed for each cell line (A375 and B16) using a serial two‑fold dilution (from a known
density) of melanoma cells. We estimated the amount of MTT formazan product in terms
of absorbance at a wavelength of 570 nm and a reference wavelength of 750 nm. In addi‑
tion, we performed a Trypan Blue (TB) assay [128,129] and estimated the number of viable
cells using a hemocytometer. Concentrations and time intervals in this procedure were
equivalent to those used in MTT assays.

4.14. Statistical Analysis
Results were expressed as mean ± SD with n referring to the number of experiments.

Linear regression analysis was carried out using the Origin software (Micrococcal Software Inc.,
One Roundhouse Plaza, Northampton, MA, USA). We determined differences between
means using the Student’s t‑test. Lethal concentration 50 (LC50) values, which represent
the concentrations of the test agent, caused a 50% reduction in cell number compared to
the control group. A value of p < 0.05 was considered significant.

5. Conclusions
Although progress has been made in the understanding of melanoma, the discovery

of new drugs remains an urgent need largely because of the steadily increasing incidence
rate and their resistance to antifolates and many other chemotherapeutic drugs. In this con‑
text, the ‘non‑classical’ DHFR inhibitors provide a valuable opportunity to cope with sev‑
eral melanoma‑specific resistance mechanisms that made them insensitive to the classical
inhibitors of this enzyme and others involved in the metabolic pathway of the folate cycle.
The methodological strategy adopted in this study provided a starting point for the de‑
velopment of future inhibitors because of their unique characteristics: the hit compounds
identified after the in silico protocol were predicted as diverse, potent, and developable
and, among them, C1 and C2 proved active against melanoma growth in vitro. Since the
inherent flexibility of pharmacophore models to use 3D chemical descriptors facilitated the
identification of compounds with a lipophilic side chain (instead of glutamate), it seems
likely that this methodology might be used for other enzymes in cases where a particular
fragment requires to be replaced. We expect that our findings will assist in the discov‑
ery and development of future drugs displaying activity against this deadly form of skin
cancer through the blocking of protein targets implicated in cell growth and proliferation.
However, we are not unaware that C1, C2, or other hits may also inhibit other enzymes in
the folate cycle, or even be repurposed to treat other tumors or opportunistic infections—as
shown for other antifolates—and, thus, further studies will be necessary to develop soon
to help further elucidate their mechanism of action.

