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Abstract: Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflam-
mation, metabolism of clinically important biomolecules, and other cellular processes. They do not
encode proteins but are involved in the regulatory network of various proteins that are directly
related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of
atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is
critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins
are the potential subjects to explore with special emphasis on epigenetic regulatory components. The
activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules,
as evident from recent research. Thus, it is important to critically evaluate the existing literature to en-
hance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components,
remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling con-
tributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling
may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
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1. Introduction

Cardiovascular disease has been a major cause of death worldwide, posing serious
concerns to human health for the past 20 years [1]. The pathophysiological basis for many
prevalent cardiovascular disorders is atherosclerosis, a chronic inflammatory disease [2].
Lipoproteins deposit in the subintimal region, and subsequent oxidative responses mediate
the process of plaque formation and the progression of atherosclerosis, which is more
common in big or medium-sized arteries [3]. This is accompanied by macrophage recruit-
ment and foam cell formation, movement of vascular smooth muscle cells (VSMCs) to
the intima, and progression of atherosclerotic plaque. Plaques that extend into the artery
cause duct stenosis, and rupture of plaque gives rise to emboli causing adverse ischemic
events [4]. Remodeling of the extracellular matrix (ECM) is a major process involved in
atherogenesis that changes the vasculature and affects its regulation. The early change
in the atherosclerosis starts with deposition of fibronectin which is then predominantly
occupied by deposition of collagen and cross-linking [5]. Subsequently, various complex
changes like degradation of ECM proteins begin that lead to rupture of the plaque [6].
Although the pathophysiology of atherosclerosis and other cardiovascular diseases have
been extensively studied, epigenetic regulation is largely not well studied. Therefore, it is
critical to explore the epigenetic regulation of various molecular mechanisms involved in
the pathogenesis of atherosclerosis to identify novel therapeutic strategies.

The discovery of non-coding ribonucleic acids (ncRNAs) changed our understanding
of the post-translational, post-transcriptional, and epigenetic regulation of gene expres-
sion in controlling cellular homeostasis in various diseases. Recent breakthroughs in the
field of genomics, facilitated by technologies such as chromatin immune-precipitation
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RNA sequencing (ChIP RNA Seq), Assay for Transposase-Accessible Chromatin (ATAC)
seq, transcriptome analysis, and next-generation sequencing (NGS), have provided fresh
insights and fundamentally altered our knowledge of small ncRNA molecules, which
were long regarded as “junk DNA.” The fact that about 99% of the genome consists of
non-coding DNA and approximately 1% codes for functional proteins demonstrates the
intricacy and significance of ncRNAs in regulating gene expression [7–9]. Regulatory ncR-
NAs such as microRNAs (miRNAs; miRs) and long non-coding RNAs (lncRNAs) have had
a profound impact on research in numerous domains, like cancer [10–12], cardiovascular
diseases [13–15], and diabetes [16–18]. The epigenetic regulation of these ncRNAs is crucial
in both the early development and the etiology of heart diseases [19–21].

Emerging approaches based on genomic data have changed diagnostic and therapeutic
procedures, allowing for the early detection of problems, and providing hope for more
successful treatments. The purpose of this article is to offer an up-to-date account of the
involvement of noncoding RNAs (ncRNAs) in cardiovascular diseases with an emphasis
on the regulation of extracellular matrix remodeling in atherosclerosis.

2. Extracellular Matrix

The extracellular matrix comprises various cells and cellular structures that constitute
atherosclerotic plaque scaffolding. It is made up of different structural components that
are regulated by a class of different regulatory factors. Collagens, hyaluronan, elastic
fibers, proteoglycans, and many glycoproteins are essential elements of vascular ECMs
that are all coupled in a complex dynamic 3D matrix system. This link controls the
biomechanical properties of arteries and the phenotype of the cells such as ECs, VSMCs,
adventitial fibroblasts, and immune cells invading circulation. VSMCs are the predominant
cell types identified in terms of their ability to produce ECM macromolecules [22]. The
development of atherosclerosis commences with focal endothelial cell injury in arteries,
which enhances the invasion of freely circulating monocytes and T lymphocytes [23].
Monocytes differentiate into macrophages in the subendothelial intima, where they release
cytokines and aggravate the inflammatory environment and endocytose LDL fragments
and then become lipid-laden foam cells. Concurrently, the SMCs from the medial layer
migrate into the intima, proliferate, and make collagen fibers to form a fibrous cap that
stabilizes the intima. In contrast, forming a lipid-rich malignant core destabilizes the lesion,
eventually leading to erosion in high-risk, rupture-prone plaques, causing thrombosis,
which could develop arterial obstruction, resulting in myocardial infarction (MI) [24,25].

