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Abstract: Monte Carlo simulations are a powerful technique and are widely used in different fields.
When applied to complex molecular systems with long chains, such as those in synthetic polymers
and proteins, they have the advantage of providing a fast and computationally efficient way to sample
equilibrium ensembles and calculate thermodynamic and structural properties under desired condi-
tions. Conformational Monte Carlo techniques employ a move set to perform the transitions in the
simulation Markov chain. While accepted conformations must preserve the sequential bonding of the
protein chain model and excluded volume among its units, the moves themselves may take the chain
across itself. We call this a break in linear topology preservation. In this manuscript, we show, using
simple protein models, that there is no difference in equilibrium properties calculated with a move
set that preserves linear topology and one that does not. However, for complex structures, such as
those of deeply knotted proteins, the preservation of linear topology provides correct equilibrium
results but only after long relaxation. In any case, to analyze folding pathways, knotting mechanisms
and folding kinetics, the preservation of linear topology may be an unavoidable requirement.

Keywords: knotted proteins; protein folding; off-lattice model; Monte Carlo simulations

1. Introduction

Knotted proteins are globular proteins whose native structure embeds a physical (i.e.,
open) knot. The first mention of knotted proteins in the literature dates back to 1977 [1],
but these tangled macromolecules did not attract much attention until 2000 when Taylor
developed a knot detection method, the so-called Koniaris–Muthukumar–Taylor (KMT)
algorithm, which is able to determine if an open polypeptide chain is knotted [2]. The use
of loop closure procedures, combined with knot detection and identification methods [3],
allowed the Protein Data Bank (PDB) [4] to be probed for knotted proteins. According to
the latest survey, the PDB contains about 1% knotted proteins [5]. The most frequent knot
type found in proteins is the 31 (or trefoil knot), with three crossings on a planar projection,
and the most complex protein knot found in the PDB is the 61 (or Stevedore’s) knot [6],
with six crossings on a planar projection. Interestingly, a 71 knot was recently detected in
the AlphaFold database [7]. Knots in proteins can be further classified as shallow or deep,
according to the location of the knotted core [8], the minimal segment of the polypeptide
chain that contains the knot. If the latter is located only a few residues (say, less than 15)
away from one of the protein termini, the corresponding knot tail is said to be short and the
knot classified as shallow; otherwise, the knot tail is long, and the knot is considered deep.

Over the last 15 years, researchers have dedicated considerable attention to knotted
proteins. Determining their functional role (if any) [9] and unravelling their folding and
knotting mechanisms are examples of fundamental questions that have been extensively
explored through experiments in vitro and via molecular simulations (reviewed in [10–12]).
The effects of knot deepness have also been investigated [13] as deep knots are expected to
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complicate the folding process. Monte Carlo (MC) methods and Molecular Dynamics simu-
lations, often combined with parallel tempering (or replica-exchange) schemes [14,15], have
been used to sample the conformational space of knotted model systems spanning different
levels of resolution, from simple cubic lattices [16–18] and C-alpha models [19–24] to full
atomistic representations [25–27]. Due to its lower computational cost, replica-exchange
MC (RE-MC) is perhaps the most efficient method to sample canonically distributed con-
formational states across different temperatures and evaluate equilibrium properties [15].
An example of the latter is the melting temperature, Tm (the temperature at which the heat
capacity peaks), which provides information on thermal stability—the higher the Tm, the
more thermally stable the protein.

In a typical MC folding simulation, a Markov chain of random conformations is
generated. In particular, at each MC step, a move randomly selected from a move set
generates a random trial conformation, which preserves the covalent nature of the chain
and accounts for the excluded volume. Given the polymeric nature of the polypeptide
chain, the move set usually comprises movements originally designed for polymer physics
simulations [28]. This means that when conducting off-lattice simulations to evaluate
equilibrium properties, moves that take the backbone across itself are considered valid,
as long as the final conformation is free of steric clashes. In the test tube and in the cell,
however, the conformational drift that takes the protein from the (more or less) extended
conformation from which it is released from the ribosome to its native structure does not
allow the backbone to cross itself due to the excluded volume. Consequently, the folding
process necessarily preserves the linear topology of the polypeptide chain. It would thus
be natural to expect that a simulation of protein folding should also enforce this kind of
topology preservation. This would certainly be compulsory if one is interested in evaluating
kinetic properties, determining the folding pathway or the knotting mechanism. However,
as long as the chosen move set is ergodic, it cannot affect equilibrium properties, and since
the preservation (or not) of the linear topology is a property of the move set, it cannot affect
these properties either.