SupplementaryMaterials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms232213946/s1, Figure S1. ROC curves of pharmacophore models gener‑
ated in Ligand Scout. The performance of the pharmacophore models (A) Pharm‑A and (B) Pharm‑B
was estimated by ROC curve analysis using well‑known active and inactive compounds in a decoy
set. The red and blue curves are the ROC curves for Pharm‑A and Pharm‑B, respectively. Accuracy
was calculated according to the following formula: (TP+TN)/(TP+FP+TN+FN) [40]; Figure S2. Struc‑
tural alignment of hDHFR crystals selected for the conformational ensemble. A) Full and zoomed
view of the three selected 3D structures (PDB codes:1KMV [36], 1U72 [37] and 3NXV [38]), emphasiz‑
ing in the clustering of their Phe31 side‑chains (stick representation). Dunbrack, Dynameomics and
Richardson rotamers with highest probability (wire representation) are illustrated in gold, cyan and
lime green, respectively. B) Janin plot describing the Phe31 dihedral angles Chi1 and Chi2. The com‑
binations of these angles in the selected structures are illustrated as dark red points; Figure S3. Hierarchical
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clustering and multidimensional scaling on hit dataset after virtual screening. Average hierarchi‑
cal clustering (A) and multidimensional scaling (B) generated in ChemMine Tools based on pair‑
wise ligand similarity for 173 ligands. The polar tree layout representing the ligands in our dataset
was generated using the graphical software FigTree, and individual hit compounds at the end of
each branch are labeled and colored by lipophilicity (logP; internal colored circle) and by molec‑
ular weight (MW; external colored circle). Hit compounds C1 and C2 are shown as shaded lines
in (A) and as red‑encircled spheres in (B); Figure S4. Chemical structures of hit compounds C1
and C2. The 2D chemical structures of compounds C1 (ZINC00907702; 2‑(4,6‑diaminopyrimidine‑1,3‑
diium‑2‑yl)sulfanyl‑N,N‑diphenylacetamide) and C2 (ZINC20102709; N‑[3‑[[2‑(4,6‑diaminopyrimidin‑
2‑yl)sulfanylacetyl]amino]phenyl]adamantane‑1‑carboxamide), identified after virtual screening pro‑
cedures, were both prepared with MarvinSketch v17.14, 2017, ChemAxon; Figure S5. Overlay of
pharmacophore model Pharm‑B with hits C1 and C2. These hit compounds are showed aligned with
PharmB model previously used in the screening in both 3D (shown here as (A) for C1 and (C) for
C2) and 2D representations (shown here as (B) for C1 and (D) for C2), respectively. Hydrogen bond
donor (HBD), hydrophobic group (HY), and aromatic ring (AR) features are colored green, gold
and blue, respectively. Excluded volume spheres are illustrated in gray color; Figure S6. Docking
pose analysis for hit compounds C1 and C2 including (and not including) water molecules. Super‑
imposed 2D docked poses of MTX (A), hit compounds C1 (B) and C2 (C), and a selected DHFR
decoy (D) generated by the program Ligplot+. H‑bonds are shown as green dashed lines with their
corresponding distances in angstroms (Å) and hydrophobic are indicated by spoked arcs pointing
towards each compound. Compounds C1 and C2 were predicted to interact with a conserved water
molecule in human DHFR active site (inside of dashed line green circle), as observed also for MTX
but not for the hDHFR decoy. A structurally conserved water molecule was predicted to facilitate
the interaction with hDHFR active site residues Glu30 and Trp24; Figure S7. Docking pose analysis
for hit compounds C1 and C2 by FlexX. 2D docked diagrams generated by the program FlexX and
visualized by PoseView for either C1 (A) and C2 (B) bound into hDHFR active site. Both compounds
were predicted to interact with a conserved water molecule in human DHFR active site (inside of a
dashed line red circle in each case). H‑bonds are indicated here as dashed lines, and hydrophobic
interactions are shown as green solid lines; Figure S8. RMSD plot of the backbone atoms of hDHFR.
The RMSD calculation was performed on the Cα atoms of hDHFR over 250 ns of MD simulations
for the (a) unbound form, and the bound form complexed with (b) MTX, (c) C1 and (d) C2. The
gray boxes in each graph represent equilibration time and, hence, this period was not considered
for further analysis; Figure S9. Potential energy plot obtained from the MD simulation for hDHFR.
Calculation of potential energy fluctuation curves was performed on the atoms of enzymes hDHFR
over 250 ns of MD simulations for the unbound form (A) and the bound form complexed with ac‑
tive compound MTX (B) and the hit compounds C1 (C) and C2 (D); Figure S10. Kinetic energy plot
obtained from the MD simulation for hDHFR. Calculation of kinetic energy fluctuation curves was
performed on the atoms of enzymes hDHFR over 250 ns of MD simulations for the unbound form
(A) and the bound form complexed with active compound MTX (B) and the hit compounds C1 (C)
and C2 (D); Figure S11. Total energy plot obtained from the MD simulation for hDHFR. Calculation
of total energy fluctuation curves was performed on the atoms of enzymes hDHFR over 250 ns of MD
