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Abstract: In the human body, copper is an important trace element and is a cofactor for several impor-
tant enzymes involved in energy production, iron metabolism, neuropeptide activation, connective
tissue synthesis, and neurotransmitter synthesis. Copper is also necessary for cellular processes, such
as the regulation of intracellular signal transduction, catecholamine balance, myelination of neurons,
and efficient synaptic transmission in the central nervous system. Copper is naturally present in some
foods and is available as a dietary supplement. Only small amounts of copper are typically stored in
the body and a large amount of copper is excreted through bile and urine. Given the critical role of
copper in a breadth of cellular processes, local concentrations of copper and the cellular distribution
of copper transporter proteins in the brain are important to maintain the steady state of the internal
environment. The dysfunction of copper metabolism or regulatory pathways results in an imbalance
in copper homeostasis in the brain, which can lead to a myriad of acute and chronic pathological
effects on neurological function. It suggests a unique mechanism linking copper homeostasis and
neuronal activation within the central nervous system. This article explores the relationship between
impaired copper homeostasis and neuropathophysiological progress in brain diseases.

Keywords: copper; cuproptosis; brain injury; neurodegeneration; cognition

1. Introduction

In our brain, copper plays a key role in maintaining the redox balance of our most
energetic organ [1]. Despite the high demand for metals in the brain, copper (Cu) is
an important cofactor in electron transfer reactions and is an essential trace element for
humans [2]. In addition, the accumulation of metal elements in tissues is associated with
ageing or age-related diseases including cancers and neurodegenerative disorders (e.g.,
Alzheimer’s, Parkinson’s) and metabolic disorders (e.g., diabetes). Cu is required for many
metabolic functions and it is crucial to find a way to regulate the metabolism of Cu in
the human body. Cu is absorbed through the gastrointestinal tract, stored in the liver,
and mobilized into the blood, but how Cu is maintained in the whole body is poorly
understood [3]. As a critical element, Cu exists in two oxidation states, Cu+ and Cu2+. Cu
has been exploited for its redox property during the evolution of Cu-containing enzymes.
From mitochondrial oxidative phosphorylation to peptide hydroxylase, they use Cu as a
cofactor during hydrolysis, electron transfer, and oxygen-harvesting reactions [4]. Its redox
properties make copper both beneficial and toxic to cells [5]. In addition to supporting
normal cell physiology, copper is one of the essential micronutrients for living organisms,
the most common foods containing Cu are shellfish, meats, seeds, nuts, lentils, leafy green
vegetables, and cocoa [6]. For optimal human health, Cu is involved in several fundamental
processes including respiration, connective tissue formation, wound repair, macronutrient
energy metabolism, catecholamine biosynthesis, and iron flux. Physiologically, copper also
plays an essential role in human metabolism. Deficiencies in copper affect cardiovascular
development, brain and liver function, lipid metabolism, inflammatory response, and
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resistance to chemotherapy. The intracellular distribution of copper in human cells is
regulated by metabolic demands and changed according to the cell environment, and it
is accessible in several cell compartments [7]. Even though Cu plays an important role in
physiological processes, high levels of Cu can cause health problems and may be toxic. Less
than 2–5% of the copper in the body is free and/or bound to amino acids or peptides [8].
This part of copper is officially known as free copper and may be harmful to the human
body due to its oxidation [9]. Cu levels within cells and tissues need to be tightly regulated.
Excess or deficiency of copper can lead to serious illness or death [10,11]. As copper
has a powerful redox capacity, which can lead to oxidative stress and neurodegeneration
within the brain [12–17]. Indeed, recent advances in the observation of Cu signalling and
metabolism across multiple organ systems in both healthy and diseased states highlight
its importance in mammalian biology. Here, we focus on copper as a canonical example
of a metal signal pathway, providing a summary of the current understanding of copper
signalling in neurobiology and future prospects for the field.

2. Copper Metabolism in the Brain

As a key component of neuronal development, maturation, and functions, Cu may
enter the brain through the Cu transporter located at the brain barriers in a controlled
manner. The blood–brain barrier (BBB) and blood–cerebrospinal fluid barrier (BCB) regulate
copper homeostasis in the brain [18,19]. A major route for Cu to enter rat brain parenchyma
was identified as the blood–brain barrier. Specifically, it was found that the blood–CSF
barrier fine-tunes Cu homeostasis in the brain [20]. Approximately seventy percent of
copper imported into mammalian brain cells is handled by CTR1 [21]. If there is an excess
of copper, then the excess copper is released from the brain cells into the cerebrospinal fluid
(CSF) and is taken up by the cells that make up the blood–cerebrospinal fluid barrier (BCB).
The copper taken up by these cells is either stored by ATP7B for potential transport to the
CSF or transported into the blood by ATP7A(Figure 1A) [22].

The copper proteome was defined using gene sequence data [23,24]. In eukaryotes,
the size of the copper proteome is usually less than 1% of the total proteome of an organism.
The occurrence of copper-binding proteins is relatively scarce when compared to that of
zinc-binding proteins and of non-heme iron proteins [25]. In the brain cells, copper is taken
up into cells by the copper transporter CTR1. Based on its kinetic accessibility, cellular
copper can be divided into two categories, the typical stationary pool (i.e., copper bound to
enzymes such as CCO or SOD1) and the unstable pool (i.e., copper bound to chaperones
such as CCS) [26]. Unlike the former form of copper, the latter form is more bioavailable and
is capable of participating in dynamic cell signalling pathways [27]. Copper is transferred
to the copper protein through the copper-metal chaperone ligand exchange reaction [25].

