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Abstract: In recent years, long noncoding RNAs (lncRNAs) have received increasing attention and
have been reported to be associated with various genetic abnormalities. However, the functions
of many lncRNAs, including those of long exonic noncoding RNAs (lencRNAs), have not yet
been elucidated. Here, we used a novel tethering luciferase assay to analyze the transcriptional
regulatory functions of five lencRNAs that are upregulated in cancer. We found that the lencRNA
PRKDC-210 interacts with MED12, a component of the CDK8 complex, to regulate the transcription
of several genes. The transcriptional activation ability of PRKDC-210 was abolished in siRNA-treated
CDK8-depleted cells. We also confirmed the enrichment of PRKDC-210 on RNA polymerase II.
RNA-seq analysis of cells in which PRKDC-210 or PRKDC mRNA was knocked down using antisense
oligonucleotides revealed that PRKDC-210 can affect the expression levels of genes related to fatty
acid metabolism. Finally, we used a ChIRP assay to examine PRKDC-210-enriched sites in the genome.
Overall, our findings demonstrate that the lencRNA PRKDC-210 promotes transcription through the
CDK8 complex pathway at the transcription initiation site. We propose that PRKDC-210 can affect
the transcription of adjacent genes after its transcription and splicing.

Keywords: cancer; MED12; CDK8; tethering luciferase assay; transcription regulation; directed
affect; lncRNA

1. Introduction

Noncoding RNAs (ncRNAs) are ubiquitous in eukaryotes, and those larger than
200 nt are classified as long noncoding RNAs (lncRNAs) [1,2]. According to their genomic
position, lncRNAs are further classified into five types, namely, intronic, exonic, intergenic,
antisense, and overlay, although the vast majority of lncRNA research has focused on long
intergenic noncoding RNAs (lincRNAs) [3–5]. In recent years, lncRNAs have been reported
to perform various functions in cells through RNA–protein interactions [6,7] and are also
associated with genetic abnormalities in diseases such as cancer [8,9].

Long exonic noncoding RNAs (lencRNAs), which contain retained introns, have not
received much attention to date. As they are splice variants of mRNAs, detection and recog-
nition of lencRNAs are difficult; however, advancements in RNA detection technologies
have revealed that lencRNAs are indeed retained in cells [10]. Consequently, we assumed
that lencRNAs have specific cellular functions [11,12]. Recent studies have shown that sev-
eral ncRNAs are associated with cancer [13,14]. In addition, a number of lncRNAs interact
with transcriptional regulatory proteins to regulate gene transcription [6,7,11,15]. There-
fore, we postulated that, after being spliced, lencRNAs may also affect the transcription of
adjacent genes, resulting in abnormal gene expression in some genetic disorders.

Here, we designed a tethering luciferase assay system to detect the effects of lencRNAs
on gene transcription. This system was used to examine the abilities of five selected
lencRNAs (BAP1-206, PRKDC-210, TP53-215, PIK3R1-206, and PIK3R1-209), all of which are
expressed at high levels in cancer cells [10]. Mediator complex subunit 12 (MED12) has been
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reported as a potential biomarker of cancer [16] and is a constituent of the CDK8 complex,
which is involved in RNA pol II-mediated transcription. A past report demonstrated that
MED12 interacts with ncRNA-A7 to upregulate gene transcription [17].

The results of the tethering luciferase assay and RNA immunoprecipitation (RIP)-qPCR
assays revealed that the lencRNA PRKDC-210 interacts with MED12 to drive gene tran-
scription, and this effect was abolished in cells lacking CDK8. The effects of endogenous
PRKDC-210 on gene transcription were also examined using RNA-knockdown, RNA-
sequencing (RNA-seq), and chromatin isolation by RNA purification (ChIRP) assays.