simulations for the unbound form (A) and the bound form complexed with active compound MTX
(B) and the hit compounds C1 (C) and C2 (D); Figure S12. Volume plot obtained from the MD simu‑
lation for hDHFR. Calculation of volume fluctuation curves was performed on the atoms of enzymes
hDHFR over 250 ns of MD simulations for the unbound form (A) and the bound form complexed
with active compound MTX (B) and the hit compounds C1 (C) and C2 (D); Figure S13. Temperature
plot obtained from the MD simulation for hDHFR. Calculation of temperature fluctuation curves
was performed on the atoms of enzymes hDHFR over 250 ns of MD simulations for the unbound
form (A) and the bound form complexed with active compound MTX (B) and the hit compounds C1
(C) and C2 (D); Figure S14. Pressure plot obtained from the MD simulation for hDHFR. Calculation
of pressure fluctuation curves was performed on the atoms of enzymes hDHFR over 250 ns of MD
simulations for the unbound form (A) and the bound form complexed with active compound MTX
(B) and the hit compounds C1 (C) and C2 (D); Figure S15. Density plot obtained from the MD simu‑
lation for hDHFR. Calculation of density fluctuation curves was performed on the atoms of enzymes
hDHFR over 250 ns of MD simulations for the unbound form (A) and the bound form complexed
with active compound MTX (B) and the hit compounds C1 (C) and C2 (D); Figure S16. Binding
energy plot for hDHFR. Binding energy calculation was carried out for hDHFR over 250 ns of MD
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simulations in complex with reference compound MTX (A), C1 (B), and C2 (C); Figure S17. Contri‑
bution of each residue of hDHFR to ligand binding. Contribution from each residue was estimated
for hDHFR over 250 ns of MD simulations complexed with MTX (A), C1 (B) and C2 (C). The hori‑
zontal discontinuous lines in each graph represent an energy value equal to −3 kJ/mol; Figure S18.
Calibration curves for dose‑dependent assays. Absorbance versus cell number for human (A375; left
panel), and mouse (B16; right panel) melanoma cell lines is plotted. The number of cells is directly
proportional to the level of the formazan product generated (R2 = 0.9998 and R2 = 0.9995 for A375
and B16 melanoma cells, respectively) after quantification at 570nm; Figure S19. Time‑dependent
effect of compounds C1 and C2 on human melanoma cell line A735. Cell viability determined by
MTT reductase activity after exposure to hit compounds C1 (gray‑colored line) C2 (black‑colored
line) during a period of 12, 24 36 and 48 h, respectively. The concentration used for each compound
was 11 µg/mL; Figure S20. Effect on A375 cells after exposure to C1 and C2 compared to MTX and
AMT. Human (A375) melanoma cells were seeded into a 48‑well plate overnight and cell viability
was determined by MTT reductase activity and trypan blue (TB) exclusion assay after exposure to
hit compounds C1 and C2, as well as reference compounds MTX and AMT, at a concentration of
11 µg/mL during a period of 48 h. A moderate reduction on cell viability was estimated for human
melanoma cells after exposure to hit compound C1, but to a lesser extent compared to that observed
for MTX and AMT. Conversely, a remarkable reduction on cell viability after exposure to hit com‑
pound C2 was estimated, which was higher than that observed for reference compounds (see text
for details); Table S1. Analysis of critical amino acid residues for hDHFR inhibition. A total of 54 na‑
tive co‑crystal structures in Protein Data Bank was analyzed in order to determine the amino acids
interacting with different DHFR inhibitors. Any marked amino acid is an indication of its role in
protein‑ligand interaction in the corresponding PDB structure; Table S2. Statistical parameters from
screening compounds in decoy set. a Area under ROC curve: ∑_(x = 2)^N〖TPR(x)[FPR(x) − FPR(x
− 1)]〗 [130]; b Enrichment factor: [(TP*D)/((TP + FP)*A))] [131]; c Sensitivity, also called Recall or
True Positive rate (TPR): [TP/(TP + FN)] [130]; d Specificity, also called True Negative Rate (TNR):
[TN/(TN + FP)] [130]; Table S3. Predicted binding energy and Ki among hit compounds C1, C2,
MTX and a hDHFR decoy. Binding energy was measured in kcal/mol and inhibition constant (Ki)
values were calculated in nanomolar (nM) scale; Table S4. Results of MM/PBSA and electronic pa‑
rameters calculated for active compound MTX and hit compounds C1 and C2. Binding energy was
measured in kJ/mol and HOMO, LUMO and energy gap values were all estimated in electron volts
(eV); Table S5. ADME properties of the active compound MTX and the hit compounds C1 and C2
identified after the VS procedures. The different properties associated with pharmacokinetics, drug‑
likeness, and medicinal chemistry were estimated using the web‑server SwissADME [115]; Table S6.
Top 10 highest resolution hDHFR crystal structures. Every hDHFR 3D structure is reported in terms
of its corresponding 4‑character unique PDB ID, resolution (Å) and its co‑crystallized ligand.
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