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Abstract: Methods for the synthesis of two types of isomeric dispirocompounds based on imidazoth-
iazolotriazine and pyrrolidineoxindole, differing in the structure of imidazothiazolotriazine fragment,
namely, linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine- 4′,3′′-indolines]
and angular dispiro[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indolines] were
proposed. The first method relies on a 1,3-dipolar cycloaddition of azomethine ylides generated in
situ from paraformaldehyde and N-alkylglycine derivatives to the corresponding oxindolylidene
derivatives of imidazothiazolotriazine. The cycloaddition leads to a mixture of two diastereomers
resulted from anti- and syn-approaches of azomethine ylide in approximately a 1:1 ratio, which
were separated by column chromatography. Another method consists in rearrangement of linear
dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indolines] into hitherto un-
available angular dispiro[imidazo[4,5-e]thiazolo[2,3-c]-[1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indolines]
upon treatment with KOH. It was found that the anti-diastereomer of linear type underwent re-
arrangement into the isomeric angular syn-diastereomer, while the rearrangement of the linear
syn-diastereomer gave the angular anti-diastereomer.

Keywords: dispirooxindoles; 1,3-dipolar cycloaddition; oxindolylidene imidazothiazolotriazines;
azomethine ylides; rearrangement

1. Introduction

Spiro cyclic compounds have found great application in drug discovery due to the
interesting conformational features and presence in natural products [1–3]. A conforma-
tional rigidity of the molecule allows spirocompounds to interact effectively with various
active sites on many biological targets [3,4]. Therefore, the introduction of a spiro-junction
in the structure affects the key properties of molecules, such as bioavailability, metabolic
stability, binding ability, and target selectivity [5]. Synthetic and natural products con-
taining a spiropyrrolidineoxindole fragment exhibit a wide scope of pharmacological
activity, including antimicrobial, antitumor, antidiabetic, anticonvulsant, and antiviral ef-
fects (Figure 1) [6–10]. Promising biological properties encourage the researchers to develop
efficient synthetic approaches to structures bearing such framework. There are numerous
reports on the synthesis of various spiropyrrolidineoxindoles and dispiro-fused pyrro-
lidineoxindoles, additionally involving spiro-linked pharmacophore heterocycles, such as
thiazolidine, imidazolidine, etc. [11–15]. Such hybridization resulted in a preparation of
new compounds with cytotoxic, prooxidant and antidiabetic properties [15–17].
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Figure 1. Biologically active natural and synthetic spiropyrrolidineoxindoles. 

Over the last decade, our attention was focused on thiazolo-1,2,4-triazines [18–23] 
because these compounds showed antiproliferative and antibacterial activities (Figure 2) 
[20–25]. 
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We previously published the synthesis of hybrids of imidazothiazolotriazine and 
2,3’-spiropyrrolidinyloxindole by a 1,3-dipolar cycloaddition of an azomethine ylide gen-
erated in situ from isatins and sarcosine to arylmethylidene derivatives of imidazothia-
zolotriazine [26,27]. The reaction proceeded with high regio- and diastereoselectivity to 
give only one diastereomer. Here, we report the synthesis, structure and stereochemistry 
of dispirooxindoles based on imidazothiazolotriazine and 3,3’-spiropyrrolidinyloxindole. 

2. Results and Discussion 
2.1. Synthesis and Stereochemistry of Dispirooxindoles Based on Imidazothiazolotriazine and 
Pyrrolidineoxindole 

To synthesize target dispirooxindoles we used previously prepared racemic oxindol-
ylideneimidazothiazolotriazines 1a–d [20,28]. The cycloaddition of azomethine ylide gen-
erated from paraformaldehyde and sarcosine 2a to dipolarophiles 1a–d was carried out in 
acetonitrile under reflux for 10–14 h. According to the NMR spectroscopy data, the reac-
tion proceeded unselectively to afford the mixture of two anti- and syn-diastereomers 3 
(3aR*,4’R*,6S*,9aS*-3a,b, 3aR*,4’S*,6R*,9aR*-3c,d) and 4 (3aR*,4’S*,6R*,9aS*-4a,b, 
3aR*,4’R*,6S*,9aR*-4c,d) in 1:1 ratio (Scheme 1). The mixtures were separated by column 
chromatography (iPrOH as eluent), and each of isomers 3a–d and 4a–d was isolated indi-
vidually in the yields of 31–43 and 30–42%, respectively. 

Figure 1. Biologically active natural and synthetic spiropyrrolidineoxindoles.

Over the last decade, our attention was focused on thiazolo-1,2,4-triazines [18–23] because
these compounds showed antiproliferative and antibacterial activities (Figure 2) [20–25].
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Figure 2. Biologically active thiazolo-1,2,4-triazines.

We previously published the synthesis of hybrids of imidazothiazolotriazine and
2,3′-spiropyrrolidinyloxindole by a 1,3-dipolar cycloaddition of an azomethine ylide gen-
erated in situ from isatins and sarcosine to arylmethylidene derivatives of imidazothia-
zolotriazine [26,27]. The reaction proceeded with high regio- and diastereoselectivity to
give only one diastereomer. Here, we report the synthesis, structure and stereochemistry of
dispirooxindoles based on imidazothiazolotriazine and 3,3′-spiropyrrolidinyloxindole.

2. Results and Discussion
2.1. Synthesis and Stereochemistry of Dispirooxindoles Based on Imidazothiazolotriazine
and Pyrrolidineoxindole

To synthesize target dispirooxindoles we used previously prepared racemic oxindolyli-
deneimidazothiazolotriazines 1a–d [20,28]. The cycloaddition of azomethine ylide generated
from paraformaldehyde and sarcosine 2a to dipolarophiles 1a–d was carried out in acetonitrile
under reflux for 10–14 h. According to the NMR spectroscopy data, the reaction proceeded
unselectively to afford the mixture of two anti- and syn-diastereomers 3 (3aR*,4’R*,6S*,9aS*-3a,b,
3aR*,4’S*,6R*,9aR*-3c,d) and 4 (3aR*,4’S*,6R*,9aS*-4a,b,3aR*,4’R*,6S*,9aR*-4c,d) in 1:1 ratio
(Scheme 1). The mixtures were separated by column chromatography (iPrOH as eluent),
and each of isomers 3a–d and 4a–d was isolated individually in the yields of 31–43 and
30–42%, respectively.
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Scheme 1. Synthesis of racemic spiropyrrolidineoxindoles 3a–d, 4a–d via 1,3-dipolar cycloaddition 
using paraformaldehyde and sarcosine as azomethine ylide precursors. 

The stereoselectivity of the cycloaddition can be explained by the possible approach 
of sterically unhindered “small” azomethine ylide to the plane of the double bond of di-
polarophile both from the opposite side (anti-) and from the same side (syn-) to which the 
imidazolidine cycle deviates (Scheme 2). 

 
Scheme 2. Modes of approach of azomethine ylide. 

To increase the selectivity of the reaction we prepared more sterically hindered 
amino acid, i.e., N-cyclohexylglycine. Indeed, compounds 3 and 4 were obtained in 1.5:1 
ratio (Scheme 3). In addition, diastereomer 3 underwent Mannich amino alkylation at the 
N(9) nitrogen atom. Since compounds 3e (3aR*,4′R*,6S*,9aS*) and 4e (3aR*,4′S*,6R*,9aS*) 
are not diastereomers, they were easily separated by crystallization. Earlier [29], we al-
ready observed aminomethylation at the oxindole nitrogen atom during cycloaddition re-
action. Thus, we switched to N-methyloxindolylidene derivatives 1 and 5. 

Scheme 1. Synthesis of racemic spiropyrrolidineoxindoles 3a–d, 4a–d via 1,3-dipolar cycloaddition
using paraformaldehyde and sarcosine as azomethine ylide precursors.

The stereoselectivity of the cycloaddition can be explained by the possible approach
of sterically unhindered “small” azomethine ylide to the plane of the double bond of
dipolarophile both from the opposite side (anti-) and from the same side (syn-) to which the
imidazolidine cycle deviates (Scheme 2).
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Scheme 2. Modes of approach of azomethine ylide.

To increase the selectivity of the reaction we prepared more sterically hindered amino
acid, i.e., N-cyclohexylglycine. Indeed, compounds 3 and 4 were obtained in 1.5:1 ratio
(Scheme 3). In addition, diastereomer 3 underwent Mannich amino alkylation at the N(9)
nitrogen atom. Since compounds 3e (3aR*,4′R*,6S*,9aS*) and 4e (3aR*,4′S*,6R*,9aS*) are
not diastereomers, they were easily separated by crystallization. Earlier [29], we already
observed aminomethylation at the oxindole nitrogen atom during cycloaddition reaction.
Thus, we switched to N-methyloxindolylidene derivatives 1 and 5.
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Scheme 3. Synthesis of racemic spiropyrrolidineoxindoles 3e and 4e via 1,3-dipolar cycloaddition
using paraformaldehyde and N-cyclohexylglycine as azomethine ylide precursors.