After copper enters the cell, it binds to the cellular copper chaperone CCS and is then
transferred to SOD1, where it inserts a disulfide bond. As part of the secretory pathway,
Atox1 transports copper to copper-transporting ATPases. The Cu-ATPases accept copper
from Atox1 and use the energy of ATP hydrolysis to transfer copper into the secretory
pathway, where copper is incorporated into copper-dependent enzymes. Cu-ATPases
are phosphorylated by kinase-mediated kinases and relocated to vesicles near either the
basolateral (ATP7A) or apical (ATP7B) membranes in response to copper elevation. Upon
fusion of vesicles, copper is exported. Metabolic factors that induce copper uptake also
promote Cu-ATPase trafficking [28–30]. It is ATP7B that carries out copper transport in liver
cells and ATP7A that carries out copper transport mainly in brain cells [25]. MT1/2 binds
to more than one copper ion and can act as a reservoir for copper. In addition, glutathione
(GSH) can also be directly or indirectly involved in regulating the cellular copper pool.
In the mitochondria, a small copper ligand (CuL) supplies Cu+ to the IMS [25]. In the
IMS, COX17, SCO1, and COX11 form two copper transport pathways for CuA and CuB,
participating in the metallization of the mitochondrial CCO complex and embedded in the
IM. Nuclear-encoded mitochondrial proteins, such as unfolded COX17, are imported across
the OM via the TOM translocase and then captured in the IMS, following the introduction
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of disulfide bonds (SS) through the actions of Mia40. A sulfhydryl oxidase Erv1 generates a
reactive disulfide on Mia40. COA6 and SCO2 assist in keeping the redox balance of SCO1,
which in turn helps maintain its copper binding and transport to COX (Figure 1B) [25].
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Figure 1. (A) The entry and exit of copper in the brain. Copper enters the brain through the blood–
brain barrier (BBB). The endothelial cells that make up the BBB get copper from the blood via the
apical copper transporter1 (CTR1) and transport it to the brain parenchyma via ATP7A. If there is
an excess of copper, then the excess copper is released from the brain cells into the cerebrospinal
fluid (CSF) and is taken up by the cells that make up the blood–cerebrospinal fluid barrier (BCB).
The copper taken up by these cells is either stored by ATP7B for potential transport to the CSF or
transported into the blood by ATP7A. (B) Copper metabolism of brain cells. Ceruloplasmin (CP)
carries the copper to its destination. On the plasma membrane, copper ion channel CTR1 can achieve
a high affinity for copper uptake. After copper enters the cell, a small copper ligand (CuL) supplies
Cu+ to the mitochondria intermembrane space (IMS). In the mitochondria, copper chaperone for
cytochrome C oxidase 17 (COX17) supplies two pathways, delivering copper to COX11 and synthesis
of cytochrome oxidase1 (SCO1). Copper reaches the CuB site of the COX1 subunit via COX11 and the
CuA site of COX2 via SCO1, participating in the metallization of the mitochondrial cytochrome C
oxidase (CCO) complex and embedded in the inner membrane (IM). Nuclear encoded mitochondrial
proteins, unfolded COX17, are imported across the outer membrane (OM) unfolded via the TOM
translocase and then captured in the inner membrane space (IMS), following the introduction of
disulfide bonds (SS) through the actions of Mia40. A sulfhydryl oxidase Erv1 generates a reactive
disulfide on Mia40. Copper chaperone for cytochrome c oxidase (COX) is catalyzed by SCO1 and
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SCO2 which are metallochaperones. Cytochrome c oxidase assembly factor 6 (COA6) and SCO2
assist in keeping the redox balance of SCO1, which in turn helps maintain its copper binding and
transport to COX. In the cytoplasm, metallothionein 1/2 (MT1/2) binds to more than one copper ion
and can act as a reservoir for copper. Copper chaperone for superoxide dismutase (CCS) delivers
copper to Cu/Zn superoxide dismutase (SOD). In addition, glutathione (GSH) can also be directly or
indirectly involved in regulating the cellular copper pool. Copper ions bind to antioxidant protein 1
(Atox1), which presents copper to the ATP-driven transmembrane copper ion pumps ATP7A and
ATP7B, both of which perform both copper export and metallochaperone functions, with ATP7B
performing copper export in hepatocytes and ATP7A primarily performing copper export in brain
cells. Together these proteins maintain proper intracellular copper bioavailability and ensure the
metalation of copper-dependent enzymes including COX, superoxide dismutase 1 (SOD1) and
oxygenases/oxidases including tyrosinase, lysine oxidase (LOX), dopamine β-hydroxylase (DBH).
The figures in this article are all drawn by Figdraw.

3. The Physiological and Pathological Role of Copper in the Brain

The brain contains approximately 9% of the body’s copper, the third-highest con-
centration of copper of any organ [12,31]. Brainstem neurons in a small area called the
locus coeruleus (LC) are primarily responsible for producing the neurotransmitter nore-
pinephrine (NE), which is the brain area with the highest concentration of copper [1].
Copper modulates rest-activity cycles through the LC [6]. Neural pathways originating
in the LC send a wide variety of signals throughout the brain, playing a major role in
regulating vertebrate arousal and wakefulness [32]. Copper is oxidized in a wide variety
of oxidation states, but the oxidation states Cu+ and Cu2+ are most common within cells,
and Cu2+ is more common outside cells [12]. The distribution of copper in the brain is
uneven, not only in the locus coeruleus region but it has also been recorded at higher levels
in the substantia nigra [33]. A delicate homeostasis of copper in the central environment is
maintained by the blood–brain (BBB) and cerebrospinal fluid barriers (BCB) [19]. According
to histochemistry studies conducted on brain slices, glial cells have a higher copper con-
centration than neurons, both under physiological and pathological conditions [22,33,34].
Senescent cells accumulate intracellular copper irrespective of the source of stimulation
or the origin of the cell, and this is likely a universal phenomenon [35]. A number of
neurological disorders, including Wilson’s disease and Alzheimer’s disease, alter both the
total copper level and the distribution of copper in the brain [22,36,37]. Therefore, copper
plays an important role in the brain.