2. Results
2.1. Tethering Luciferase Assay System

To examine whether lencRNAs can affect gene transcription, we designed a novel
screening technique called the tethering luciferase assay system (Figure 1a). This system
is divided into three parts: a lencRNA bound to MS2 RNA (MS2-lencRNA), a fusion
protein comprising the MS2 coat protein (MCP) and the GAL4 DNA binding domain
(MCP-GAL4DBD), and a luciferase reporter gene containing a GAL binding site. The
lencRNA is tethered upstream of the luciferase gene by the interaction between MS2 and
MCP-GAL4DBD, to construct an enhancer-like structure or cofactor recruiting structure. A
TATA box is used as the promoter for the reporter gene because only a few factors bind to
this type of element [18,19], which makes it easier to evaluate the role of the lencRNA in
transcriptional regulation. The GAL4DBD protein (without MCP), which was unable to
tether the lencRNA upstream of the luciferase gene, was used as a nontethering control.
Using this system, we anticipated that the tethered lencRNA would be enriched upstream
of the luciferase gene, thereby enabling it to regulate transcription of the reporter gene.
By contrast, in the nontethering control, the lencRNA would be expected to float in cells
and have little effect on transcription of the luciferase gene. We used HEK293T cells for all
tethering luciferase assays because HEK293T is highly transfected and easy to culture.

2.2. Identification of Long Exonic Non-Coding RNA with Transcriptional Regulatory Functions

We selected five genes with high intron retention in cancer and selected their lencRNA
variant from the gene bank (http://asia.ensembl.org/index.html, accessed on 2 October
2019). The BAP1-206, PRKDC-210, TP53-215, PIK3R1-206, and PIK3R1-209 lencRNAs were
inserted into plasmids containing MS2 RNA sequences, and the empty MS2 plasmid was
used as a negative control. Plasmids harboring the three components of the tethering
luciferase assay system were then co-transfected into HEK293T cells, and relative luciferase
activities were examined in cells expressing the tethered or nontethered lencRNAs. The
relative luciferase activity in cells expressing tethered PRKDC-210 or PIK3R1-209 was
significantly higher than that in cells expressing the nontethered versions of these lencRNAs
(Figure 1b). Moreover, compared with that in negative control cells, the luciferase mRNA
level was higher in cells expressing BAP1-206, PRKDC-210, PIK3R1-206, or PIK3R1-209
(Figure 1c). The enhancement level of mRNA detection was generally higher than that of
the luciferase assay. We guessed that the difference should be caused by different detection
objects and methods, as well as uncontrollable factors in the process of transcription to
translation. Moreover, the higher transcription levels confirmed what we suspected, namely,
that the regulatory function of these lencRNAs occurs at the transcription level.

Next, we performed a RIP-qPCR assay of human breast cancer MCF7 cells using an
anti-MED12 antibody, because these lencRNAs are present in relatively high levels in
human breast cancer cells [10]. The results indicated that PRKDC-210 can interact with
MED12 or CDK8 complex (Figure 1d). Because the TATA promoter is not regulated by
MED12 or its complexes, we hypothesized that PRKDC-210 promotes the enrichment of
MED12 or its complex, thereby enabling it to affect RNA pol II activity. Therefore, we
focused our study on the lencRNA PRKDC-210.

http://asia.ensembl.org/index.html
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empty MS2 plasmid instead of the MS2 lencRNA plasmid as negative control (neg.ctrl). Value = 
sample/neg.ctrl. (b) We used the Dual-Luciferase® Reporter assay to detect the results of the tether-
ing assay; the luciferase gene expression levels of different lencRNAs in the tethering or nontether-
ing were compared. F/R, Firefly luciferase/Renilla luciferase. (c) Total RNA was extracted from cells 
transfected with tethering luciferase assay plasmid, and the differences of luciferase mRNA tran-
script between different lencRNAs were compared. Total RNA was reverse-transcribed into cDNA 
using random primers and quantified by qPCR using specific primer for luciferase gene. (d) The 
binding of different lencRNAs to MED12 in MCF7 cells was compared by RIP-qPCR assay. Value = 
sample/input. Data in all panels are represented as the mean  ±  s.e.m. of three independent experi-
ments. * p  <  0.05 by a two-tailed Student’s t-test (compared with nontethering (a) or IgG (d)). 

2.3. The long exonic non-coding RNA PRKDC-10 Promotes Activity of the CDK8 Complex to 
Drive Transcription 

As a constituent of the CDK8 complex, MED12 plays a role in activating phosphory-
lation of RNA pol II at Ser 5 to promote transcription [20]. Given that the RIP-qPCR analysis 
identified an interaction between PRKDC-210 and MED12, we hypothesized that PRKDC-210 
may also affect the activity of the CDK8 complex. To test this hypothesis, we knocked down 
intracellular CDK8 expression in HEK293T using a predesigned siRNA and performed a 