Oxindolylidene derivatives of isomeric angular structure 5a–d reacted with paraformalde-
hyde and amino acids 2a,b similarly to provide the formation of hitherto unavailable anti-
and syn-diastereomers 6 and 7 in approximately the same ratio (Scheme 4). The yields of di-
astereomers 6 (3aR*,4′R*,7S*,9aS*-6a,b,e, 3aR*,4′R*,7S*,9aR*-6c,d) and 7 (3aR*,4′S*,7R*,9aS*-7a,b,e,
3aR*,4′S*,7R*,9aR*-7c,d) after separation by column chromatography were 42–47% and
33–44%, respectively.
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Scheme 4. Synthesis of isomeric racemic spiropyrrolidineoxindoles 6a–e, 7a–e via 1,3-dipolar cy-
cloaddition using paraformaldehyde and N-alkylglycine derivatives as azomethine ylide precursors.

Another approach to the compounds 6 and 7 is the rearrangement of isomers 3 and 4
upon treatment with KOH under reflux in methanol. Taking diastereomers 3a and 4a as
examples, we found that the anti-diastereomer 3a (3aR*,4′R*,6S*,9aS*) underwent rearrange-
ment into the isomeric syn-diastereomer 7a (3aR*,4′S*,7R*,9aS*), while the rearrangement
of the syn-diastereomer 4a (3aR*,4′S*,6R*,9aS*) gave rise to the isomeric anti-diastereomer
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6a (3aR*,4′R*,7S*,9aS*). The yields of the rearrangement products 6a and 7a were 80 and
92%, respectively (Scheme 5).
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Scheme 5. Synthesis of isomeric racemic spiropyrrolidineoxindoles 6a and 7a via rearrangement of
spiropyrrolidineoxindoles 4a and 3a.

The presumable rearrangement mechanism is depicted in Scheme 6. We assume
that the rearrangement occurs as transamidation reaction upon treatment with KOH in
methanol [27]. The nucleophilic attack of the methoxide anion onto the carbon atom C(7)
results in the cleavage of the C(7)–N(8) bond followed by rotation of the spiropyrrolidiny-
loxindole moiety around the C–S bond and the recyclization involving the nitrogen atom
N(4) of the triazine ring (Scheme 6).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 17 
 

 

diastereomer 6a (3aR*,4′R*,7S*,9aS*). The yields of the rearrangement products 6a and 7a 
were 80 and 92%, respectively (Scheme 5). 

 
Scheme 5. Synthesis of isomeric racemic spiropyrrolidineoxindoles 6a and 7a via rearrangement of 
spiropyrrolidineoxindoles 4a and 3a. 

The presumable rearrangement mechanism is depicted in Scheme 6. We assume that 
the rearrangement occurs as transamidation reaction upon treatment with KOH in meth-
anol [27]. The nucleophilic attack of the methoxide anion onto the carbon atom C(7) results 
in the cleavage of the C(7)–N(8) bond followed by rotation of the spiropyrrolidinyloxin-
dole moiety around the C–S bond and the recyclization involving the nitrogen atom N(4) 
of the triazine ring (Scheme 6). 

 
Scheme 6. The presumable reaction mechanism of the rearrangement of compounds 3a and 4a into 
isomers 7a and 6a. 

2.2. Structural Determination of Compounds 3,4,6,7 
The structures of the compounds obtained were elucidated by spectral methods; sin-

gle crystal X-ray diffraction of 3a, 4e and 7c was also carried out. 
Compounds 3a and 7c crystalize in centrosymmetric space groups P21/c and P1ത, re-

spectively, while 4e structure crystalizes in an acentric orthorhombic space group P212121 
as an inversion twin. Thus, these compounds crystalize as racemic mixtures of two enan-
tiomers. The relative configurations of chiral centers of independent part of compounds 
3a (3aR*,4′R*,6S*,9aS*), 4e (3aR*,4′S*,6R*,9aS*) and 7c (3aR*,4′S*,7R*,9aR*) were unambig-
uously assigned by single crystal X-ray diffraction (Figures 3–5). 

Scheme 6. The presumable reaction mechanism of the rearrangement of compounds 3a and 4a into
isomers 7a and 6a.

2.2. Structural Determination of Compounds 3,4,6,7

The structures of the compounds obtained were elucidated by spectral methods; single
crystal X-ray diffraction of 3a, 4e and 7c was also carried out.
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Compounds 3a and 7c crystalize in centrosymmetric space groups P21/c and P1, re-
spectively, while 4e structure crystalizes in an acentric orthorhombic space group P212121
as an inversion twin. Thus, these compounds crystalize as racemic mixtures of two enan-
tiomers. The relative configurations of chiral centers of independent part of compounds 3a
(3aR*,4′R*,6S*,9aS*), 4e (3aR*,4′S*,6R*,9aS*) and 7c (3aR*,4′S*,7R*,9aR*) were unambigu-
ously assigned by single crystal X-ray diffraction (Figures 3–5).
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Bond lengths and angles in the structures are within normal ranges with some excep-
tions, that was confirmed by the Mogul geometry check [30]. The exceptions are deviations
of bond lengths and angles of the oxo- and thioimidazole cycle from average values for
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similar fragments of the previously published compounds. The list of selected bond lengths
and angles can be seen in Table 1.

Table 1. Selected bond lengths (Å) and angles (◦) for racemates 3a, 4e and 7c.
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Compound 3a 4e 7c

Bond lengths (Å)

A

C-N 1.3682(17)–1.4527(16) 1.356(4)–1.452(4) 1.3477(14)–1.4828(14)
C-C 1.5367(17) 1.520(5) 1.5313(14)

B

N-N 1.4079(14) 1.420(4) 1.4103(13)
C-N 1.3905(16)–1.4664(16) 1.389(4)–1.475(5) 1.4046(13)–1.4832(12)
C=N 1.2601(16) 1.270(4) 1.2748(13)

C

S-C 1.7557(12)–1.8187(12) 1.755(3)–1.827(3) 1.7637(10)–1.8254(10)
C-N 1.3641(15) 1.362(4) 1.3706(13)
C-C 1.5241(17) 1.525(5) 1.5297(14)

D

C-N 1.4649(16)–1.4717(16) 1.452(5)–1.468(5) 1.4660(14)–1.4720(14)

C-C 1.5364(16)–1.5517(17) 1.545(5)–1.552(5) 1.5319(14)–1.5728(14)

E

C-N 1.3637(16)–1.3993(17) 1.355(4)–1.410(4) 1.3632(13)–1.4097(13)

C-C 1.3994(17)–1.5446(17) 1.385(5)–1.547(5) 1.3999(14)–1.5505(14)

Dihedral angles between two spiro-jointed cycles (◦)

CD 89.1(1) 89.1(3) 89.0(1)

DE 89.5(1) 86.3(3) 88.3(1)

Torsion angles between two adjacent cycles (◦)

AB

N-C-C-N 89.7(1), −150.9(1) 152.8(3), −87.3(3) 149.3(1), −92.8(1)

BC

C-N-C-N −173.6(1) 179.2(3) 157.9(1)

N-N-C-S (3a, 4e)
C-N-C-S (7c) −176.4(1) −179.5(2) 163.2(1)

The five-membered imidazole fragment has an envelope conformation in 3a (with
atom C(2) deviated by 0.46(2) Å) and a twist conformation in 4e and 7c. The bicyclic
thiazolotriazine fragment is almost planar in 3a and 4e with one carbon atom (C(2) and
C(3), respectively) deviated by 0.37(3) and 0.47(3) Å from the mean plane, respectively. In
7c this fragment is significantly twisted with atoms N(3), N(4) and S(2) deviated from the
mean plane of C(3)-C(2)-N(5)-C(5)-C(6) atoms by 0.78(3), 0.34(3) and 0.46(3) Å, respectively.
The five-membered pyrrolidine fragment has an envelope conformation in 3a, 4e and 7c
with atoms C(6), C(6) and C(9) deviated by 0.56(1), 0.57(2) and 0.60(1) Å, respectively. The
bridgehead torsion angle H(2)-C(2)-C(3)-H(3) is in the range 30.03–32.86◦, which addition-
ally characterizes the distortion of the imidazothiazolotriazine fragments. The mean planes
of neighboring spiro-jointed five-membered cycles are practically perpendicular to each
other. The nitrogen atoms N(3) and N(6) are slightly pyramidalized with the sum of bond
angles at these atoms less than 340◦ (Table S2).
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Presence of H(N) atom allows H-bonding for three solids (Figures 3–5). In 3a cen-
trosymmetric dimers are formed by two bifurcated contacts N(3) . . . O(2), N(3) . . . N(6). In
4e and 7c infinite chains are observed. For 4e a solvent methanol acts as a bridge between
two molecules.