3.1. Copper and Inflammation

Since the brain has a high metabolism and signalling needs, copper is particularly
abundant in this organ [12,38–41]. Endogenous copper plays an essential role in regulating
inflammation [42]. Copper concentrations and CP activities in bodily fluids and tissues
tended to rise in humans and animals under acute and chronic conditions of inflamma-
tion [43]. ATP7B transports Cu into CP before it is released into the plasma. CP is an acute
phase response protein whose synthesis and secretion can be distinctly increased during
inflammation. Hepatic synthesis of CP can be upregulated by inflammatory cytokines
such as interleukin-1 (IL-1) and interleukin-6 (IL-6), as well as a hypoxia-inducible factor
(HIF1) [44]. Furthermore, copper-deficient rats were more susceptible to the standard acute
inflammatory agents than rats receiving a normal copper diet [45,46]. On the contrary, ex-
cess Cu contributes to numerous inflammatory vascular diseases, while Cu chelators inhibit
inflammation [47,48]. Previous studies have worked on the inflammatory effects of copper
in the liver, but few have focused on the effects of copper in the brain. Hitherto, three mem-
bers of the MAP kinase family, such as p38 mitogen-activated protein kinase (p38 MAPK),
extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK),
have been reported in mammalian cells. These kinases can facilitate the generation of pro-
inflammatory cytokines [49]. Copper influx promotes MEK1 phosphorylation of ERK1/2.
Activation of MAPKs triggers stimulation of other kinase targets, which are then translo-
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cated to the nucleus to activate the transcription of pro-inflammatory genes [50]. Inhibition
of p38 and JNK helps to remove excess copper from hepatocytes [51]. Nuclear factor kappa
B (NF-κB), a critical activator of inflammatory processes, could modulate the expression
of various inflammatory mediators (such as interleukin-8, inducible nitric oxide synthase,
interleukin-1β, cyclooxygenase-2) in numerous cells [52–55]. Therefore, both MAPK and
NF-κB are essential elements of the pathways that regulate the inflammatory response.
The imbalanced production of mediators with anti-inflammatory and pro-inflammatory
functions also triggers the inflammatory response in the brain. Pro-inflammatory cytokines
are essential for the development and maintenance of inflammation [54], which can lead
to damage in multiple organs, including the brain [56–58]. On the other hand, TGF-β
acts as an anti-inflammatory cytokine and has a suppressive effect on the inflammatory
response [58]. It has been demonstrated that tissue copper levels are significantly increased
under pathological inflammatory conditions [59,60]. A recent study confirms ATP7A as
a therapeutic target for inflammatory vascular disease [61]. These copper-transporting
ATPases (ATP7A/B) are responsible for maintaining intracellular copper levels. Intracel-
lular copper influences the activities, post-translational modifications, and localization of
copper-dependent proteins [62]. At the same time, there is growing evidence that most
brain disorders show an inflammatory component [58,63,64]. Under inflammatory stimuli,
a higher level of labile copper in microglia was observed [65–67]. In the past few years, it
has been found that an anti-inflammatory effect of copper delivery in the chronic neuroin-
flammatory environment of a rat model of Alzheimer’s disease [68]. Furthermore, copper
metabolism is significantly enhanced in the acute phase of inflammation [44].

3.2. Copper and Immunity

Copper performs a variety of functions in the immune system, among which the
direct action mechanism of copper on the immune system is less known. In order to
understand the role of copper in the immune response, a number of animal models and
cultured cells have been used in experiments [69]. In general, the effectiveness of the
acquired response will be reduced when there is a copper deficiency [70–72]. Early studies
of copper deficiency identified that copper-deficient animals were anaemic, had markedly
lower thymus weights, and markedly higher spleen weights than control animals [71].
Furthermore, the production of antibodies by spleen cells was markedly reduced in copper-
deficient animals [71,72]. Lukasewycz and Prohaska found a significant increase in IL-1
and a significant decrease in IL-2 in copper-deficient rats [71]. In addition, mitogen-induced
DNA synthesis is damaged by copper deficiency, which results from a reduction in IL-2
concentrations [73]. What is more, neutropenia has been known to be a sign of copper
deficiency since the 1960s [74]. Higuchi et al. measured anti-neutrophil antibodies in
the serum of copper-deficient patients, which might suggest a mechanism of neutrophil
loss [75]. In addition to a reduction in the number of circulating neutrophils, the function
of these neutrophils is also harmed in copper deficiency [76,77]. Furthermore, Cu/Zn SOD
has been found in human neutrophils and monocytes [69]. Although it has been confirmed
that copper deficiency has a negative effect on the human immune system, the specific
mechanism needs to be further studied.

3.3. Copper and Oxidative Stress

Oxidative stress is caused by an imbalance between the production of reactive oxy-
gen species (ROS) and antioxidant defences. Particularly, the brain becomes damaged
with age and shows pathological changes in oxidant production or antioxidant levels in
mammals [78]. On the one hand, several components of the oxidant defence system such
as superoxide dismutase (SOD), CP, GSH, and metallothionein are impaired in copper
deficiency. In addition, Cu/Zn SOD and CP activity are sensitive to tissue copper, as they
require copper as a catalytic cofactor [79]. It has been reported that Cu deficiency causes
a decrease in Cu/Zn SOD activity [80–83], but protein levels of Cu/Zn SOD may or may
not be reduced [84–86]. Furthermore, it has been demonstrated that a 50–60% reduction in
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Cu/Zn SOD activity can lead to severe oxidative stress and cell death [87,88]. Under normal
physiological conditions, the antioxidant defence system must be steadily regulated. CP is
synthesised in the liver and copper is needed for the function of its ferredoxin enzyme [89].
Although the state of copper does not affect the synthesis or secretion of CP, its absence
reduces its activity as copper cannot be incorporated into CP, making it less stable [89].
Low CP activity is a common feature of copper-deficient animals [90]. Furthermore, GSH is
frequently increased in the liver and plasma of Cu-deficient animals [81,91], a change which
is considered to indicate an adaptive response to increased oxidative stress. Metallothionein
is also involved in the homeostatic control of copper, which can bind Cu and render it
redox-active under reducing conditions [92].