In the present work, we investigate the consequences of linear topology preservation
in off-lattice MC simulations of simple C-alpha models of knotted and unknotted proteins.
We find, as expected, that equilibrium properties of knotted and unknotted proteins are not
influenced by enforcing linear topology preservation. Nevertheless, in the case of deeply
knotted proteins, we find that linear topology preservation considerably hinders relaxation
to thermal equilibrium, with topology preserving simulations requiring up to two orders
of magnitude more Monte Carlo steps to equilibrate than non-topology preserving simu-
lations of the same model system. In addition, we find that for knotted proteins, thermal
equilibrium properties are mostly determined by the structure of the knotted core and
independent of the length of the knot tails, at least when these are unstructured.

2. Results
2.1. Model Systems

In this work, we focus on two knotted proteins (Figure 1A). The first one, Rds3p (PDB
id: 2K0A [29]), is 109 residues long and embeds a trefoil knot. The knotted core extends
from residue 21 to 74. The N-tail of the knot is 20 residues long, and the C-tail comprises
35 residues. Therefore, the knot is classified as deep. The second knotted protein, MJ0366
(PDB id: 2EFV [30]), is the smallest (92 residues long) knotted protein found to date. Its
native structure also embeds a trefoil knot. In this case, the knotted core comprises residues
11 to 82. Since both knot tails are short (10 residues), the knot is classified as shallow.

We also analyzed two beta-sandwich proteins that are unknotted (Figure 1B): the
fibronectin type domain (Fn-III) from tenascin (PDB id: 1TEN [31]) and bovine beta-2-
microglobulin (β2m) (PDB id: 1BMG [32]). Their sizes (90 and 98 residues, respectively)
are similar to those of the knotted proteins we are considering. We have chosen these beta
proteins because they also have two-state folding transitions, and, in general terms, beta
proteins show more cooperative transitions than alpha proteins [33,34].
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Figure 1. Model systems. (A) Knotted proteins: Rds3p (PDB id: 2K0A), MJ0366 (PDB id: 2EFV);
residues in the N-tail are colored blue, residues in the knotted core are colored grey, and residues
in the C-tail are colored red; reduced representations of the knots obtained from the protein knots
server [35]. (B) Unknotted proteins: Fn-III (PDB id: 1TEN), β2m (PDB id: 1BMG).

2.2. LTyP and Equilibrium Sampling

We started by verifying that linear topology preservation (LTyP) does not influence
equilibrium sampling for the knotted and unknotted proteins considered in this study. In
an MC folding simulation, for a given protein, the same final equilibrium distribution must
be achieved no matter the region of conformational space from which the simulation starts
and no matter what move set is used—LTyP or non-LTyP. We have thus conducted sets of
four RE-MC simulations. In two of them, all replicas at different temperatures start from
the same denatured conformation, while in the other two, the replicas start from the native
structure. In each of these pairs, one of the simulations was LTyP and the other non-LTyP.
Our idea is that if thermal equilibrium is achieved at every temperature of the RE ladder,
the results of these four simulations cannot differ and, therefore, comparisons among the
simulation results can be a test for proper equilibration.

In Figure 2, we report the dependence on T of the internal energy, U (computed from
the energies of the conformations sampled at a given temperature in accordance with the
interaction potential of Equation (4) in Section 4.1) and CV , for the four model systems
considered in this study.
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Figure 2. Internal energy, U, and heat capacity, CV , as functions of the reduced temperature, T∗ (see
Section 4). Simulations starting from the native conformation (N) are colored blue, and those starting
from a denatured conformation (D) are colored red. Continuous lines correspond to LTyP simulations
and dashed lines to non-LTyP simulations. (A,B) Fn-III (PDB id: 1TEN). (C,D) β2m (PDB id: 1BMG).
(E,F) MJ0366 (PDB id: 2EFV). (G,H) Rds3p (PDB id: 2K0A).
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For the two knotted proteins, we also present the dependence of the knotting prob-
ability (pk) on T as well as on the reaction coordinate Q, defined as the fraction of native
contacts formed (Figure 3). At the lowest temperature, the conformational ensemble is
expected to be fully populated by the knotted native structure and, thus, the knotting prob-
ability should tend to 1 at low T. Similarly, the probability of finding knotted conformations
is expected to achieve its maximum value in ensembles of conformations that are native or
nearly native (i.e., having high Q).