The structures of compounds 3a, 3b, 6a and 7b were also confirmed by NMR data
in DMSO solutions using NOESY 2D correlation technique. Hydrogen atoms of alkyl
group at the nitrogen atom N(1) and hydrogen atoms H-4′′, H-5′′ of oxindole fragment
in compounds 3 are spatially close. The presence of cross-peaks of these protons in the
NOESY spectra is characteristic of the anti-diastereomers 3a, 3b. In the NOESY spectra of
anti-diastereomer 6a, correlations between protons of N(1)Me group and H-4′′ of oxindole
fragment, between protons of N(3)Me and N(4)H groups, as well as between protons
H-7′′ and N(1′)Me of oxindole fragment were observed. In the NOESY spectrum of syn-
diastereomer 7b cross-peaks of NMe group and oxindole fragment protons are absent (see
Figure 6 and Supplementary Information).
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Figure 6. Fragment of the NOESY spectrum of anti-diastereomer 3a with correlations of N(1)CH3-
group protons with N(9)H and oxindole fragment H-4′′, H-5′′ protons.

In the spectra of angular structures 4 and 7, downfield shifts of the proton signal of the
NH group from 6.73–7.05 to 7.43–7.66 ppm were observed in comparison with the spectra
of the linear structures 3 and 6. Downfield shifts from 4.59–4.87 to 5.35–5.85 ppm were also
revealed for the signal of one of the bridging protons H(3a) or H(9a) (Figure 7).
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Thus, we obtained two diastereomers of each type of dispirocompounds of linear and
angular structure in individual form and proved their structures and stereochemistry by
spectral methods and single crystal X-ray diffraction.

3. Materials and Methods
3.1. General Information

Melting points were determined in open glass capillaries on a Gallenkamp (Sanyo)
melting point apparatus. IR spectra were recorded on a Bruker ALPHA instrument in KBr
pellets. High resolution mass spectra (HRMS) were measured on a Bruker micrOTOF II
instrument using electrospray ionization (ESI). The measurements were done in a positive
ion mode (interface capillary voltage—4500 V) or in a negative ion mode (3200 V); mass
range from m/z 50 to m/z 3000 Da; external or internal calibration was done with electro-
spray calibrant solution (Fluka). A syringe injection was used for solutions in acetonitrile
or methanol (flow rate 3 mL min−1). Nitrogen was applied as a dry gas; the interface
temperature was set at 180 ◦C. 1H NMR and 13C NMR spectra were recorded on a Bruker
AM300 spectrometer operating at 300.13 MHz and 75.5 MHz, respectively, Bruker DRX 500
spectrometer (500.13 MHz and 125.76 MHz, respectively) and Bruker DRX 600 spectrometer
(Bruker, USA; 600.13 MHz and 150.90 MHz, respectively) using DMSO-d6 as a solvent.
Chemical shifts (δ) are given in ppm from TMS as an internal standard. All reactions were
run in air.

Column chromatography was carried out with silica gel (Acros Silica gel, for column
chromatography, 60 Angstrom pore size, 0.040–0.063 mm) and to monitor the preparative
separations, analytical thin layer chromatography (TLC) was performed at room temper-
ature on pre-coated 0.25 mm thick silica gel 60 F254 aluminum plates 20 × 20 cm Merck,
Darmstadt, Germany. Propanol-2 was used as eluent without preliminary purification.
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The X-ray data collection for samples 3a and 7c were performed on a Bruker APEX
DUO diffractometer equipped with an Apex II CCD detector (graphite monochromator,
ω-scans), and for sample 4e on a Bruker Quest D8 diffractometer equipped with a Photon-
III area-detector (graphite monochromator, shutterless ϕ- andω-scan technique), using Mo
Kα-radiation (λ = 0.71073 Å).

The intensity data were integrated by the Bruker SAINT software package [31] and
were corrected for absorption and decay using the SADABS program [32]. The structures
were solved using the SHELXT program [33] and refined by the full-matrix least-squares
technique against F2

hkl in anisotropic approximation for non-hydrogen atoms with the
SHELXL program [34]. Hydrogen atoms connected to heteroatoms were found from
difference Fourier synthesis and refined isotropically. Other hydrogen atoms were placed
in calculated positions and refined in the riding model with Uiso(H) = 1.5Ueq(Cm) for
methyl groups and 1.2Ueq(Ci) for other carbon atoms to which corresponding H atoms are
bonded. The structure 4e was refined as an inversion twin with calculated BASF parameter
equal to 0.58. The cyclohexyl fragment in 4e was found to be disordered by two positions
with refined relative occupancies 0.68:0.32, ISOR instruction was used for the disordered
atoms. For 4e a SQUEEZE method implemented in the PLATON program [35] was applied
to model the disordered methanol molecule.

Detailed crystallographic information is given in Table S1. CCDC 2215817-2215819 contain
supplementary crystallographic data for this paper. The data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
(accessed on 20 October 2022).

3.2. General Procedure for the Preparation of Dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]
triazine-6,3′-pyrrolidine-4′,3′ ′-indole] 3a–e and 4a–e

Dipolarophile 1a–d (0.5 mmol), paraformaldehyde (0.060 g, 2.0 mmol) and N-alkylglycine
1a,b (2.0 mmol) were charged in a flask and acetonitrile (40 mL) was added. The resulting
suspension was refluxed with stirring for 10–14 h until the red color disappeared. The
solvent was then removed under reduced pressure to afford a solid product. This solid was
dissolved in isopropyl alcohol (10 mL) and separated via column chromatography using
isopropyl alcohol as eluent. Anti-diastereomers 3a–e have a retention factor Rf = 0.20–0.39,
syn-diastereomers 4a–e have a retention factor Rf = 0.43–0.60.

(3aR*,4′R*,6S*,9aS*)-1,1′,1′′,3-Tetramethyl-3,3a,9,9a-tetrahydro-7H-dispiro[imidazo
[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,7(1H)-trione (3a).
Yield 95 mg (43%); Rf = 0.21; white solid; mp: 280–282 ◦C. IR (KBr): ν 3414 (NH), 3065,
3055 (ArH), 2936, 2861 (Alk), 1700, 1653, 1644, 1611 (C=O, C=N) cm−1. 1H NMR (500 MHz,
DMSO-d6): δ 2.45 (s, 3H, NCH3), 2.49 (s, 3H, 1′-NCH3), 2.59 (s, 3H, NCH3), 3.11 (d,
J = 10.2 Hz, 1H, CH2), 3.14 (s, 3H, 1′ ′-NCH3), 3.40 (d, J = 10.2 Hz, 1H, CH2), 3.48 (d,
J = 9.9 Hz, 1H, CH2), 3.74 (d, J = 10.5 Hz, 1H, CH2), 4.56–4.60 (m, 2H, 3a-H, 9a-H), 6.75 (d,
J = 1.8 Hz, 1H, 9-NH), 6.98–7.03 (m, 2H, 5′ ′-H, 7′ ′-H), 7.09 (d, J = 7.2 Hz, 1H, 4′ ′-H), 7.34 (t,
J = 6.9 Hz, 1H, 6′ ′-H). 13C NMR (75 MHz, DMSO-d6): δ 26.07, 26.64, 27.54 (1,1′ ′,3-NCH3),
42.03 (1′-NCH3), 60.04, 60.20 (C-3′, C-3′ ′), 61.89, 63.96 (C-2′, C-5′), 64.73, 65.54 (C-3a, C-9a),
109.12 (C-7′ ′), 122.54, 123.14, 123.88, 129.54 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 144.41 (C-7a′ ′), 148.60
(4a-C=N), 158.26 (2-C=O), 168.50 (7-C=O), 176.12 (2′ ′-C=O). HRMS (ESI): Calculated for
C20H23N7O3S [M + H]+: 442.1647, Found: 442.1656.