Figure 1. (a) Schematic illustration of the tethering luciferase assay system. (b,c) Tethering lu-
ciferase assay using HEK293T cells, relative fluorescence and mRNA levels were detected. We
used the empty MS2 plasmid instead of the MS2 lencRNA plasmid as negative control (neg.ctrl).
Value = sample/neg.ctrl. (b) We used the Dual-Luciferase® Reporter assay to detect the results of
the tethering assay; the luciferase gene expression levels of different lencRNAs in the tethering or
nontethering were compared. F/R, Firefly luciferase/Renilla luciferase. (c) Total RNA was extracted
from cells transfected with tethering luciferase assay plasmid, and the differences of luciferase mRNA
transcript between different lencRNAs were compared. Total RNA was reverse-transcribed into
cDNA using random primers and quantified by qPCR using specific primer for luciferase gene.
(d) The binding of different lencRNAs to MED12 in MCF7 cells was compared by RIP-qPCR assay.
Value = sample/input. Data in all panels are represented as the mean ± s.e.m. of three independent
experiments. * p < 0.05 by a two-tailed Student’s t-test (compared with nontethering (a) or IgG (d)).

2.3. The long exonic non-coding RNA PRKDC-10 Promotes Activity of the CDK8 Complex to
Drive Transcription

As a constituent of the CDK8 complex, MED12 plays a role in activating phosphorylation
of RNA pol II at Ser 5 to promote transcription [20]. Given that the RIP-qPCR analysis
identified an interaction between PRKDC-210 and MED12, we hypothesized that PRKDC-210
may also affect the activity of the CDK8 complex. To test this hypothesis, we knocked down
intracellular CDK8 expression in HEK293T using a predesigned siRNA and performed a
tethering luciferase assay in CDK8-depleted HEK293T cells. The ability of PRKDC-210 to
upregulate luciferase activity was abolished in CDK8 depleted cells (Figure 2a).
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Figure 2. (a) This figure shows the expression of luciferase after tethering of PRKDC-210 in control
siRNA-treated HEK293T cells and siCDK8-treated HEK293T cells. F/R, firefly luciferase/Renilla
luciferase. (b) RIP-qPCR assays of MCF7 cells using antibodies targeting total RNA pol II, RNA pol II
S5P, and RNA pol II S2P. The enrichment of PRKDC mRNA at different sites and the enrichment of
PRKDC-210 in different phosphorylation of RNA Pol II are shown. Data in all panels are represented
as the mean ± s.e.m. of three independent experiments. *** p < 0.001 by a two-tailed Student’s t-test.

Next, we performed RIP-qPCR assays of MCF7 cells using antibodies targeting total
RNA pol II and RNA pol II phosphorylated at Ser 5 (S5P) or Ser 2 (S2P). After immuno-
precipitation, RT-qPCR was used to analyze various regions of the gene encoding PRKDC,
including the 5 kbp upstream flanking region (used as a negative control), the transcrip-
tion start site (TSS; used as a positive control), PRKDC-210, and the stop site. The results
indicated that PRKDC-210 was enriched on RNA pol II S5P (Figure 2b). At the initiation of
transcription, the CDK8 complex activates the phosphorylation of RNA pol II at Ser 5 [20];
therefore, taken together with our previous findings, these results suggest that PRKDC-210
may act as a linker between the MED12–CDK8 complex and/or the CDK8–RNA pol II S5P
complex to promote transcription.

2.4. Functions of PRKDC-210 in MCF7 Cells

To further analyze its cellular function, we used an antisense oligo (ASO) to knock
down endogenous PRKDC-210 in MCF7 cells. In addition, PRKDC mRNA expression was
also knocked down. RT-qPCR analyses performed 24 h after transfection with each ASO
confirmed successful knockdown of both PRKDC-210 and the PRKDC mRNA (Figure 3a).
Notably, the expression level of the PRKDC mRNA was lower in cells expressing the
PRKDC-210 ASO than in those expressing the PRKDC mRNA ASO (Figure 3b).



Int. J. Mol. Sci. 2022, 23, 13783 5 of 12

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 12 
 

 

significant difference between overall RNA transcription in PRKDC-210 knockdown and 
PRKDC mRNA knockdown cells, and only a few RNAs were affected by PRKDC-210 
knockdown (Figure 3c,d). Compared with those in PRKDC mRNA knockdown cells, the 
expression levels of 614 and 511 RNAs were downregulated and upregulated, respec-
tively, by knockdown of PRKDC-210 (Figure 3e,f). A gene ontology (GO) analysis of the 
affected RNAs indicated that PRKDC-210 may affect the expression of fatty acid metabo-
lism-related genes (Figure 3g). Notably, fatty acid metabolism is an additional energy sup-
ply pathway in cancer cells [21]. 