On the other hand, under copper exposure, the antioxidant defences of fish fail because
of the over-production of reactive oxygen species (ROS) [93]. The toxicity of excessive
copper is mainly related to the production of ROS [94]. Nevertheless, the brain is rich
in polyunsaturated fatty acids, which are especially vulnerable to attack by ROS [95].
Furthermore, copper-induced ROS consist mostly of superoxide and hydroxyl radicals [96].
Copper exposure increased ROS production, resulting in oxidative damage and reduced
the fish brain’s ability to scavenge hydroxyl radicals. Copper exposure reduces brain GSH
levels [93]. GSH could directly scavenge singlet oxygen and hydroxyl radicals to intact
cells under oxidative stress [97]. The decrease in GSH can be attributed to two factors.
Firstly, it might be partly owing to the increase in ROS production caused by Cu stress,
which consumes a large amount of GSH [93]. It has been reported that in human gingival
epithelial cells, excess ROS can deplete GSH, leading to a decrease in GSH levels [98].
Secondly, the decrease in GSH content may be partly because of the inhibition of GSH
re-production [99]. What is more, Cu exposure increased the nuclear accumulation of Nrf2
in the fish brain and increased its ability to bind to ARE(Cu/Zn SOD). Furthermore, Cu
exposure resulted in increased expression of Nrf2, MafG1 and PKCd genes, indicating
that the de novo synthesis of these factors is necessary for the long-term induction of such
antioxidant genes [93].

3.4. Copper and Cell Death (Cuproptosis)

Copper is involved in cell growth/proliferation and autophagy pathways. When
Wilson’s disease or an abnormal buildup of copper in the liver occurs, copper inhibited
cAMP degradation by directly binding to a conserved cysteine residue in the phospho-
diesterase3B (PDE3B), which breaks down triglycerides into fatty acids and glycerol [5].
Copper-dependent kinase signalling can regulate autophagy through ULK1/2. Copper met-
alloallostery promotes protein degradation and induces cell death through metalloallostery
activation of the E2 binding enzyme UBE2D1-UBE2D4 [100]. It is reported that copper acts
on MEK1/2 and enhances the ability of MEK1/2 to phosphorylate ERK1/2 [101].

Recently, a new type of cell death has been proposed: cuproptosis. The classification
of cuproptosis was proposed by Tsvetkov et al. [102]. Cuproptosis and ferroptosis are
characterized by distinct alterations in energy metabolism and mitochondrial function [103].
Cuproptosis is a novel phenomenon, which is a novel cell death pathway mediated by
lipoylated TCA cycle proteins [104]. Cu ionophores, elesclomol (ES), could bind copper.
It has been thought that elesclomol-induced cell death is mediated by an increase in
mitochondrial ROS [55,105]. However, now it is thought that elesclomol binds to copper,
enters the cytoplasm, and copper is reduced to univalent copper. Fe–S clusters are formed
in mitochondria by FDX1, a mitochondrial reductase [106–108], a process that is essential
for mitochondrial function [109]. One study used a genome-wide CRISPR-Cas9 screen
to determine which gene loss makes elesclomol analogues resistant. Interestingly, two
screenings yielded only one gene, FDX1. FDX1 encodes ferredoxin 1, whose underlying
mRNA expression is highly correlated with elesclomol sensitivity [110]. Elesclomol is
specific for FDX1, binding to the FDX1 α2/α3 and β5 chains, but not to its homologue
FDX2 [110]. Fe–S proteins in the mitochondrial respiration chain deliver the electrons
generated from the tricarboxylic acid cycle (TCA cycle) to ADP molecules for energy
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production, thereby complying with the high demand for energy consumption of neuronal
cells [19]. Copper binds directly to the lipoylated components of the TCA cycle. The
aggregation of these copper-bound lipoacylated mitochondrial proteins and subsequent
loss of Fe-S cluster proteins then triggered cuproptosis [103]. Finally, in the above process,
as a high-affinity Cu importer, CTR1 plays an important role in transferring copper into the
cell (Figure 2).

 
 

 

 
Int. J. Mol. Sci. 2022, 23, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/ijms 

 
Figure 2. Copper participates in cell death and proliferation pathways. Copper binds to and inhib-
its Phosphodiesterase 3b (PDE3B), inhibits cyclic AMP (cAMP) degradation, and promotes 
cAMP-dependent lipolysis, which is needed for fat metabolism. Copper-dependent kinase signal-
ling can regulate autophagy through ULK1 and ULK2. The copper signal promotes protein deg-
radation by binding the E2-binding enzyme UBE2D1-UBE2D4. Copper-dependent kinase signal-
ling can regulate cell growth/proliferation through MEK1 and MEK2. Furthermore copper binds 
directly to the lipoylated components of the TCA cycle. The accumulation of these copper-bound 
lipoacylated mitochondrial proteins and the following loss of Fe-S cluster proteins then triggered 
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Figure 2. Copper participates in cell death and proliferation pathways. Copper binds to and inhibits
Phosphodiesterase 3b (PDE3B), inhibits cyclic AMP (cAMP) degradation, and promotes cAMP-
dependent lipolysis, which is needed for fat metabolism. Copper-dependent kinase signalling can
regulate autophagy through ULK1 and ULK2. The copper signal promotes protein degradation
by binding the E2-binding enzyme UBE2D1-UBE2D4. Copper-dependent kinase signalling can
regulate cell growth/proliferation through MEK1 and MEK2. Furthermore copper binds directly to
the lipoylated components of the TCA cycle. The accumulation of these copper-bound lipoacylated
mitochondrial proteins and the following loss of Fe-S cluster proteins then triggered cuproptosis.