Figure 3. Knotting probability, pk, as function of reduced temperature and of Q. Simulations starting
from native conformation (N) are colored blue and those starting from a denatured conformation
(D) are colored red. Continuous lines correspond to LTyP simulations and dashed lines to non-LTyP
simulations. (A,B) MJ0366 (PDB id: 2EFV). (C,D) Rds3p (PDB id: 2K0A).

The equilibrium results of the four simulations performed for each model system coin-
cide, as expected, but the number of mcs (Monte Carlo steps) required for each simulation
to relax to thermal equilibrium may differ by orders of magnitude, as reported in Table 1.

Table 1. Number of Monte Carlo steps (mcs) required for a simulation to achieve thermal equilibrium.
Simulations starting from a denatured conformation are designated (D), and those starting from the
native conformation are designated (N).

Protein PDB Id Non-LTyP (D) Non-LTyP (N) LTyP (D) LTyP (N)

Fn-III 1TEN 108 108 108 108

β2m 1BMG 108 108 108 108

MJ0366 2EFV 108 108 109 108

Rds3p 2K0A 108 108 1010 109

When simulations preserve linear topology, knotted proteins require considerably
more mcs to equilibrate, particularly when the simulation starts from a denatured confor-
mation, and even more so when the knot is deep.
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To illustrate the progress of the relaxation process under LTyP, we report in Figure 4
the knotting probability, pk, as function of Q, for protein Rds3p and simulations starting
from a denatured conformation, for numbers of mcs of relaxation ranging from 109 (1 Gmcs)
to 9× 109 (9 Gmcs). For this particular case, only after 8× 109 mcs can the simulation be
considered in equilibrium.

Figure 4. Progress of relaxation for LTyP simulations of protein Rds3p starting from a denatured
conformation. Knotting probability, pk, as function of the reaction coordinate, Q, for numbers of
relaxation mcs ranging from 109 (1 Gmcs) to 9× 109 (9 Gmcs).

2.3. LTyP and Deep Knots

Should LTyP influence the number of mcs required for simulations of deeply knotted
proteins to equilibrate, then, by increasing the size of the knot tails of protein MJ0366
and keeping the number of relaxation mcs fixed, one should, at some point, begin to
obtain different results for LTyP simulations starting from native and from denatured
conformations, indicating that the simulation was no longer able to reach equilibrium.
Furthermore, the deviation in the results should become larger as the size of the knot tails
increases and, for tails of comparable size, become similar to that observed for Rds3p for
similar number of mcs of relaxation. To test this hypothesis, we used PyMol to prepare
four engineered variants of MJ0366 to which 5 (Figure 5A), 10 (Figure 5B), 15 (Figure 5C)
and 25 (Figure 5D) alanine residues were added to both termini in an approximate straight
line to minimize the addition of spurious native contacts. Our aim is just to introduce
a topological burden to the relaxation, which, in turn, may result in a more difficult knotting
step, without significantly modifying the energetic stability of the folded state.
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Figure 5. MJ0366 with (A) 5 alanines added to each tail resulting in N and C tails with 15 residues
(N15C15), (B) 10 alanines added to each tail resulting in N and C tails with 20 residues (N20C20),
(C) 15 alanines added to each tail resulting in N and C tails with 25 residues (N25C25) and
(D) 25 alanines added to each tail resulting in N and C tails with 35 residues (N35C35); residues in
the N-tail are colored blue, residues in the knotted core are colored grey, and residues in the C-tail are
colored red.