 
Figure 3. (a,b) Total RNA was extracted from MCF7 cells expressing control (ctrl) ASOs or ASOs 
targeting the PRKDC mRNA or PRKDC-210, and the RNA transcripts levels were detected via RT-
qPCR. Kd means knockdown. Data are represented as the mean  ±  s.e.m. of three independent ex-
periments. (c–g) RNA-seq analyses of PRKDC mRNA knockdown and PRKDC-210 knockdown 
cells. (c,d) FPKM profiles showing the overall gene expression levels. (e) The numbers of RNAs with 
altered transcript levels in PRKDC-210 knockdown cells versus control cells. (f) Genes that were 
significantly differentially expressed (fold change >2 and p < 0.05) in PRKDC-210 knockdown cells 
versus PRKDC mRNA knockdown cells. (g) Gene ontology biological process enrichment analysis. 

2.5. PRKDC-210 Acts on the Endogenous Genome 

Figure 3. (a,b) Total RNA was extracted from MCF7 cells expressing control (ctrl) ASOs or ASOs
targeting the PRKDC mRNA or PRKDC-210, and the RNA transcripts levels were detected via RT-
qPCR. Kd means knockdown. Data are represented as the mean ± s.e.m. of three independent
experiments. (c–g) RNA-seq analyses of PRKDC mRNA knockdown and PRKDC-210 knockdown
cells. (c,d) FPKM profiles showing the overall gene expression levels. (e) The numbers of RNAs with
altered transcript levels in PRKDC-210 knockdown cells versus control cells. (f) Genes that were
significantly differentially expressed (fold change >2 and p < 0.05) in PRKDC-210 knockdown cells
versus PRKDC mRNA knockdown cells. (g) Gene ontology biological process enrichment analysis.

Next, we performed RNA-seq analysis of total RNA extracts from PRKDC-210 knock-
down and PRKDC mRNA knockdown cells. This analysis confirmed the reduction in
PRKDC mRNA expression following knockdown of PRKDC-210 (Table S1). There was
no significant difference between overall RNA transcription in PRKDC-210 knockdown
and PRKDC mRNA knockdown cells, and only a few RNAs were affected by PRKDC-210
knockdown (Figure 3c,d). Compared with those in PRKDC mRNA knockdown cells, the
expression levels of 614 and 511 RNAs were downregulated and upregulated, respectively,
by knockdown of PRKDC-210 (Figure 3e,f). A gene ontology (GO) analysis of the affected
RNAs indicated that PRKDC-210 may affect the expression of fatty acid metabolism-related
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genes (Figure 3g). Notably, fatty acid metabolism is an additional energy supply pathway
in cancer cells [21].

2.5. PRKDC-210 Acts on the Endogenous Genome

Given its interaction with the CKD8 complex and RNA pol II S5P, we hypothesized
that PRKDC-210 would be enriched at the promoter or transcription initiation regions of
genes. To examine this possibility, we used a ChIRP assay to assess RNA–DNA binding [22].
RT-qPCR analysis confirmed that PRKDC-210 was precipitated by the ChIRP probe set
(Figure 4a). We suspected that PRKDC-210 would act on adjacent genes, so we examined
enrichment of various regions of the PRKDC locus on the immunoprecipitated PRKDC-210
RNA. We examined the 15 kbp upstream flanking region (used as a negative control), 1 kbp
upstream site, promoter region, transcription start site (TSS), Exon region (6, 41 and 64),
transcription stop site and the 3’ UTR, respectively. As expected, PRKDC-210 was enriched
at the TSS of the PRKDC gene (Figure 4b).
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as differentially expressed in the RNA-seq analyses following knockdown of PRKDC-210. 
Among them, CEBPD, FANTA, UBE2V2, MCM4 and TCEA1 are located on the same chro-
mosome as PRKDC (chromosome 8), whereas TDRD7, ARMC10, and ETV3 are located on 
chromosomes 9, 7 and 1, respectively. PRKDC-210 was enriched at the TSSs of the CEBPD, 
UBE2V2, MCM4, TCEA1 and TDRD7 genes (Figure 4c). We also performed a ChIRP-qPCR 
analysis of the TSSs of genes included in the GO fatty acid metabolic process, including 
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Figure 4. MFC7 was used for all ChIRP assays. (a) RT-qPCR analyses of PRKDC-210 and ATP5B
(negative control) levels in the RNA precipitated by ChIRP. (b–d) The DNAs associated with the
immunoprecipitated RNAs in the ChIRP assay were analyzed by qPCR using specific primers. (b) The
distribution of PRKDC-210 at the PRKDC locus. (c) Enrichment of PRKDC-210 at the TSSs of various