4. The Copper Signal Pathway in Brain Diseases
4.1. Alzheimer’s Disease (AD)

Alzheimer’s disease is very common in older people [111]. Misalignment and im-
balance of metal ions can lead to protein aggregation and reduced activity, and induce
oxidative stress. There are various pathogenic factors that may cause AD by causing its
development and progression [112]. The pathological features and clinical diagnostic
criteria for AD are neuritic plaques and neurofibrillary tangles in excess of those found
in age-matched healthy individuals [113,114]. Neuritic plaques are composed of a central
core of amyloid protein surrounded by astrocytes, microglia, and dystrophic neurites often
containing paired helical filaments. Neurofibrillary tangles are paired helical filaments
containing abnormally phosphorylated tau proteins that occupy the cell body and extend
into the dendrites [115]. However, amyloid β (Aβ) protein, which is thought to be central to
the pathogenesis of AD, is derived from AβPP and is deposited in neuronal plaques [116].
AβPP is important for regulating Aβ production, while Aβ aggregates can produce ROS
in the presence of copper ions and excess ROS is harmful to the brain. However, oral ad-
ministration of copper chelator, Temozolomide (TM), significantly improved the cognitive
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decline of AβPP/PS1 Tg (transgenosis) mice and revealed that copper chelators promote
the expression of ADAM10 and the production of sAβPPα via MT1/2 and its downstream
Gq/PLC/PKC/ERK, Gs/cAMP/PKA/ERK and Gs/cAMP/PKA/CREB signalling path-
ways [117]. As well as the aggregation of proteins, dyshomeostasis of copper ions has
been reported within AD brains. Copper concentrations in AD patients’ brains have been
shown to be 400 mM. As a comparison, healthy brain tissues of the same age contained
copper about 70 mM [118,119]. When Cu2+ binds to Aβ, it also produces reactive oxygen
species, which leads to neuronal damage [120]. However, chelating copper by microglia
may contribute to AD neuroprotection [65]. Accordingly, copper homeostasis can serve as
a therapeutic target to prevent AD [117].

4.2. Menkes Disease (MD)

Menkes disease is caused by various mutations in ATP7A, a type1 ATPase that trans-
ports copper [121,122]. Cu+ is transported from the cytosol into the secretory pathway,
or into vesicles, by ATP7A (also known as Menkes protein, MNK) [121–123]. Cu+ is then
incorporated into lysyl oxidase and tyrosinase, both of which are copper-dependent en-
zymes. Copper-dependent enzymes are deficient, which causes many symptoms of the
disease [124]. The Cu+ pumping into the vesicles in the latter case is then released into
the extracellular environment after the membranes of the vesicles fuse with one another.
In order for both roles to play correctly, the intracellular localization of ATP7A has to be
controlled, which is influenced by the concentration of Cu+ within the cell [125]. Designed
to transport copper to mitochondria, elesclomol increases cytochrome c oxidase levels in
the brain. The action of elesclomol prevents neurodegeneration and improves survival
in a murine model of severe Menkes disease (mottled-brindled mouse) [126]. There is
well-documented evidence that brain copper depletion occurs in MD patients and mice
models of this disorder. Copper levels in MoBr/Ybrain are decreased by 2- to 4-fold with
age [127,128]. Copper-deficient 4-week-old murine brains showed no change in SOD1
levels [129]. However, the ATPA7A mutant mouse exhibited an increase in SOD3 levels in
its aortas while SOD1 levels remained unchanged [130]. Low levels of ATP7A transcription
were found in Purkinje cells of hippocampal and pyramidal neurons of the midbrain, which
are most susceptible to neurodegeneration [131]. Immunoblot analysis of homogenates
of wild-type and MoBr/y brains revealed only minor differences in total amounts of
ATP7A protein, immunofluorescence revealed significant differences between cell types
expressing ATP7A [132]. An interesting copper histochemical stain uses silver sulfide and
trichloroacetic acid combinations for detecting copper in the macular and MoBr/y brains,
neuronal populations deficient in ATP7A had a decreased amount of copper [133,134]. On
the other hand, mutant ATP7A levels are dramatically higher in MoBr/y brain capillaries.
A greater concentration of copper is found in cerebral endothelial cells in the macular and
MoBr/y brain [133,134]. As ATP7A levels correlate with copper levels in diverse cell types,
copper may also regulate ATP7A gene expression [135].

4.3. Wilson’s Disease (WD)

As a typical disorder of copper metabolism, increased copper levels have been demon-
strated in the brain and liver of patients with Wilson’s disease [136]. WD is a genetic disor-
der that affects copper metabolism. There are approximately 1:7000 to 30,000 live births
diagnosed with WD, making it one of the most common inherited liver disorders [137]. WD
is caused by mutations in ATP7B, which encodes the transmembrane copper-transporting
ATPase 2 (widely known as ATP7B), which mediates the excretion of copper into bile and
provides copper for the synthesis of CP [138]. Wilson disease happens when there is an
abnormal accumulation of copper in the body caused by hepatic failure to remove it. Excess
Cu in this disease causes brain damage [11,139]. In recent years, researchers have exploited
the relationship between CCC2 and Fet3 in the study of the Menkes protein; the expression
of Menkes proteins in cells lacking CCC2 [140]. Associated with copper overload, WD
primarily affects the liver and brain, although it may also manifest in other organs such
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as the cornea and kidneys, although to a lesser degree. Hepatocytes fail to excrete copper
into the bile as a result. The disease is caused by a mutation in the ATPase 7b gene on
chromosome 13q14.3 [141]. Cu accumulation is highly toxic since it is capable of damaging
various intracellular components and disturbing cellular redox balance [142,143]. Cu can
also damage mitochondria, a defect that occurs often in Wilson disease, as abnormal mito-
chondria disrupt the synthesis of metabolites that regulate epigenetic expression [144,145].
The liver and brain are most affected by copper toxicity when copper cannot be excreted
from the body [146].