(3aR*,4′R*,6S*,9aS*)-1,3-Diethyl-1′,1′′-dimethyl-3,3a,9,9a-tetrahydro-7H-dispiro[imidazo
[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,7(1H)-trione (3b). Yield
73 mg (31%); Rf = 0.24; white solid; mp: 252–254 ◦C. IR (KBr): ν 3245, 3163 (NH), 3063,
3015 (ArH), 2967, 2873, 2876 (Alk), 1756, 1676, 1682, 1635 (C=O, C=N) cm−1. 1H NMR
(500 MHz, DMSO-d6): δ 0.88 (t, J = 6.9 Hz, 3H, CH3), 1.01 (t, J = 7.2 Hz, 3H, CH3), 2.48 (s,
3H, 1′-NCH3), 2.85–2.99 (m, 3H, NCH2), 3.10 (d, J = 10.2 Hz, CH2), 3.13 (s, 3H, 1′ ′-NCH3),
3.16–3.23 (m, 1H, NCH2), 3.41 (d, J = 10.5 Hz, 1H, CH2), 3.50 (d, J = 10.1 Hz, 1H, CH2), 3.73
(d, J = 10.4 Hz, 1H, CH2), 4.68 (d, J = 5.8 Hz, 1H, 3a-H), 4.72 (d, J = 5.6 Hz, 1H, 9a-H), 6.73 (s,
1H, 9-NH), 6.96–7.02 (m, 2H, 5′ ′-H, 7′ ′-H), 7.13 (d, J = 7.4 Hz, 1H, 4′ ′-H), 7.33 (t, J = 7.7 Hz,
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1H, 6′ ′-H). 13C NMR (150 MHz, DMSO-d6): δ 13.43, 14.45 (2CH3), 27.28 (1′ ′-NCH3), 35.00,
35.85 (1,3-NCH2), 43.24 (1′-NCH3), 60.98, 61.56 (C-3′, C-3′ ′), 63.37 (C-2′, C-5′), 64.39, 65.88
(C-3a, C-9a), 110.28 (C-7′ ′), 123.89, 124.58, 125.58, 130.69 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 145.62
(4a-C=N), 149.93 (C-7a′ ′), 158.58 (2-C=O), 169.61 (7-C=O), 177.43 (2′ ′-C=O). HRMS (ESI):
Calculated for C22H27N7O3S [M + H]+: 470.1974, Found: 470.1969.

(3aR*,4′S*,6R*,9aR*)-1,1′,1′′,3-Tetramethyl-2-thioxo-1,2,3,3a,9,9a-hexahydro-7H-dispro
[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2′′,7-dione (3c).
Yield 80 mg (35%); Rf = 0.20; white solid; mp: 228–230 ◦C. IR (KBr): ν 3513 (NH), 3024
(ArH), 2966, 2927, 2849 (Alk), 1733, 1708, 1633, 1615 (C=O, C=N) cm−1. 1H NMR (300 MHz,
DMSO-d6): δ 2.47 (s, 3H, 1′-NCH3), 2.89 (s, 3H, NCH3), 2.99 (s, 3H, NCH3), 3.10–3.14 (m,
4H, 1′ ′-NCH3, CH2), 3.37 (d, J = 10.8 Hz, 1H, CH2), 3.46 (d, J = 9.9 Hz, 1H, CH2), 3.70
(d, J = 10.5 Hz, 1H, CH2), 4.82–4.89 (m, 2H, 3a-H, 9a-H), 7.03–7.07 (m, 3H, 5′ ′-H, 7′ ′-H,
9-NH), 7.17 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.37 (t, J = 7.5 Hz, 1H, 6′ ′-H). 13C NMR (75 MHz,
DMSO-d6): δ 26.07 (1′ ′-NCH3), 30.80, 31.05 (1,3-NCH3), 41.92 (1′-NCH3), 60.23, 60.43 (C-3′,
C-3′ ′), 61.60, 63.02 (C-2′, C-5′), 66.79, 67.84 (C-3a, C-9a), 108.96 (C-7′ ′), 122.98, 123.11, 124.27,
129.65 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 144.53 (C-7a′ ′), 149.30 (4a-C=N), 167.82 (7-C=O), 175.96
(2′ ′-C=O), 182.69 (2-C=S). HRMS (ESI): Calculated for C20H23N7O2S2 [M + H]+: 458.1427,
Found: 458.1427.

(3aR*,4′S*,6R*,9aR*)-1,3-Diethyl-1′,1′′-dimethyl-2-thioxo-1,2,3,3a,9,9a-hexahydro-7H-
dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2′′,7-dione
(3d). Yield 80 mg (33%); Rf = 0.25; white solid; mp: 155–157 ◦C. IR (KBr): ν 3433 (NH),
3233 (ArH), 2973, 2939, 2876 (Alk), 1707, 1641, 1613 (C=O, C=N) cm−1. 1H NMR (300 MHz,
DMSO-d6) δ 0.92 (t, J = 7.0 Hz, 3H, CH3), 1.07 (t, J = 7.0 Hz, 3H, CH3), 2.49 (s, 3H, 1′-NCH3),
3.10–3.32 (m, 6H, 1′ ′-NCH3, CH2), 3.41–3.51 (m, 3H, CH2), 3.71–3.81 (m, 2H, CH2), 4.88
(d, J = 6.7 Hz, 1H, 3a-H), 5.03 (dd, J = 6.7, 2.4 Hz, 1H, 9a-H), 6.85 (d, J = 2.3 Hz, 1H,
9-NH), 6.95–7.02 (m, 2H, 5′ ′-H, 7′ ′-H), 7.12 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.33 (t, J = 7.6 Hz,
1H, 6′ ′-H). 13C NMR (75 MHz, DMSO-d6): δ 11.63, 12.84 (2CH3), 26.07 (1′ ′-NCH3), 37.63,
37.88 (1,3-NCH2), 42.02 (1′-NCH3), 59.70, 60.33 (C-3′, C-3′ ′), 62.06, 63.82, 64.56, 65.84 (2CH2,
C-3a, C-9a), 109.09 (C-7′ ′), 122.74, 123.20, 124.28, 129.51 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 144.34
(4a-C=N), 149.99 (C-7a′ ′), 168.24 (7-C=O), 176.16 (2′ ′-C=O), 180.72 (2-C=S). HRMS (ESI):
Calculated for C22H27N7O2S2 [M + H]+: 486.1729, Found: 486.1740.

(3aR*,4′R*,6S*,9aS*)-1′-Cyclohexyl-9-((cyclohexyl(methyl)amino)methyl)-1,1′′,3-trimethyl-
3,3a,9,9a-tetrahydro-7H-dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′

-indoline]-2,2′′,7(1H)-trione (3e). Yield 110 mg (35%); Rf = 0.39; white solid; mp: 179–181 ◦C.
IR (KBr): ν 2930, 2854 (Alk), 1709, 1641, 1610 (C=O, C=N) cm−1. 1H NMR (300 MHz,
DMSO-d6): δ 1.14–1.28 (m, 10H, Cy), 1.52–1.83 (m, 10H, Cy), 2.36–2.41 (m, 4H, NCH3, Cy),
2.47 (s, 3H, NCH3), 2.60–2.63 (m, 4H, NCH3, Cy), 3.15 (s, 3H, 1′ ′-NCH3), 3.20 (d, J = 9.9 Hz,
1H, CH2), 3.47–3.57 (m, 2H, CH2), 3.72 (d, J = 12.7 Hz, 1H, 9-NCH2), 3.79 (d, J = 10.0 Hz, 1H,
CH2), 4.05 (d, J = 12.7 Hz, 1H, 9-NCH2), 4.70 (d, J = 5.8 Hz, 1H, 9a-H), 4.76 (d, J = 5.7 Hz,
1H, 3a-H), 6.99–7.05 (m, 2H, 5′ ′-H, 7′ ′-H), 7.11 (d, J = 7.4 Hz, 1H, 4′ ′-H), 7.35 (t, J = 7.6 Hz,
1H, 6′ ′-H). 13C NMR (75 MHz, DMSO-d6): δ 23.78, 23.93, 25.49, 25.59, 26.01, 26.61, 27.41,
28.26, 28.92, 30.88, 31.31, 36.23 (4NCH3, Cy), 57.40, 58.80, 59.29, 59.74, 60.17, 62.06, 63.46,
68.70, 72.42 (C-2′, C-3′, C-3′ ′, C-5′, C-3a, C-9a, 9-NCH2, 2Cy), 109.00 (C-7′ ′), 122.43, 123.33,
124.09, 129.47 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 144.41 (C-7a′ ′), 147.85 (4a-C=N), 157.80 (2-C=O),
167.59 (7-C=O), 175.97 (2′ ′-C=O). HRMS (ESI): Exact mass calcd for C33H46N8O3S [M + H]+:
635.3486, Found: 635.3497.