The conformations thus obtained were subsequently subjected to a MC simulation
above Tm to generate denatured (and unknotted) conformations to be used as start-
ing conformations in the folding simulations. The results obtained in RE-MC simula-
tions with a total of 109 mcs (5 × 108 of which were used for relaxation) are reported
in Figures 6A–H and 7A–H and clearly support our hypothesis. When the tail length in-
creases, the LTyP simulations starting from unfolded conformations deviate from those
starting from the native conformation, indicating that the former no longer reached equilib-
rium in the considered number of mcs.

It is also interesting to note that the results of the simulations that start from the native
structure, which are in equilibrium, show very little difference among them as tail lengths
increase, indicating that for model systems in which the tails do not contribute significantly
to the energetic stability of the native state, equilibrium properties are mostly determined
by the structure of the knotted core.
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Figure 6. Internal energy, U, and heat capacity, CV , as functions of reduced temperature for MJ0366
with tails of increasing length. Simulations starting from native conformation (N) are colored blue
and those starting from a denatured conformation (D) are colored red. (A,B) N15C15. (C,D) N20C20.
(E,F) N25C25. (G,H) N35C35.
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Figure 7. Knotting probability, pk, as function of reduced temperature and of Q for MJ0366 with
tails of increasing length. Simulations starting from native conformation (N) are colored blue and
those starting from a denatured conformation (D) are colored red. (A,B) N15C15. (C,D) N20C20.
(E,F) N25C25. (G,H) N35C35.
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3. Discussion

The study of protein folding encompasses the determination of the folding kinetics
and mechanism and evaluating equilibrium properties, such as the melting temperature
or free energy landscapes (i.e., projections of the free energy on one or more reaction
coordinates). If the native state embeds a knot, determining the knotting mechanism is
an additional challenge.

In nature, proteins explore their conformational space while preserving the linear
topology of the polypeptide chain because the chain is not allowed to cross itself as it
transitions between conformations. Therefore, it is natural to expect that a simulation
protocol designed to study protein folding should mimic the natural process by enforcing
the preservation of linear topology. This is perhaps even more true in the case of knotted
proteins given the tangled nature of their native structure. In the case of Monte Carlo
simulations, the preservation of the linear topology of the chain is determined by the move
set used.

Equilibrium properties at a certain temperature, however, are exclusively determined
by the energy through the potential function. Therefore, all simulations of a model system
using the same potential must produce identical equilibrium results regardless of the initial
conformation or of the move set used, if the latter is ergodic. This has been confirmed by
the results reported here, which also highlight the need to verify that simulations starting
from different regions of conformational space lead to the same results in order to ensure
that thermal equilibrium has been reached. Given that replica-exchange Monte Carlo
simulations aim to calculate equilibrium properties, a move set that does not preserve the
linear topology is indeed recommended because it leads to thermal equilibrium in far fewer
Monte Carlo steps, at least for proteins with complex native structures such as those with
deep knots.

The results from present simulations show that increasing the knot depth by enlarging
the knot tails has no effect on the melting temperature and, consequently, on the carrier
protein’s thermal stability. Thus, proteins with deep knots are not expected to be more
thermally stable than proteins with shallow knots, provided the knot tails are unstructured.
In other words, if there is a functional role for deep knots in proteins, it should not be
associated with equilibrium properties such as the melting temperature. This is in line
with previous results reported in the scope of lattice models [13], which also indicated that
the presence of a knot (shallow or deep) in the native structure is not a source of thermal
stability. Indeed, the same melting temperature was obtained for a lattice knotted protein
as well as for its unknotted counterpart.

Simulations that do not preserve the linear topology of the chain can be used to inform
about equilibrium intermediate states but should not be adequate to establish the folding
pathway or the knotting mechanism or to determine the folding rate.

4. Materials and Methods
4.1. Off-Lattice Model

The protein conformation is represented by a C-alpha model in which amino acids are
reduced to hard spherical beads of uniform size, centered on the C-alpha atoms, and the
covalent bonds that connect consecutive C-alpha atoms in the backbone are represented by
rigid sticks, with the beads constituting joints with spherical degrees of freedom between
these sticks. For the beads, we adopt a radius of 1.7 Å, which is the van der Waals radius
of C-alpha atoms [36], and for the length of each stick, we adopt the distance between
the C-alpha atoms of the respective bonded residues in the protein’s native conformation,
varying from 2.9 Å (for cis bonds) to 3.8–3.9 Å (for trans bonds).