4.4. Traumatic Brain Injury

Traumatic brain injury (TBI) has increasingly become a major cause of morbidity
and mortality worldwide, mainly occurring in traffic accidents, wars, or violent collisions
among people [147,148]. Copper is essential for wound repair and regeneration, and higher-
than-normal levels of copper have been detected in wound tissue [149,150]. Peng et al.
explored increased copper uptake as a biomarker for the noninvasive evaluation of trau-
matic brain injury disease (TBI), and 64Cu uptake in the injured cortex was assessed with
64CuCl2 PET/CT. The results showed that the content of cortical copper in the TBI-injured
group was significantly higher than that in the uninjured group [151]. Therefore, increased
copper in injury brain tissue may be a new marker for assessing TBI. After TBI, Cu/Zn
SOD also increased significantly [152]. SOD, as an endogenous free radical eliminator, can
reduce brain injury after ischemia and TBI [153]. Shigeki Mikawa et al. demonstrated the
neuroprotective effects of Cu/Zn SOD on cortical contusion in mice through transgenic
mice, including acute injury, such as BBB destruction and brain oedema, and chronic injury,
including functional motor recovery and tissue necrosis [152]. The occurrence and devel-
opment of brain oedema after TBI is closely related to superoxide anion, and exogenous
lecithin superoxide dismutase can clear superoxide anion, thus reducing the degree of brain
injury [154]. Mitochondrial dysfunction induced by superoxide anion radicals contributes
to the formation of damage in the mouse brain after physical trauma [155]. Serum cerulo-
plasmin and copper may be early markers of elevated intracranial pressure after traumatic
brain injury [156]. Copper deficiency in the diet of rats and mice significantly impairs the
central nervous system’s ability to cope with injury [157]. Maintaining copper homeostasis
in the brain can be used as a target for the treatment of TBI [158]. The results of copper
homeostasis imbalance after TBI are shown in Figure 3.

4.5. Intracerebral Hemorrhage (ICH)

Copper may play an important role in ICH. Decreased serum CP and increased serum
free copper are associated with death or poor prognosis in hypertensive ICH patients [159].
Apoptosis or cell death after transient focal cerebral ischemia may involve ERK1/2 phospho-
rylation and SOD1 may be involved in attenuating mitogen-activated protein kinase/ERK
pathway mediated apoptotic cell death [160]. Copper has angiogenic potential to promote
skin wound healing [161]. The increased content of free radicals and reactive oxygen
species plays a crucial role in ICH injury [162]. Takuma Wakai et al. have demonstrated
that SOD1 overexpression plays an important role in neural stem cell survival after ICH
brain transplantation. It is suggested that endowing neural stem cells with antioxidant
properties is a possible way to improve the efficacy of ICH cell transplantations [163]. There
is sufficient evidence to suggest that iron release from haematoma following glutamate
release from erythrocytes and inflammatory response are major factors in ICH-induced
brain injury [164]. However, iron and copper are closely related to the need for polycopper
ferrous oxide [165].
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Figure 3. The outcomes of imbalanced copper balance after TBI. TBI leads to several serious conse-
quences, including BBB breakdown, haemorrhage, and copper dyshomeostasis. Together this leads
to a copper increase or decrease in the brain. Copper is involved in the Haber–Weiss/Fenton reaction,
promoting oxidative stress, neuronal death, inflammation onset and tau phosphorylation/beta depo-
sition. This leads to pathological changes in traumatic brain injury and ultimately increases the risk
of neurological decline and neurodegenerative disease.

4.6. Ischemic Stroke

Stroke is the second leading global cause of death behind cardiovascular disease
(CVD) [166]. Lai et al. found small molecular copper and its related metabolites in the
serum of patients with ischemic stroke [167]. Plasma copper and other metals were found
to be associated with a higher risk of ischemic stroke in the study [168]. Furthermore, long-
term exposure to water containing trace amounts of copper increased ischemic damage
in mice, possibly in part due to damage to endothelial progenitor cells and a reduction
in ischemic cerebrovascular production. So copper contamination in drinking water may
be a risk factor for stroke [169]. Yang et al. found that the risk of stroke decreased with
increased dietary copper intake [170]. In hypertensive patients in China, baseline plasma
copper was positively associated with the risk of the first stroke, especially in some patients
with higher BMI [171]. Hu et al. emphasized the need for research to determine the optimal
range of plasma copper concentrations in Chinese people, as it may provide more specific
clinical and nutritional guidelines for optimal copper levels for stroke prevention [172].
Abnormal Cu/Zn and Cu/Se molar ratios can be used as important indicators of nutritional
status and oxidative stress levels in patients with acute ischemic stroke [173]. The copper
complex CuII(atsm) possesses neuroprotective properties, as demonstrated in vitro, halting
excitotoxic damage and protecting the N2a cells from oxygen and glucose deprivation,
to be protective against permanent and transient ischaemia models in mice. Ischemic
brains delivered with copper exhibit suppression of inflammation, specifically affecting
myeloid cells. A reduction in CD45 and Iba1 immunoreactivity as well as changes in
the morphology of Iba1 positive cells are observed in ischemic brain tissue. In addition,
CuII(atsm) decreases invading monocytes by protecting endogenous microglia from is-
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chemic insults and protecting endogenous microglia from ischemic insults. The results
indicate that CuII(atsm), a copper complex, is an inflammation-modulating compound
with high therapeutic potential for stroke and is a strong candidate for the development of
treatments for acute brain injury [68].