(3aR*,4′S*,6R*,9aS*)-1,1′,1′′,3-Tetramethyl-3,3a,9,9a-tetrahydro-7H-dispiro[imidazo
[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,7(1H)-trione (4a).
Yield 92 mg (42%); Rf = 0.53; white solid; mp: 164–166 ◦C. IR (KBr): ν 3468, 3188 (NH),
3053, 3026 (ArH), 2934, 2854 (Alk), 1716, 1700, 1644 (C=O, C=N) cm−1. 1H NMR (500 MHz,
DMSO-d6): δ 2.47 (s, 3H, 1′-NCH3), 2.57 (s, 3H, NCH3), 2.64 (s, 3H, NCH3), 3.11 (d,
J = 10.2 Hz, 1H, CH2), 3.14 (s, 3H, 1′ ′-NCH3), 3.40 (d, J = 10.7 Hz, 1H, CH2), 3.47 (d,
J = 10.2 Hz, 1H, CH2), 3.71 (d, J = 10.7 Hz, 1H, CH2), 4.52 (dd, J = 5.7, 2.5 Hz, 1H, 9a-H), 4.60
(d, J = 5.8 Hz, 1H, 3a-H), 6.83 (d, J = 2.1 Hz, 1H, 9-NH), 7.05–7.06 (m, 2H, 5′ ′-H, 7′ ′-H), 7.17
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(d, J = 7.4 Hz, 1H, 4′ ′-H), 7.37 (t, J = 7.6 Hz, 1H, 6′ ′-H). 13C NMR (75 MHz, DMSO-d6): δ
26.07, 26.71, 27.69 (1,1′ ′,3-NCH3), 41.96 (1′-NCH3), 60.42, 61.67, 63.20 (C-2′, C-3′, C-3′ ′, C-5′),
65.03, 65.64 (C-3a, C-9a), 108.96 (C-7′ ′), 123.06, 123.10, 124.29, 129.66 (C-3a′ ′, C-4′ ′, C-5′ ′,
C-6′ ′), 144.58 (C-7a′ ′), 148.24 (4a-C=N), 158.62 (2-C=O), 167.97 (7-C=O), 176.05 (2′ ′-C=O).
HRMS (ESI): Calculated for C20H23N7O3S [M + H]+: 442.1665, Found: 442.1656.

(3aR*,4′S*,6R*,9aS*)-1,3-Diethyl-1′,1′′-dimethyl-3,3a,9,9a-tetrahydro-7H-dispiro[imidazo
[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,7(1H)-trione (4b).
Yield 70 mg (30%); Rf = 0.60; white solid; mp: 217–219 ◦C. IR (KBr): ν 3495, 3175 (NH), 3057
(ArH), 2980, 2959, 2935, 2898, 2874 (Alk), 1738, 1709, 1693, 1634, 161 (C=O, C=N) cm−1.
1H NMR (500 MHz, DMSO-d6): δ 0.95 (t, J = 7.1 Hz, 3H, CH3), 1.04 (t, J = 7.2 Hz, 3H,
CH3), 2.47 (s, 3H, 1′-NCH3), 2.93–3.07 (m, 2H, NCH2), 3.10–3.17 (m, 5H, 1′ ′-NCH3, CH2,
NCH2), 3.21–3.30 (m, 2H, CH2, NCH2), 3.49 (d, J = 10.2 Hz, 1H, CH2), 3.73 (d, J = 10.6 Hz,
1H, CH2), 4.63–4.68 (m, 2H, 3a-H, 9a-H), 6.85 (d, J = 2.2 Hz, 1H, 9-NH), 7.04–7.07 (m, 2H,
5′ ′-H, 7′ ′-H), 7.18 (d, J = 7.3 Hz, 1H, 4′ ′-H), 7.37 (t, J = 7.7 Hz, 1H, 6′ ′-H). 13C NMR (125
MHz, DMSO-d6): δ 13.22, 13.28 (2CH3), 26.15 (1′ ′-NCH3), 34.25, 35.29 (1,3-NCH2), 42.07
(1′-NCH3), 60.36, 60.57 (C-3′, C-3′ ′), 61.76, 63.00, 63.53, 64.35 (C-2′, C-3a, C-5′, C-9a), 109.05
(C-7′ ′), 123.11, 123.20, 124.45, 129.75 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 144.69 (4a-C=N), 148.17
(C-7a′ ′), 157.84 (2-C=O), 168.00 (7-C=O), 176.14 (2′ ′-C=O). HRMS (ESI): Calculated for
C22H27N7O3S [M + H]+: 470.1965, Found: 470.1969.

(3aR*,4′R*,6S*,9aR*)-1,1′,1′′,3-Tetramethyl-2-thioxo-1,2,3,3a,9,9a-hexahydro-7H-dispiro
[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2′′,7-dione (4c).
Yield 87 m (38%); Rf = 0.43; white solid; mp: 273–275 ◦C. IR (KBr): ν 3399 (NH), 3125
(ArH), 2936, 2921, 2855 (Alk), 1726, 1707, 1603, 1609 (C=O, C=N) cm−1. 1H NMR (300 MHz,
DMSO-d6): δ 2.51 (s, 3H, 1′-NCH3), 2.79 (s, 3H, NCH3), 2.94 (s, 3H, NCH3), 3.12–3.16 (m,
4H, CH2, 1′ ′-NCH3), 3.42 (d, J = 10.5 Hz, 1H, CH2), 3.49 (d, J = 10.2 Hz, 1H, CH2), 3.75
(d, J = 10.5 Hz, 1H, CH2), 4.85 (d, J = 6.3 Hz, 1H, 3a-H), 4.92 (d, J = 6.3 Hz, 1H, 9a-H),
6.95 (s, 1H, 9-NH), 7.02–7.11 (m, 3H, 4′ ′-H, 5′ ′-H, 7′ ′-H), 7.35 (t, J = 7.5 Hz, 1H, 6′ ′-H). 13C
NMR (75 MHz, DMSO-d6): δ 26.06 (1′ ′-NCH3), 30.62, 30.95 (1,3-NCH3), 41.98 (1′-NCH3),
59.98, 60.15 (C-3′, C-3′ ′), 61.80, 63.88 (C-2′, C-5′), 66.41, 67.88 (C-3a, C-9a), 109.11 (C-7′ ′),
122.62, 123.01, 123.72, 129.54 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 144.34 (C-7a′ ′), 149.80 (4a-C=N),
168.35 (7-C=O), 176.05 (2′ ′-C=O), 182.36 (2-C=S). HRMS (ESI): Calculated for C20H23N7O2S2
[M + H]+: 458.1426, Found: 458.1427.

(3aR*,4′R*,6S*,9aR*)-1,3-Diethyl-1′,1′′-dimethyl-2-thioxo-1,2,3,3a,9,9a-hexahydro-7H-dispiro
[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2′′,7-dione (4d).
Yield 73 mg (30%); Rf = 0.54; white solid; mp: 224–226 ◦C. IR (KBr): ν 3433 (NH), 3261,
3210 (ArH), 2969, 2932, 2858 (Alk), 1728, 1701, 1641, 1612 (C=O, C=N) cm−1. 1H NMR
(300 MHz, DMSO-d6): δ 0.99 (t, J = 6.9 Hz, 3H, CH3), 1.11 (t, J = 7.1 Hz, 3H, CH3), 2.46 (s,
3H, 1′-NCH3), 3.10–3.14 (m, 4H, 1′ ′-NCH3, CH2), 3.19–3.34 (m, 2H, NCH2, CH2), 3.41–3.56
(m, 3H, NCH2, CH2), 3.71–3.83 (m, 2H, NCH2, CH2), 4.88 (d, J = 6.6 Hz, 1H, 3a-H), 4.96
(dd, J = 6.7, 2.7 Hz, 1H, 9a-H), 7.03–7.07 (m, 3H, 5′ ′-H, 7′ ′-H, 9-NH), 7.18 (d, J = 7.6 Hz, 1H,
4′ ′-H), 7.37 (t, J = 7.7 Hz, 1H, 6′ ′-H). 13C NMR (75 MHz, DMSO-d6): δ 12.30, 12.92 (2CH3),
26.14 (1′ ′-NCH3), 38.24, 38.34 (1,3-NCH2), 42.04 (1′-NCH3), 60.36 (C-3′, C-3′ ′), 61.67, 63.30
(C-2′, C-5′), 64.73, 66.71 (C-3a, C-9a), 109.06 (C-7′ ′), 123.00, 123.19, 124.43, 129.79 (C-3a′ ′,
C-4′ ′, C-5′ ′, C-6′ ′), 144.62 (4a-C=N), 149.24 (C-7a′ ′), 167.87 (7-C=O), 176.06 (2′ ′-C=O), 181.23
(2-C=S). HRMS (ESI): Calculated for C22H27N7O2S2 [M + H]+: 486.1749, Found: 486.1740.