Two non-bonded residues are considered to be in contact in the native conformation
if the smallest distance between any two heavy atoms, one belonging to each residue, is
≤4.5 Å; this cut-off is chosen because it is slightly larger than twice the average van der
Waals radius of heavy atoms in proteins.
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The total energy of a conformation defined by bead coordinates {~ri} is given by

E({~ri}) = ε
N

∑
i,j≥i+2

ϕ

∣∣~ri −~rj
∣∣− ∣∣∣~r nat

i −~r nat
j

∣∣∣
w

(χijχ
nat
ij + χjiχ

nat
ji +

1
2

)
∆nat

ij , (1)

where ∆nat
ij , the native contact map matrix (which takes the value 1 if the i− j contact is

present in the native conformation and is 0 otherwise), ensures that only native contacts
contribute to the energy, ε is a uniform intramolecular energy parameter (taken as −1 in
this study, in which energies and temperatures are shown in reduced units), N is the chain
length measured in number of beads, ϕ is the potential well associated with the native
contacts, w is the half-width of this potential well, and the chirality of contact i− j in the
conformation under consideration is

χij = Θ
( (
~ri −~rj

)
· [(~rj+1 −~rj)× (~rj−1 −~rj)]

)
− 1

2
. (2)

The chirality of the i− j contact in the native conformation is

χnat
ij = Θ

( (
~r nat

i −~r nat
j

)
· [(~r nat

j+1 −~r nat
j )× (~r nat

j−1 −~r nat
j )]

)
− 1

2
. (3)

In Equations (2) and (3), Θ is Heaviside’s unit step function, which takes the value 1
if its argument is greater than zero and the value 0 otherwise. The chirality factor in (1)
favors the native conformation vis a vis its mirror conformation, thereby ensuring chirality
coherence among all contacts and the convergence of the simulations towards the native
ensemble for temperatures below transition temperature.

In this study an inverse quadratic potential well is used. In this case, Equation (1) becomes

E({~ri}) = ε
N

∑
i,j≥i+2


∣∣~ri −~rj

∣∣− ∣∣∣~r nat
i −~r nat

j

∣∣∣
w

2

+ 1


−1(

χijχ
nat
ij + χjiχ

nat
ji +

1
2

)
∆nat

ij . (4)

The half-width of the potential well, w, determines the degree of cooperativity of the
folding transition, with a wider well leading to less cooperative transitions occurring at
higher transition temperatures. We measure the degree of cooperativity of the transition by
the ratio of the full width at half maximum (FWHM) of the CV peak to the temperature at
which the peak occurs—the melting temperature, Tm. A typical two-state transition that
has been well characterized experimentally is that of the B1 domain of protein G (PDB id:
2GB1 [37]), and its FWHM/Tm ratio at pH 5.4 has been determined to be approximately
4.4% [38]. Hence, the half-width of the potential well is adjusted to obtain a simulated
FWHM/Tm ratio between 4 and 5%. This is not just a technical detail of the model. As
a matter of fact, very narrow transitions, which lead to artificially large cooperativity, can
be poorly sampled with a replica exchange procedure such as the one used here [19,39,40].
The width proposed above has been successfully used in previous simulations employing
a similar potential and sampling [19,20,41,42].

To identify which native contacts are formed in a sampled conformation, we consider
that a native contact is formed if the distance between the centers of the respective beads
differs from the distance between their C-alpha atoms in the native conformation by less
than the half-width of the potential wells, w.

4.2. Monte Carlo Sampling

To sample canonically distributed conformational states, we use Metropolis [43] MC-
RE. The conformational space is explored using a move set that comprises two elementary
moves: crankshaft (Figure 8A) and pivot (Figure 8B).
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Figure 8. The move set. (A) Crankshaft move: Axis passes through two randomly selected beads
and the beads between these are rotated around the axis. (B) Pivot move: Axis passes through one
randomly selected bead, and the beads between that and a randomly selected terminus are rotated
around the axis. (C) LTyP move variant: The rotated segment can reach the cyan conformation
without passing across any fixed segment, hence the linear topology of the chain is preserved.
(D) non-LTyP move variant: The magenta conformation can only be reached by the rotated segment
by either moving across the front or across the back fixed segments; hence, the linear topology of the
chain is not preserved in this crankshaft move.