genes. (d) Enrichment of PRKDC-210 at the TSSs of genes related to fatty acid metabolism. Data in all
panels are represented as the mean ± s.e.m. of three independent experiments. *** p < 0.001 by a
two-tailed Student’s t-test.

Next, to determine whether PRKDC-210 can act directly on genes other than PRKDC,
we performed ChIRP-qPCR analyses of eight randomly selected genes that were detected
as differentially expressed in the RNA-seq analyses following knockdown of PRKDC-210.
Among them, CEBPD, FANTA, UBE2V2, MCM4 and TCEA1 are located on the same
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chromosome as PRKDC (chromosome 8), whereas TDRD7, ARMC10, and ETV3 are located
on chromosomes 9, 7 and 1, respectively. PRKDC-210 was enriched at the TSSs of the
CEBPD, UBE2V2, MCM4, TCEA1 and TDRD7 genes (Figure 4c). We also performed a
ChIRP-qPCR analysis of the TSSs of genes included in the GO fatty acid metabolic process,
including LYPLA1 (chromosome 8), AASDH (chromosome 4), BAAT (chromosome 9),
ACSM2B (chromosome 16), SLC27A1 (chromosome 19) and ACSM2A (chromosome 16).
PRKDC-210 was enriched at the LYPLA1 gene only (Figure 4d). Overall, these results
suggest that genes on chromosome 8 are more likely to be targeted by PRKDC-210.

3. Discussion

In the past, limitations in detection technologies have meant that the roles of lencR-
NAs have been overlooked. In particular, as lencRNAs are splice variants of mRNAs, they
are often confused with mRNAs during analyses. Here, we designed a novel tethering
luciferase assay to detect the regulatory functions of exogenous lencRNAs in transcription
and found that the lencRNA PRKDC-210 interacts with MED-12 and/or the CDK8 complex
to upregulate gene expression. Since the tethering luciferase assay utilizes a TATA box,
which is not associated with MED12 enrichment, we assumed that PRKDC-210 promoted
the interaction of MED12 and its complex with RNA polymerase II S5P to drive tran-
scriptional upregulation. In addition to PRKDC-210, the lencRNAs BAP1-206, PIK3R1-206
and PIK3R1-209 also increased transcription of the luciferase gene in our initial screen
(Figure 1b,c). We did not analyze the functions of these lencRNAs further because they
were unable to interact with MED12 (Figure 1d); however, their potential regulatory roles
and interaction with other transcriptional complexes will be examined in the future.

An interesting phenomenon was observed in the ChIRP assay. Most of the genes
affected by PRKDC-210 are located on chromosome 8, which is where the PRKDC lo-
cus is situated (Figure 4c,d). Among the 14 genes examined in the ChIRP assay (eight
randomly selected genes and six fatty acid metabolic process-related genes), CEBPD,
FNTA, UBE2V2, MCM4, and LYPLA1 are located on chromosome 8, which has a total
length of 146 Mbp. The maximum distance between these genes and the PRKDC locus
is about 6.5 Mbp. Notably, the CEBPD and MCM4 loci are located <50 Kbp and 7 bp
from the PRKDC locus, respectively. The pairwise genetic distances were calculated ac-
cording to Rutgers Map v.3, a combined linkage-physical map of the human genome
(http://compgen.rutgers.edu/map_interpolator.shtml, accessed on 27 September 2022).
The minimal genetic distances of intergenic recombinations were obtained for PRKDC,
CEBPD, MCM4, and UBE2V2 (<0.05 cM). The genetic distance between FNTA and PRKDC
was about 0.5 cM. In general, linkage disequilibrium is supposedly noticeable at such short
distances. PRKDC is located far from LYPLA1, with a genetic distance of about 5.0 cM.
Unlike CEBPD, MCM4, and UBE2V2, LYPLA1 does not appear to display linkage disequi-
librium with PRKDC. Nonetheless, LYPLA1 was also affected by PRKDC-210. In addition,
because chromosomes move randomly in the nucleus, the relative positions of two genes
on different chromosomes are uncertain, while the relative positions of two genes on the
same chromosome do not change significantly. Of course, this could be due to chromo-
some folding or another configuration that causes PRKDC-210 to enhance transcription
within a certain range of chromatin 8 [23]. However, heterochromatin structure should
not be associated with the transcriptional enhancement of PRKDC-210, as heterochromatin
structure is thought to be unable to express genes [24]. We propose that genes on the same
chromosome as the PRKDC locus may be more susceptible to PRKDC-210 than those on
other chromosomes, as after transcription and splicing, PRKDC-210 may be bound rapidly
by nearby CDK8 complexes or RNA pol II, which then act on neighboring genes.