4.7. Spinal Cord Injury (SCI)

Spinal cord injury leads to severed axons and neuronal death, resulting in permanent
functional impairment [174]. SCI leads to massive cell death and damage to the blood–
spinal cord barrier, then the infiltration of immune cells. Inflammation, the formation of free
radicals leads to secondary damage, killing other cells such as oligodendrocytes [175]. After
SCI, endonuclease G and apoptosis-inducing factors are transferred from mitochondria to
the nucleus. Overexpression of SOD1 in transgenic rats can increase SOD activity in mito-
chondria and promote the survival of motor neurons after SCI by decreasing the release of
endonuclease G [176]. Many researchers have found abnormalities in mitochondrial mor-
phology and function in the spinal cord of patients with motor neuron disease [177–185]. It
appears that SOD activity increases in the brain, reducing the development of vasogenic
brain oedema and infarction [186]. When rats were injured, the amount of mRNA for CP
increased significantly [187]. This copper-containing enzyme is widely found in numerous
types of eukaryotes, containing six copper atoms [188]. CP can remove ROS through the
activity of oxidase or peroxidase enzymes such as ferric oxidase, cuprous oxidase, and
glutathione peroxidase [189–191]. The results of Wu et al. showed that CP expression was
significantly increased in GFAP+ astrocytes, CD11b+ microglia, CNPase+ oligodendrocytes,
NeuN+ neurons, CD45+ leukocytes and CD68+ activated microglia/macrophages after SCI.
Quantitative analysis showed that neurons and oligodendrocytes did not participate in the
CP elevation induced by SCI. However, the main sources of CP elevation are infiltrating
leukocytes, activated microglia/macrophages, and astrocytes [192]. Inflammatory, trau-
matizing, or infectious conditions induce the induction of CP as a positive acute phase
protein [193]. Studies on Cu’s likely physiological role in TSCI are scarce, but their role
in protecting neurological tissue appears to be critical [193]. Moreover, premature death
from congenital defects of Cu transporters (ATP7A) in Menkes disease and progressive
neurodegeneration due to CP deficiency cause fatal neurological consequences, this study
provides further evidence for the importance and impact of Cu-dependent proteins on
neuron survival [194]. CP-deficient mice have been reported to have significantly increased
motor neuron loss and show impaired primary motor recovery after injury [195]. Further-
more, they concluded that there was a strong association between temporal changes in
copper status and clinical outcomes after traumatic spinal cord injury [193].

4.8. Glioma

Copper is an essential cofactor in angiogenesis and has been experimentally targeted
for glioblastoma [196]. Human Cu/Zn SOD cDNA was transfected into U118-9 human
malignant glioma cells. Compared with the wild-type and vector control, the Cu/Zn SOD
activity levels of the four supertransfected cell lines were increased by 1.5, 2.0, 2.6 and
3.5 times, respectively. It is confirmed that Cu-Zn superoxide dismutase is a novel tumour
suppressor gene [197]. In preclinical experimental proof-of-principle studies, copper re-
duction inhibited malignant tumour growth and invasion within the brain by inhibiting
angiogenesis [198,199]. Endothelial cells proliferate when copper ions are present [200],
and copper contributes to angiogenesis in tissues [201]. Basically, elesclomol functions by
redoxing copper ions [202]. Reduced copper inhibits the actions of structurally diverse an-
giogenic factors, cytokines, and prostaglandins [201,203]. An in-depth investigation of the
molecular mechanisms underlying glioblastoma stem-like cells (GSCs) and GSC-derived
endothelial cells (GdECs) response to elesclomol found that this compound induces a strong
increase in ROS in both GSCs and GdECs leading to non-apoptotic copper-dependent cell
death [202]. Elesclomol acts on cancer cells by causing them to become apoptotic through
the production of ROS [105]. In biological experiments, elesclomol is hypothesized to gener-
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ate ROS by chelating copper and preventing redox cycling of copper [204]. Elisclomol binds
to Cu2+, delivering it into mitochondria. From there it is converted to Cu+, which can bond
with oxygen to produce ROS, A high level of free radical production leads to uncontrolled
oxidative stress and apoptosis in cancer cells [205]. As evidenced by experiments on human
keratinocytes [105] and in PBMCs [204], elesclomol is more effective against tumour cells
with high ROS levels than against melanomas, but it is not toxic to normal cells. In many
instances, tumour cells produce more ROS than normal cells [206,207]. Studies have shown
that oxidative stress is the primary mechanism of elesclomol’s action on stem-like cells of
glioblastomas and on endothelial cells derived from those stem-like cells. Ecoli cells treated
with eclorophenol showed altered mitochondrial membranes, higher ROS production and a
decrease in GSH levels [202]. Disulfiram can be used as an anticancer drug and a radiosen-
sitizer [208]. Earlier studies have shown that disulfiram induces cytotoxicity via oxidative
stress [209,210], which may be enhanced by the presence of copper [209]. The antiprotease
effects of copper-binding drugs have been demonstrated [211], along with the formation
of ROS [212]. Copper is chelated by disulfiram, so the copper–disulfiram complex may
be toxic [213]. Copper is present in many tumours [211], and its role in tumour cells is
also significant.

4.9. Other Diseases

Copper is essential for diverse neuronal functions. Copper induces microglia activation
in substantia nigra pars compacta of C57BL/6J mice. In addition to this, copper activates
BV2 cells and induces the release of inflammatory cytokines. In BV2 cells, copper induced
oxidative stress and activated the NF-κB/P65 pathway, which interfered with mitochondrial
autophagy and eventually led to BV2 cell death [214]. The most abundant glial cells in the
central nervous system are astrocytes, which play important roles in health and disease.
Under normal conditions, astrocytes are involved in important physiological processes,
such as the development and functional regulation of synapses and the blood–brain barrier,
metabolic support of neurons, and production of neurotrophins [215,216]. Kardos et al.
believe that cell-level copper signalling between neurons and astrocytes is also present
and may play an important role in brain signal processing [217]. Considerable evidence
has shown that memory deficits in rats with chronic copper poisoning are associated with
copper deposition in the choroid plexus, astrocyte swelling, astrogliosis and neuronal
degeneration in the cerebral cortex, and increased copper levels in the hippocampus [218].
Particularly, in some neuroinflammatory diseases, such as multiple sclerosis, the expression
of copper transporters such as CTR1 on glial cells depends on TRKB, and TRKB has been
shown to play a key role in neurotrophin-induced calcium flux production in glial cells and
CTR1 upregulation in vitro. These processes cause astrocytes to take up and release copper,
which in turn leads to oligodendrocyte loss [219].