(3aR*,4′S*,6R*,9aS*)-1′-Cyclohexyl-1,1′′,3-trimethyl-3,3a,9,9a-tetrahydro-7H-dispiro
[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,7(1H)-trione (4e).
Yield 49 mg (24%); Rf = 0.56; white solid; mp: 217–219 ◦C. IR (KBr): ν 3434, 3175 (NH),
2931, 2854 (Alk), 1706, 1638, 1612 (C=O, C=N) cm−1. 1H NMR (300 MHz, DMSO-d6):
δ 1.12–1.24 (m, 5H, Cy), 1.48–1.52 (m, 1H, Cy), 1.61–1.70 (m, 2H, Cy), 1.76–1.81 (m, 2H,
Cy), 2.56–2.59 (m, 4H, NCH3, Cy), 2.65 (s, 3H, NCH3), 3.14 (s, 3H, 1′ ′-NCH3), 3.19 (d,
J = 10.0 Hz, 1H, CH2), 3.42–3.50 (m, 2H, CH2), 3.72 (d, J = 10.3 Hz, 1H, CH2), 4.52 (dd,
J = 5.9, 2.5 Hz, 1H, 9a-H), 4.60 (d, J = 5.8 Hz, 1H, 3a-H), 6.80 (d, J = 2.5 Hz, 1H, 9-NH),
7.02–7.06 (m, 2H, 5′ ′-H, 7′ ′-H), 7.17 (d, J = 7.2 Hz, 1H, 4′ ′-H), 7.36 (t, J = 7.4 Hz, 1H, 6′ ′-H).
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13C NMR (75 MHz, DMSO-d6): δ 24.45, 24.59, 26.15, 26.57, 27.21, 28.26, 31.45, 31.89 (3NCH3,
Cy), 57.77, 59.70, 59.88, 60.10, 61.09, 65.46, 66.14 (C-2′, C-3′, C-3′ ′, C-5′, C-3a, C-9a, Cy),
109.41 (C-7′ ′), 123.50, 123.86, 124.84, 130.11 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 145.11 (C-7a′ ′), 148.85
(4a-C=N), 159.13 (2-C=O), 168.39 (7-C=O), 176.38 (2′ ′-C=O). HRMS (ESI): Calculated for
C25H31N7O3S [M + H]+: 510.2282, Found: 510.2274.

3.3. General Procedure for the Preparation of Dispiro[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]
triazine-7,3′-pyrrolidine-4′,3′′-indole] 6a–e and 7a–e

Method A. Dipolarophile 5a–d (0.5 mmol), paraformaldehyde (0.060 g, 2.0 mmol)
and N-alkylglycine 1a,b (2.0 mmol) were charged in a flask and acetonitrile (40 mL) was
added. The resulting suspension was refluxed with stirring for 10–16 h until the red
color disappeared. The solvent was then removed under reduced pressure to afford a
solid product. This solid was dissolved in isopropyl alcohol (10 mL) and separated via
column chromatography using isopropyl alcohol as eluent. Anti-diastereomers 6a–e have a
retention factor Rf = 0.35–0.54, syn-diastereomers 7a–e have a retention factor Rf = 0.58–0.73.

Method B. To a stirred suspension of compound 3a (0.442 g, 0.1 mmol) or 4a (0.442 g,
0.1 mmol) in refluxing methanol (2 mL), 0.010 mL of 40% aqueous KOH (0.1 mmol) was
added. The resulting mixture was refluxed with stirring for 1 h. After cooling, the precipi-
tate of compounds 7a or 6a was filtered off, washed with methanol and dried.

(3aR*,4′R*,7S*,9aS*)-1,1′,1′′,3-Tetramethyl-1,3a,4,9a-tetrahydro-8H-dispiro[imidazo
[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,8(3H)-trione (6a).
Method A: yield 97 mg (44%); method B: yield 41 mg (92%); Rf = 0.35; white solid; mp:
218–220 ◦C. IR (KBr): ν 3414 (NH), 3429, 3310 (ArH), 2967, 2941, 2853 (Alk), 1727, 1684,
1651 (C=O, C=N) cm−1. 1H NMR (500 MHz, DMSO-d6): δ 2.46 (s, 3H, NCH3), 2.47 (s,
3H, 1′-NCH3), 2.90 (s, 3H, NCH3), 3.10 (d, J = 10.2 Hz, 1H, CH2), 3.13 (s, 3H, 1′ ′-NCH3),
3.44–3.47 (m, 2H, CH2), 3.65 (d, J = 10.6 Hz, 1H, CH2), 4.54 (dd, J = 5.6, 2.0 Hz, 1H, 3a-H),
5.36 (d, J = 5.7 Hz, 1H, 9a-H), 6.98 (t, J = 7.5 Hz, 1H, 5′ ′-H), 7.03 (d, J = 7.8 Hz, 1H, 7′ ′-H),
7.19 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.33 (t, J = 7.7 Hz, 1H, 6′ ′-H), 7.47 (d, J = 1.9 Hz, 1H,
4-NH). 13C NMR (75 MHz, DMSO-d6): δ 26.02, 27.87, 31.62 (1,1′ ′,3-NCH3), 41.88 (1′-NCH3),
60.29, 61.67, 62.54, 63.77, 64.77, 66.24 (C-2′, C-3a, C-3′, C-3′ ′, C-5′, C-9a), 108.88 (C-7′ ′),
122.43, 123.52, 124.66, 129.50 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 134.15 (5a-C=N), 144.42 (C-7a′ ′),
159.25 (2-C=O), 171.97 (8-C=O), 176.25 (2′ ′-C=O). HRMS (ESI): Calculated for C20H23N7O3S
[M + H]+: 442.1655, Found: 442.1656.

(3aR*,4′R*,7S*,9aS*)-1,3-Diethyl-1′,1′′-dimethyl-1,3a,4,9a-tetrahydro-8H-dispiro[imidazo
[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,8(3H)-trione (6b).
Yield 101 mg (43%); Rf = 0.38; white solid; mp: 205–207 ◦C. IR (KBr): ν 3287 (NH), 3070
(ArH), 2972, 2939, 2876 (Alk), 1717, 1655, 1613 (C=O, C=N) cm−1. 1H NMR (500 MHz,
DMSO-d6): δ 0.89 (t, J = 7.1 Hz, 3H, CH3), 1.09 (t, J = 7.0 Hz, 3H, CH3), 2.46 (s, 3H, 1′-NCH3),
2.85–2.90 (m, 1H, NCH2), 3.07–3.14 (m, 6H, 1′ ′-NCH3, CH2, NCH2), 3.43–3.50 (m, 3H, CH2,
NCH2), 3.63 (d, J = 10.5 Hz, 1H, CH2), 4.60 (dd, J = 5.5, 1.9 Hz, 1H, 3a-H), 5.44 (d, J = 5.5 Hz,
1H, 9a-H), 6.98–7.04 (m, 2H, 5′ ′-H, 7′ ′-H), 7.18 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.33 (t, J = 7.7 Hz,
1H, 6′ ′-H), 7.43 (d, J = 1.9 Hz, 1H, 4-NH). 13C NMR (150 MHz, DMSO-d6): δ 13.69, 13.87
(2CH3), 27.27 (1′ ′-NCH3), 35.83, 38.61 (1,3-NCH2), 43.07 (1′-NCH3), 61.56, 62.41, 63.01,
63.88, 64.67, 66.15 (C-2′, C-3a, C-3′, C-3′ ′, C-5′, C-9a), 110.05 (C-7′ ′), 123.80, 124.91, 125.92,
130.68 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 135.19 (5a-C=N), 145.64 (C-7a′ ′), 159.11 (2-C=O), 173.22
(8-C=O), 177.52 (2′ ′-C=O). HRMS (ESI): Calculated for C22H27N7O3S [M + H]+: 470.1967,
Found: 470.1969.

(3aR*,4′R*,7S*,9aR*)-1,1′,1′′,3-Tetramethyl-2-thioxo-1,2,3,3a,4,9a-hexahydro-8H-dispiro
[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2′′,8-dione (6c).
Yield 84 mg (37%); Rf = 0.41; white solid; mp: 228–231 ◦C. IR (KBr): ν 3436 (NH), 3027
(ArH), 2969, 2945, 2916, 2798 (Alk), 1727, 1703, 1653, 1612 (C=O, C=N) cm−1. 1H NMR
(300 MHz, DMSO-d6): δ 2.47 (s, 3H, CH3), 2.78 (s, 3H, CH3), 3.10–3.17 (m, 7H, 2CH3, CH2),
3.45–3.52 (m, 2H, CH2), 3.66 (d, J = 10.4 Hz, 1H, CH2), 4.85 (d, J = 5.9 Hz, 1H, 3a-H), 5.57 (d,
J = 5.6 Hz, 1H, 9a-H), 7.02–7.08 (m, 2H, 5′ ′-H, 7′ ′-H), 7.19 (d, J = 7.2 Hz, 1H, 4′ ′-H), 7.33 (t,
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J = 7.5 Hz, 1H, 6′ ′-H), 7.66 (s, 1H, 4-NH). 13C NMR (75 MHz, DMSO-d6): δ 26.07 (1′ ′-NCH3),
31.46, 35.53 (1,3-NCH3), 41.90 (1′-NCH3), 60.19, 61.76, 62.57, 65.01 (C-2′, C-3′,C-3′ ′, C-5′),
66.71, 67.53 (C-3a), C-9a), 108.95 (C-7′ ′), 122.93, 123.55, 124.69, 129.47 (C-3a′ ′, C-4′ ′, C-5′ ′,
C-6′ ′), 134.68 (5a-C=N), 144.34 (C-7a′ ′), 171.65 (8-C=O), 176.20 (2′ ′-C=O), 184.33 (2-C=S).
HRMS (ESI): Calculated for C20H23N7O2S2 [M + H]+: 458.1427, Found: 458.1427.