Based on the results of the tethering luciferase assay and RIP-qPCR analyses (Figures 1 and 2),
we speculate that PRKDC-210 acts directly on the CDK8 complex in the nucleus. Notably, lencR-
NAs such as PRKDC-210 are not modified by poly(A) tailing; hence, they may act rapidly on
nearby proteins and promote gene expression immediately after their generation. The regulatory
action of lencRNAs may be a cause of abnormal gene expression in cancer. The lencRNAs exam-

http://compgen.rutgers.edu/map_interpolator.shtml
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ined in our current study are all expressed at high levels in cancer. As a product of alternative
splicing, the increased generation of lencRNAs is likely attributable to genetic abnormalities. In-
deed, there have been numerous reports of cancers producing abnormal mRNA splicing [10,25,26].
Although these reports have focused mainly on protein-coding RNAs, there are also reports con-
firming that lncRNAs are spliced from coding genes [27]. More in-depth studies are required to
analyze the mechanisms underlying the production and functions of lencRNAs. Such studies
may expand our current understanding of diseases caused by splicing abnormalities and lay the
foundation for future therapeutic developments.

In conclusion, lencRNA is a type of lncRNA produced by abnormal splicing caused by
genetic deviations such as cancer. Here, we found that the lencRNA PRKDC-210 interacts
with the CDK8 complex, resulting in transcriptional upregulation, which may be a major
cause of abnormal gene expression in cancer. Additional studies are needed to understand
the roles of lencRNAs in disease states.

4. Materials and Methods
4.1. Cell Lines

Two cell lines, HEK293T and MCF-7, were used in this study. HEK293T was used for
all tethering luciferase assays for detecting exogenous lencRNA. MCF-7 cells were used to
detect endogenous lencRNA. It was used for knockdown assay, RNA immunoprecipitation
assay, RNA-Seq and chromatin isolation by RNA purification assay, respectively.

4.2. Cell Culture

HEK293T cells and MCF-7 cells were cultured in high-glucose DMEM (Nacalai Tesque,
Kyoto, Japan) supplemented with 10% FBS (BioWest, Funakoshi, Japan). The cells were
maintained in a 5% CO2 incubator at 37 ◦C [28].

4.3. Transfection

Twenty-four hours before transfection, cells were seeded into 12-well cell culture plates
(TrueLine, New York, NY, USA) at a density of 2–3 × 105 cells/well. The culture medium
was replaced with 1 mL of fresh medium before transfection.

For the tethering luciferase assay in HEK293T cells, a mixture containing 400 ng
of the Firefly luc plasmid, 10 ng of the Renilla luc plasmid, 50 ng of the MCP-GAL4
plasmid, 50 ng of the MS2-lencRNA plasmid, 2.5 µL of polyethylenimine (1.0 µg/µL;
Polysciences, Warrington, PA, USA), and 100 µL of OPTI-MEM (Thermo Fisher Scientific,
Waltham, MA, USA) was incubated at room temperature for 20 min. Subsequently, the
transfection master mix was added to the cell culture medium, and cells were incubated
for 24 h [29,30].

For siRNA transfections, HEK293T cells were seeded into 12-well plates at a density
of 1 × 105 cells/well. Following the manufacturer’s protocol, 2 µL of LipofectamineTM

RNAiMAX (Thermo Fisher Scientific) and 24 pmol of siRNA were added to 100 µL of
OPTI-MEM, and the mixture was incubated at room temperature for 20 min. The transfec-
tion master mix was then added to the cell culture medium, and the tethering luciferase
assay was performed 24 h later [31]. The MissionTM CDK8 siRNA (SASI_WI_00000016)
and control siRNA (Universal Negative Control #1) were obtained from Sigma Aldrich
(Burlington, MA, USA).