These elementary moves can be performed in either of two ways: (1) by limiting the
amplitude of the rotation so that no bead or stick is allowed to overlap or move across
another (e.g., Figure 8C); (2) by not limiting the rotation and allowing such overlaps and
crossings to potentially occur (e.g., Figure 8D). A simulation that only performs moves
of the first kind preserves the linear topology of the chain and is designated as a linear
topology preserving (LTyP) simulation. Conversely, a simulation that allows moves that
take the chain across itself is designated as non-LTyP.

To establish the clockwise and counter-clockwise rotation limits of LTyP moves, we
note that both elementary moves only involve the rotation around an axis of a set of linked
beads, which is performed in the vicinity of fixed beads that are also linked. For each
pair (moving bead, fixed bead), we determine whether the moving bead may collide with
the fixed bead and, if so, calculate the clockwise and counter-clockwise rotation angles
that would cause the moving bead to come into contact without overlap with the fixed
bead. These two angles define the free rotation interval of the moving bead relative to
the fixed bead considered. The free rotation interval for the whole set of moving beads is
the intersection of the free intervals of all (moving bead, fixed bead) pairs. Given that the
maximum length of all bead links is 3.9 Å, if the radius of the beads is greater than or equal
to 1.38 Å > (3.9 Å/2)(

√
2/2), no pair of linked beads can be moved across another pair of

linked beads without at least two beads overlapping. Hence, because all beads are linked
and have a 1.7 Å radius, we ensure that no such crossing can occur, and linear topology is
preserved. Whereas LTyP moves always generate trial conformations that are free of steric
clashes, non-LTyP moves may produce trial conformations having steric clashes, and in
non-LTyP simulations, such conformations are identified and rejected.

In a Monte Carlo step (mcs), a move is randomly selected from the two elementary
possibilities mentioned above, with a probability of 0.5 for each. The number of beads
moved is also randomly selected between 1 and the largest integer smaller than 3N/4, using
a uniform distribution over this integer range. The fraction of native contacts, Q, is used as
reaction coordinate, i.e., as an indicator of folding progress, with Q ≈ 0 representing the
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denatured state and Q ≈ 1 representing the native state. The topological state of a sampled
conformation (i.e., knotted or unknotted) was determined using the KMT algorithm [2].

Simulations were initiated both from an unfolded conformation and from the native
conformation. Simulations terminate after between 108 and 1010 mcs. The first part of
the simulation is used to allow all replicas to relax to the equilibrium ensemble at their
particular temperature. For short simulations, those involving less than 2× 109 mcs, the
initial half is assigned to equilibration. For longer simulations, those involving n× 109 mcs
with n ≥ 2, (n − 1)× 109 mcs are assigned to equilibration. Relevant properties (E, Q,
topological state, etc.) are recorded during the final part of the simulation, whether that be
the final half for short simulations or the final 109 mcs for longer ones. Sample elements
are collected at every 104 mcs. A temperature grid involving 64 distinct temperatures is
used. These are non-uniformly distributed, the grid being denser in the vicinity of Tm to
ensure ample overlap of the canonical energy distributions of all temperature adjacent
replicas, as required by RE. Replica exchange is attempted every 103 mcs. Each replica is
assigned a unique token, and replicas also exchange this token whenever conformations
are exchanged. Tracing the evolution of the tokens throughout the simulation enabled the
confirmation that RE was being performed adequately and that tokens underwent several
round trips along the full temperature ladder during the simulations.

The Weighted Histogram Analysis Method (WHAM) [44] was used to analyze the sam-
pled data and produce maximum likelihood estimates of the density of states, from which
expected values for thermodynamic properties were calculated as functions of temperature.
In particular, heat capacity, CV , defined in reduced units as CV = (< E2 > − < E >2)/T2,
was evaluated as a function of temperature. The melting temperature, Tm, was determined
as the temperature at which CV reached its maximum value, and the width of this peak
at half-maximum was determined to calculate the FWHM/Tm ratio. WHAM was also
used to project the density of states along the chosen reaction coordinate to obtain knotting
probability profiles along this coordinate.
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