(3aS*,3′R*,3′′S*,9aS*)-1,3-Diethyl-1′,1′′-dimethyl-2-thioxo-1,3,3a,4,9,9a-hexahydrodispiro
[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indole]-2′′,8(1′′H)-dione
(6d). Yield 102 mg (42%); Rf = 0.44; white solid; mp: 225–227 ◦C. IR (KBr): ν 3327 (NH),
3069, 3055 (ArH), 2967, 2936, 2884, 2829, 2795 (Alk), 1707, 1640, 1612 (C=O, C=N) cm−1. 1H
NMR (300 MHz, DMSO-d6): δ 0.96 (t, J = 7.0 Hz, 3H, CH3), 1.13 (t, J = 7.0 Hz, 3H, CH3),
2.46 (s, 3H, 1′-NCH3), 3.08–3.26 (m, 6H, 1′ ′-NCH3, NCH2, CH2), 3.42–3.51 (m, 2H, CH2),
3.61–3.66 (m, 2H, CH2, NCH2), 3.93–3.99 (m, 1H, NCH2), 4.85 (d, J = 5.6 Hz, 1H, 3a-H), 5.61
(d, J = 5.4 Hz, 1H, 9a-H), 7.02–7.10 (m, 2H, 5′ ′-H, 7′ ′-H), 7.19 (d, J = 6.9 Hz, 1H, 4′ ′-H), 7.33 (t,
J = 6.3 Hz, 1H, 6′ ′-H), 7.60 (d, J = 1.9 Hz, 1H, 4-NH). 13C NMR (75 MHz, DMSO-d6): δ 11.84,
11.91 (2CH3), 26.07 (1′ ′-NCH3), 38.13, 40.13 (1,3-NCH2), 41.77 (1′-NCH3), 60.26, 61.99, 62.75,
63.76, 64.97, 65.33 (C-2′, C-3′, C-3′ ′, C-3a, C-5′, C-9a), 108.88 (C-7′ ′), 122.95, 123.85, 124.74,
129.41 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 134.28 (5a-C=N), 144.32 (C-7a′ ′), 171.68 (8-C=O), 176.24
(2′ ′-C=O), 182.04 (2-C=S). HRMS (ESI): Calculated for C22H27N7O2S2 [M + H]+: 486.1733,
Found: 486.1740.

(3aR*,4′R*,7S*,9aS*)-1′-Cyclohexyl-1,1′′,3-trimethyl-1,3a,4,9a-tetrahydro-8H-dispiro
[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,8(3H)-trione (6e).
Yield 117 mg (46%); Rf = 0.54; white solid; mp: 244–245 ◦C. IR (KBr): ν 3435, 3306 (NH),
2931, 2854 (Alk), 1711, 1651, 1611, 1577 (C=O, C=N) cm−1. 1H NMR (300 MHz, DMSO-d6):
δ 1.18–1.27 (m, 5H, Cy), 1.49–1.53 (m, 1H, Cy), 1.67–1.71 (m, 2H, Cy), 1.80–1.84 (m, 2H, Cy),
2.49 (s, 3H, NCH3), 2.57–2.60 (m, 1H, Cy), 2.92 (s, 3H, NCH3), 3.15 (s, 3H, 1′ ′-NCH3), 3.19
(d, J = 9.9 Hz, 1H, CH2), 3.50 (d, J = 10.0 Hz, 1H, CH2), 3.59 (d, J = 10.4 Hz, 1H, CH2), 3.68 (d,
J = 10.3 Hz, 1H, CH2), 4.55 (d, J = 4.4 Hz, 1H, 3a-H), 5.38 (d, J = 5.7 Hz, 1H, 9a-H), 6.97–7.05
(m, 2H, 5′ ′-H, 7′ ′-H), 7.23 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.34 (t, J = 7.8 Hz, 1H, 6′ ′-H). 7.47 (s, 1H,
4-NH). 13C NMR (125 MHz, DMSO-d6): δ 23.99, 24.11, 25.74, 26.12, 27.96, 31.05, 31.52, 31.74
(3NCH3, Cy), 57.46, 59.21, 60.60, 60.65, 61.93, 63.88, 66.38 (C-2′, C-3′, C-3′ ′, C-5′, C-3a, C-9a,
Cy), 108.95 (C-7′ ′), 122.52, 123.97, 124.84, 129.58 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 134.42 (5a-C=N),
144.56 (C-7a′ ′), 159.38 (2-C=O), 171.88 (8-C=O), 176.29 (2′ ′-C=O). HRMS (ESI): Calculated
for C25H31N7O3S [M + H]+: 510.2282, Found: 510.2277.

(3aR*,4′S*,7R*,9aS*)-1,1′,1′′,3-Tetramethyl-1,3a,4,9a-tetrahydro-8H-dispiro[imidazo
[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,8(3H)-trione (7a).
Method A: yield 79 mg (36%); method B: yield 35 mg (80%); Rf = 0.58; white solid; mp:
264–266 ◦C. IR (KBr): ν 3357 (NH), 3065, 3025 (ArH), 2966, 2934, 2894, 2851 (Alk), 1736,
1717, 1704, 1646 (C=O, C=N) cm−1. 1H NMR (500 MHz, DMSO-d6): δ 2.49 (s, 3H, NCH3),
2.50 (s, 3H, NCH3), 2.91 (s, 3H, NCH3), 3.10 (d, J = 10.2 Hz, 1H, CH2), 3.14 (s, 3H, 1′ ′-NCH3),
3.41 (d, J = 10.7 Hz, 1H, CH2), 3.45 (d, J = 10.3 Hz, 1H, CH2), 3.66 (d, J = 10.7 Hz, 1H, CH2),
4.59 (d, J = 5.6 Hz, 1H, 3a-H), 5.34 (d, J = 5.6 Hz, 1H, 9a-H), 7.03–7.06 (m, 2H, 5′ ′-H, 7′ ′-H),
7.16 (d, J = 7.4 Hz, 1H, 4′ ′-H), 7.36 (t, J = 7.7 Hz, 1H, 6′ ′-H), 7.45 (s, 1H, 4-NH). 13C NMR
(125 MHz, DMSO-d6): δ 26.16, 27.68, 31.35 (1,1′ ′,3-NCH3), 42.13 (1′-NCH3), 60.44, 61.48,
63.19, 63.67, 65.24, 66.39 (C-2′, C-3a, C-3′, C-3′ ′, C-5′, C-9a), 109.09 (C-7′ ′), 122.85, 123.32,
123.93, 129.76 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 135.13 (5a-C=N), 144.74 (C-7a′ ′), 158.86 (2-C=O),
172.09 (8-C=O), 176.36 (2′ ′-C=O). HRMS (ESI): Calculated for C20H23N7O3S [M + H]+:
442.1643, Found: 442.1656.

(3aR*,4′S*,7R*,9aS*)-1,3-Diethyl-1′,1′′-dimethyl-1,3a,4,9a-tetrahydro-8H-dispiro[imidazo
[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,8(3H)-trione (7b).
Yield 96 mg (41%); Rf = 0.60; white solid; mp: 252–254 ◦C. IR (KBr): ν 3325 (NH), 3093, 3053
(ArH), 2988, 2974, 2966, 2936, 2899, 2865, 2837 (Alk), 1707, 1641, 1611 (C=O, C=N) cm−1.
1H NMR (500 MHz, DMSO-d6): δ 0.91 (t, J = 7.1 Hz, 3H, CH3), 1.13 (t, J = 7.1 Hz, 3H, CH3),
2.49 (s, 3H, 1′-NCH3), 2.91–2.95 (m, 1H, NCH2), 3.09–3.15 (m, 5H, 1′ ′-NCH3, CH2, NCH2),
3.21–3.27 (m, 1H, NCH2), 3.38 (d, J = 10.6 Hz, 1H, CH2), 3.45–3.51 (m, 2H, CH2, NCH2),
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3.67 (d, J = 10.6 Hz, 1H, CH2), 4.68 (d, J = 6.6 Hz, 1H, 3a-H), 5.60 (d, J = 6.6 Hz, 1H, 9a-H),
7.04–7.07 (m, 2H, 5′ ′-H, 7′ ′-H), 7.17 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.35 (t, J = 7.5 Hz, 1H, 6′ ′-H),
7.43 (s, 1H, 4-NH). 13C NMR (75 MHz, DMSO-d6): δ 12.26, 13.61 (2CH3), 26.02 (1′ ′-NCH3),
34.46, 37.97 (1,3-NCH2), 41.96 (1′-NCH3), 60.30. 61.33, 62.80, 63.13, 63.33, 64.27 (C-2′, C-3a,
C-3′, C-3′ ′, C-5′, C-9a), 108.91 (C-7′ ′), 122.72, 123.20, 123.85, 129.60 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′),
134.71 (5a-C=N), 144.63 (C-7a′ ′), 157.75 (2-C=O), 171.73 (8-C=O), 176.25 (2′ ′-C=O). HRMS
(ESI): Calculated for C22H27N7O3S [M + H]+: 470.1960, Found: 470.1969.