For knockdown of PRKDC mRNA and PRKDC-210 in MCF-7 cells, following the
manufacturer’s protocol, 5 µL of LipofectamineTM 2000 (Thermo Fisher Scientific) was
mixed with 100 pmol of ASOs in 100 µL of OPTI-MEM and incubated at room temperature
for 5 min. The transfection master mix was then added to the cell culture medium, and the
cells were incubated for 24 h [32]. Phosphorothioate-modified ASOs were obtained from
Eurofins Genomics (Tokyo, Japan).
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4.4. Dual-Luciferase Reporter Assay

The Dual-Luciferase® Reporter Assay System (Promega, Madison, WI, USA) was used
to detect luciferase activity in the tethering luciferase assay. After transfection for 24 h,
the culture medium was removed, and the cells were washed once with PBS(-) (Nacalai
Tesque). Subsequently, 250 µL of 1× passive lysis buffer was added, and the cells were
shaken for 15 min at room temperature. To detect the firefly luciferase signal, a 10 µL aliquot
of the lysed cells was added to a luminometer tube along with Luciferase Assay Reagent II.
Subsequently, Stop & Glo® Reagent was added to the tube to enable detection of the Renilla
luciferase signal. The ratio of firefly to Renilla luciferase was then determined [33]. The
signals were detected using a Gene Light 55 luminometer (WAKENYAKU, Kyoto, Japan)
with the following detection conditions: delay time 3 s, count time 6 s, repeat time 1.

4.5. RNA Extraction

RNA extraction was performed using TRIzol® reagent (Thermo Fisher Scientific),
according to the manufacturer’s instructions. Briefly, the culture medium was removed,
and the cells were washed once with PBS(-), followed by addition of 400 µL of TRIzol®

reagent and RNA extraction using the basal protocol [34].

4.6. RT-qPCR

Total RNA (500 ng) was reverse transcribed into cDNA using ReverTra Ace® reagent
(TOYOBO, Osaka, Japan) and random primers (5′-NNNNNNNNN-3′). In the RIP assays,
the RNA pellet was dissolved in nuclease-free water, and the entire sample was used for
reverse transcription.

The qPCR assays were performed using TB Green® Premix Ex Taq™ II (Tli RNaseH
Plus) (TaKaRa, Kusatsu, Japan), according to the manufacturer’s protocol, and primers
were obtained from Eurofins Genomics. Analyses were performed using an Mx3000pTM

qPCR system (Agilent, Santa Clara, CA, USA) [35].

4.7. RNA Immunoprecipitation

Cells were grown to 80–90% confluency in 10 cm culture dishes. The medium was
then changed, and the cells were incubated for 30 min at 37 ◦C. Subsequently, the medium
was removed, and the cells were washed three times with PBS(-); then, 5 mL of 1 × nuclear
isolation buffer (3 mL of Milli-Q water, 1 mL of PBS, 1 mL of 5 × NIB (1.28 M sucrose,
40 mM Tris-HCl pH 7.5, 20 mM MgCl2, 4% Triton X-100)) was added. The cells were then
scraped from the dish, transferred to a 15 mL centrifuge tube, placed on ice for 20 min,
and centrifuged for 15 min at 2000 RCF. Next, the supernatant was removed, and the
pellet was resuspended in 500 µL of RNA isolation buffer (150 mM KCl, 25 mM Tris-
HCl pH 7.5, 5 mM EDTA, 0.5% NP-40, 0.5 mM DTT, protease inhibitor cocktail, RNase
inhibitor, DNase I) using a 25 G syringe tip. After centrifuging at 12,500 RCF for 10 min, the
supernatant was collected, and a 50 µL sample (used as input) was stored at 4◦C. Another
400 µL sample was mixed with 2 µg of the specific antibody (Abcam, Cambridge, UK) and
10 µL of Dynabeads™ Protein G (Thermo Fisher Scientific), and then incubated overnight
at 4◦C with gentle rotation. The next morning, the supernatant was separated from the
beads using a magnetic device, and the pelleted beads were washed three times with RNA
isolation buffer and once with PBS(-) [36]. Finally, 400 µL of TRIzol® reagent was added to
the input sample and beads, and RNA extraction was performed as described in Section 4.4.