5. The Drugs for Copper

Copper-containing drugs work in two ways: by supplementing copper, or by chelating
it. The application of copper in the laboratory is still limited, and experiments show that
copper has a unique role. Clinical trials have been conducted in many areas related to brain
diseases, but the results have not been as satisfactory as expected (Table 1).
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Table 1. List of the published clinical research of the drugs for copper.

NO. Clinical Trial Identifier Condition/Disease Condition/Disease Number of Participants

List of the published clinical trials that highlight the application of copper chelators

1 NCT04737278 Neuralgia
Myalgia

Drug: Cunermuspir
Other: Placebo 56

2 NCT04422431 Wilson’s Disease Drug: Bis-choline tetrathiomolybdate 31

3 NCT03539952 Wilson’s Disease Drug: TETA 4HCL
Drug: Penicillamine 53

4 NCT03299829 Trientine Treatment for Wilson’s Disease Drug: Trientine 48
5 NCT02273596 Wilson’s Disease Drug: ALXN1840 29
6 NCT01472874 Wilson’s Disease Drug: Once a day trientine 8

7 NCT00325572 Autism
Pervasive Developmental Disorder

Drug: Oral zinc and vitamin C supplements
Other: Oral placebo 89

8 NCT00113542 Psoriasis Drug: Tetrathiomolybdate (TM) 10

9 NCT00003751 Brain and Central Nervous System Tumors Drug: Penicillamine
Radiation: Radiation therapy 40

List of the published clinical trials that highlight the application of copper supply agent

10 NCT03283800

Lipodermatosclerosis
Chronic Venous Insufficiency

Venous Insufficiency
Varicose Veins

Other: Copper-impregnated compression stocking
Other: Normal compression stocking 16

11 NCT03034135 Recurrent Glioblastoma Drug: Disulfiram/copper
Drug: Temozolomide (TMZ) 23

12 NCT01971112 Upper Respiratory Infections
Lower Respiratory Tract Infections Dietary Supplement: Multivitamins and minerals 320

13 NCT01177579 Copper Deficiency Dietary Supplement: Copper gluconate 70
14 NCT00001262 Kinky Hair Syndrome Drug: Copper histidine 60

Source: data retrieved from International Clinical Trials Registry Platform.

5.1. The Increase of Copper

Copper is required for cell survival and proliferation and plays a very important
role in the development and progression of brain diseases. In some copper-deficient
diseases, appropriate copper supplementation is beneficial for injury recovery. Several
pharmacological agents that supplement copper have been listed (Table 1).

It has been reported that copper deficiency in mammals causes serious impairment of
cognitive and motor function [220]. In Menkes disease, using hydrophilic compounds to
restore normal Cu levels and enzyme functions through parenteral Cu supplementation,
copper histidine (HIS-Cu2+) is one example [221,222]. In addition, the copper transporter
gene, ATP7A, is affected by a variety of mutations. Copper injections could prevent death
and illness when administered early (ClinicalTrials.gov number, NCT00001262) [221]. DPy
is a copper carrier that binds to and carries copper ions into cells and can act as a recyclable
copper carrier, promoting intracellular copper accumulation and causing oxidative stress-
mediated apoptosis in cancer cells [223]. In addition, despite the fact that KRAS raises
intracellular Cu levels, the mechanisms behind this remain unknown [224]. A depolarized
neuron releases copper into the synaptic cleft, which leads to local concentrations of up to
250 mM [225]. Cu deficiency has been linked to severe neurological deficits, and premature
death, regardless of whether the cause is genetic or nutritional [6]. Copper deficiency can
affect the body’s immune function, cause inflammatory disease or cause oxidative stress,
which can lead to brain disease. Therefore, copper supplementation may improve diseases
caused by copper deficiency.

5.2. The Decrease in Copper

High concentrations of copper are harmful because they promote a Fenton-like re-
action. This leads to oxidative damage to all cellular components, proteins, lipids, and
nucleic acids [7]. In AD, an excellent treatment is the use of a chelating agent that selec-
tively removes Cu from Cu-Aβ [226]. Treating a mouse model of Wilson’s disease with
DPM-1001 reduced copper levels in the liver and brain, removed excess copper through
faecal excretion, and improved symptoms associated with the disease [227]. As there have
been few in vivo studies of metal chelators, it is not yet possible to know with certainty
what specific effects they have on disease progression [228].

ClinicalTrials.gov
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6. Conclusions

This review elucidates the role of copper in inflammation, immunity, oxidative stress,
and copper poisoning. This further illustrates the relationship between copper and brain
diseases through the above processes. In addition, some common copper drugs are
also discussed. However, the exact mechanism of copper-induced brain disease needs
further investigation.
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Abbreviations

CP Ceruloplasmin
CTR1 Copper transporter 1
CuL Copper ligand
COX1/2/11/17 Copper chaperone for cytochrome c oxidase 1/2/11/17
CCS Copper chaperone for superoxide dismutase
CCO Cytochrome c oxidase
OM Outer membrane of mitochondria
IM Inner membrane
IMS Intermembrane space
SOD Cu-Zn superoxide dismutase
MT1 and MT2 Metallothionein
ATP7A/B ATPase 7A/B
GSH Glutathione
LOX Lysyl oxidase
DBH Dopamine β-hydroxylase
SCO1/2 Synthesis of cytochrome oxidase 1/2
COA6 Cytochrome c oxidase assembly factor 6
ATOX1 Antioxidant protein 1
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