(3aR*,4′S*,7R*,9aR*)-1,1′,1′′,3-Tetramethyl-2-thioxo-1,2,3,3a,4,9a-hexahydro-8H-dispiro
[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2′′,8-dione (7c).
Yield 101 mg (42%); Rf = 0.66; white solid; mp: 224–226 ◦C. IR (KBr): ν 3398 (NH), 3112,
3056 (ArH), 2969, 2930, 2838, 2785 (Alk), 1711, 1698, 1636, 1609 (C=O, C=N) cm−1. 1H NMR
(300 MHz, DMSO-d6): δ 2.50 (s, 3H, 1′-NCH3), 2.81 (s, 3H, NCH3), 3.10–3.15 (m, 4H, CH2,
NCH3), 3.22 (s, 3H, NCH3), 3.38–3.47 (m, 2H, CH2), 3.68 (d, J = 10.7 Hz, 1H, CH2), 4.98 (d,
J = 6.7 Hz, 1H, 3a-H), 5.82 (d, J = 6.9 Hz, 1H, 9a-H), 7.03–7.08 (m, 2H, 5′ ′-H, 7′ ′-H), 7.17 (d,
J = 7.7 Hz, 1H, 4′ ′-H), 7.37 (t, J = 7.7 Hz, 1H, 6′ ′-H), 7.66 (s, 1H, 4-NH). 13C NMR (150 MHz,
DMSO-d6): δ 27.29 (1′ ′-NCH3), 32.17, 36.39 (1,3-NCH3), 43.21 (1′-NCH3), 61.54, 62.53,
64.38, 64.78, 68.95, 69.58 (C-2′, C-3′, C-3′ ′, C-3a, C-9a), 110.22 (C-7′ ′), 124.00, 124.34, 125.04,
130.92 (C-3a′ ′, C-4′ ′, C-5′ ′, C=6′ ′), 137.15 (5a-C=N), 145.86 (C-7a′ ′), 172.81 (8-C=O), 177.41
(2′ ′-C=O), 184.61 (2-C=S). HRMS (ESI): Calculated for C20H23N7O2S2 [M + H]+:458.1421,
Found: 458.1427.

(3aR*,4′S*,7R*,9aR*)-1,3-Diethyl-1′,1′′-dimethyl-2-thioxo-1,2,3,3a,4,9a-hexahydro-8H-
dispiro[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2′′,8-dione (7d).
Yield 107 mg (44%); Rf = 0.67; white solid; mp: 148–150 ◦C. IR (KBr): ν 3311 (NH), 3056
(ArH), 2971, 2935, 2867, 2849, 2796 (Alk), 1709, 1648, 1612 (C=O, C=N) cm−1. 1H NMR
(300 MHz, DMSO-d6): δ 0.97 (t, J = 6.6 Hz, 3H, CH3), 1.19 (t, J = 6.9 Hz, 3H, CH3), 2.50
(s, 3H, 1′-NCH3), 3.09–3.15 (m, 4H, 1′ ′-NCH3, CH2), 3.19–3.29 (m, 1H, CH2), 3.37–3.61
(m, 4H, CH2, NCH2), 3.67 (d, J = 10.5 Hz, 1H, CH2), 3.97–4.04 (m, 1H, NCH2), 5.01 (d,
J = 6.9 Hz, 1H, 3a-H), 5.85 (d, J = 6.9 Hz, 1H, 9a-H), 7.04–7.08 (m, 2H, 5′ ′-H, 7′ ′-H), 7.17
(d, J = 7.5 Hz, 1H, 4′ ′-H), 7.37 (t, J = 7.5 Hz, 1H, 6′ ′-H), 7.64 (d, J = 1.9 Hz, 1H, 4-NH).
13C NMR (75 MHz, DMSO-d6): δ 11.49, 13.08 (2CH3), 26.06 (1′ ′-NCH3), 37.80, 41.24, 41.97
(1,3-NCH2, 1′-NCH3), 60.30, 61.25, 63.21, 65.57, 66.34 (C-2′, C-3′, C-3′ ′, C-3a, C-5′, C-9a),
108.97 (C-7′ ′), 122.81, 123.08, 123.83, 129.67 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 135.47 (5a-C=N),
144.63 (C-7a′ ′), 171.35 (8-C=O), 176.18 (2′ ′-C=O), 181.83 (2-C=S). HRMS (ESI): Calculated
for C22H27N7O2S2 [M + H]+: 486.1737, Found: 486.1740.

(3aR*,4′S*,7R*,9aS*)-1′-Cyclohexyl-1,1′′,3-trimethyl-1,3a,4,9a-tetrahydro-8H-dispiro
[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indoline]-2,2′′,8(3H)-trione (7e).
Yield 84 mg (33%); Rf = 0.73; white solid; mp: 155–156 ◦C. IR (KBr): ν 3371 (NH), 2933,
2852 (Alk), 1729, 1699, 1639, 1612 (C=O, C=N) cm−1. 1H NMR (300 MHz, DMSO-d6): δ
1.19–1.27 (m, 5H, Cy), 1.50–1.54 (m, 1H, Cy), 1.67–1.71 (m, 2H, Cy), 1.79–1.83 (m, 2H, Cy),
2.52 (s, 3H, NCH3), 2.59–2.63 (m, 1H, Cy), 2.92 (s, 3H, NCH3), 3.16 (s, 3H, 1′ ′-NCH3), 3.20
(d, J = 10.5 Hz, 1H, CH2), 3.45–3.52 (m, 2H, CH2), 3.69 (d, J = 10.5 Hz, 1H, CH2), 3.68 (d,
J = 10.3 Hz, 1H, CH2), 4.61 (d, J = 6.4 Hz, 1H, 3a-H), 5.55 (d, J = 6.4 Hz, 1H, 9a-H), 7.03–7.08
(m, 2H, 5′ ′-H, 7′ ′-H), 7.19 (d, J = 7.5 Hz, 1H, 4′ ′-H), 7.37 (t, J = 7.6 Hz, 1H, 6′ ′-H), 7.46 (s, 1H,
4-NH). 13C NMR (75 MHz, DMSO-d6): δ 23.90, 23.99, 25.65, 26.04, 27.57, 30.88, 31.24, 31.34
(3NCH3, Cy), 56.92, 59.26, 59.56, 60.26, 62.28, 65.13, 66.24 (C-2′, C-3′, C-3′ ′, C-5′, C-3a, C-9a,
Cy), 108.91 (C-7′ ′), 122.68, 123.60, 123.97, 129.59 (C-3a′ ′, C-4′ ′, C-5′ ′, C-6′ ′), 135.15 (5a-C=N),
144.67 (C-7a′ ′), 158.76 (2-C=O), 171.81 (8-C=O), 176.13 (2′ ′-C=O). HRMS (ESI): Calculated
for C25H31N7O3S [M + H]+: 510.2282, Found: 510.2284.

4. Conclusions

In the present study, the synthesis of two types of isomeric dispirocompounds based on
imidazothiazolotriazine and pyrrolidineoxindole, differing in the linear and angular struc-
ture of imidazothiazolotriazine fragment, was demonstrated. This article has shown that the
1,3-dipolar cycloaddition of azomethine ylides generated in situ from paraformaldehyde
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and N-alkylglycine derivatives to corresponding oxindolylidene derivatives of imidazoth-
iazolotriazine allows the formation of the desired spirooxindoles of both typs in good
yields but low diastereoselectivity. Meanwhile, all individual diastereomers were isolated
chromatographically. Hitherto unavailable angular dispiro[imidazo[4,5-e]thiazolo[2,3-
c][1,2,4]triazine-7,3′-pyrrolidine-4′,3′′-indolines] can also be prepared via rearrangement of
linear dispiro[imidazo[4,5-e]thiazolo- [3,2-b][1,2,4]triazine-6,3′-pyrrolidine-4′,3′′-indolines]
upon treatment with KOH with high yield and selectivity.

Supplementary Materials: The following supporting information can be downloaded at: https://
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