4.8. RNA Sequencing

Total RNA was extracted from cells transfected with ASOs as described in Section 4.4.
Subsequently, the samples were analyzed using the RNA-seq service of Azenta Life Sci-
ences (Tokyo, Japan). The level of gene expression was indicated by the read density
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and calculated as shown below (where FPKM represents the fragments per kilo bases per
million reads) based on read counts from HT-seq (V. 0.6.1) [37].

FPKM =
total exon fragments

mapped reads(millions)× exon length (Kbp)

The ratio of total exon fragments to mapped reads is normalized to the gene length
(exon length), such that the expression levels of genes with different sequencing depths
and lengths are comparable. RNAs with reads > 10 and FPKM > 2 were screened as
valid samples.

4.9. Chromatin Isolation by RNA Purification

The experimental method followed the protocol of Ci Chu et al. [22]. To isolate
PRKDC-210, a probe set targeting PRKDC-210 needed to be designed. Probes were designed
on the PRKDC-210 at about 100 bp intervals, with a total of 6 probes. The ChIRP-probe set
was modified with 3’ BiotinTEG and ordered from Eurofins Genomics.

Cells were grown to 80–90% confluency in 10 cm cell culture dishes. The medium was
then removed, and the cells were washed three times with PBS(-) before being resuspended
in PBS(-), transferred to a 50 mL tube, and centrifuged. Next, the supernatant was removed,
and the pellet was resuspended in 10 mL of 1% glutaraldehyde (prepared immediately
before use) and incubated for 10 min at room temperature, with gentle shaking to crosslink
the cells. To stop the crosslinking, 1 mL of 1.25 M glycine was added, and the sample was
incubated for 5 min at room temperature. Subsequently, the tube was centrifuged, the
supernatant was removed, the pellet was washed once with PBS(-), and the sample was
then centrifuged again. Next, the pellet in PBS(-) was transferred to a 1.5 mL centrifuge
tube, the PBS(-) was removed, and 500 µL of cell lysis buffer (50 mM Tris-HCl pH 7.0,
10 mM EDTA, 1% SDS, protease inhibitor cocktail, RNase inhibitor) was added. The sample
was then sonicated until it became clear. A 10 µL aliquot of the lysate was reserved as
the DNA/RNA input sample, and then 1 mL of hybridization buffer (750 mM NaCl, 1%
SDS, 50 mM Tris-HCl pH 7.0, 1 mM EDTA, 15% formamide, protease inhibitor cocktail,
RNase inhibitor) and 100 pmol of ChIRP probes (Eurofins Genomics) were added to the
remaining sample, followed by incubation for 4 h at 37 ◦C with rotation. Next, Dynabeads
Biotin Binder beads (100 µL; Thermo Fisher Scientific) were washed with cell lysis buffer,
added to the sample, and incubated for 30 min at 37 ◦C with shaking. Subsequently, the
beads were washed five times with 1 mL of wash buffer (2× SSC, 0.5% SDS) and then
resuspended in 1 mL of wash buffer. A 100 µL aliquot was reserved for RNA isolation. The
remaining 900 µL of the bead suspension was removed from the wash buffer and added to
300 µL of elution buffer to elute the DNA from the beads.

For the RNA component, the wash buffer was removed from the beads for treatment
with proteinase K. After the addition of TRIzol® reagent (as described in Section 4.4),
RT-qPCR analyses were performed using specific primers for RNA products.

For the DNA component, the sample was treated with proteinase K. Subsequently,
300 µL of PCI (phenol: chloroform: isoamyl alcohol; 25:24:1) was added, the sample
was shaken vigorously for 10 min, and then the supernatant was removed following
centrifugation. Next, 30 µL of NaOAc and 900 µL of 100% EtOH were added, and the
sample was incubated overnight at−20◦C. The next morning, the supernatant was removed
by centrifugation, and the DNA pellet was washed with 70% EtOH, centrifuged again to
remove the supernatant, air-dried, and dissolved in Milli-Q water. qPCR analyses were
performed using specific primers.

4.10. Primer

qPCR primers, Antisense Oligo DNA and ChIRP probes were all ordered from Eurofins
Genomics; sequences can be found in Supplementary Data (Table S2).
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