ECM Remodelling and Atherosclerosis

Throughout life, the structure and function of the vasculature are determined by
the interaction between various ECM components. In the early phase of atherosclerosis,
proteoglycans comprise the majority of the ECM, but as the disease progresses, collagens
become the predominant ECM component, accompanied by a decrease in elastic fibers, gly-
coproteins, and proteoglycans [26]. Moreover, elastin and collagen are the most thoroughly
researched ECM proteins in the etiology of atherosclerosis. Uncontrolled degradation of
these proteins increases the course of atherosclerosis because it permits transendothelial
migration of leukocytes, VSMC migration and proliferation, neovascularization, vascular
cell death, neointima formation, and ultimately the rupture of the arterial wall [27]. Elastic
fibers, composed of elastin components, stabilize collagen; hence, damaged elastin (seen
in plaques), resulting in the inability to generate a stable matrix, which leads to plaque
rupture [28].

Lipoproteins containing apo-B penetrate the arterial intimal endothelial layer and con-
centrate in the subendothelial region, where they are endocytosed by intimal macrophages.
Simultaneously, local blood flow disruptions (non-linear flow) in atherosclerosis-prone
locations (e.g., arterial branches) result in decreased shear stress, which is recognized by
endothelial cells during the mechano-transduction process. These processes alter the mi-
croenvironment of the arterial wall intima, promoting subsequent changes such as foam cell
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generation, VSMC migration and conversion from contractile to synthetic phenotypes, ECM
matrix remodeling, and necrotic core formation and calcifications [25,29]. Furthermore,
the immune system is critical in the pathogenesis of atherogenesis [30]. Many plaques
mature into stable structures that cause the chronic coronary syndrome, while some of
them undergo ultrastructural changes that make them prone to rupture. These plaques
are referred to as ‘unstable’ or ‘susceptible’ [31]. According to the reported characteristics,
susceptible plaque is a thin cap fibroatheroma (TCFA) with a necrotic core and an overlay-
ing fibrous cap of 65µm thickness [32]. The presence of susceptible plaques is required for
the occurrence of significant cardiovascular adverse effects [33]. As a result, medications
aiming to stabilize atherosclerotic plaque are required. However, due to clinical denial,
ideal therapy focused on stabilizing plaques must focus on the advancement of molecular
stabilizing paths ‘in general’ [34–40] instead of on the stabilization of specific atherosclerotic
lesions.

3. Non-Coding RNA

Transcripts that are not translated into polypeptides or proteins are known as non-
coding RNAs (ncRNAs). Approximately 1–2% of genes are responsible for making proteins,
suggesting that there are many non-coding genes with unidentified roles [41]. These ncR-
NAs demonstrate various biological roles and directly participate in several physiological
processes [42]. Prior research on ncRNAs focused mostly on their regulatory functions
within cells. Later, extracellular vesicles (EVs) were thoroughly investigated, and it was
discovered that these EVs contain lipids, proteins, messenger RNAs (mRNAs), and ncRNAs
with biological functions [43,44]. The ncRNAs typically exist in EVs or attach to proteins
or lipids to avoid ribonuclease-mediated destruction [45]. The majority of ncRNAs in the
blood are either contained in EVs [46] or are protein-bound, such as with lipoproteins [47],
argonaute protein (AGO2), and nucleophosphoprotein 1 (NPM1) [48]. Recent research re-
vealed that extracellular ncRNAs control intracellular gene expression, mediate intercellular
communication, and are intimately connected to numerous pathogenic processes [49–53].
Figure 1 represents the various cellular processes being controlled by the action of various
ncRNAs.
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Figure 1. Summary of the cellular activities that are regulated by ncRNAs. Indeed, ncRNAs can
directly and simultaneously modulate multiple targets and are involved in both gene expression
and genome remodeling. Thus, ncRNAs control cellular functions directly or indirectly in both
physiological and pathological conditions.

According to recent findings, extracellular ncRNAs are thought to be closely associated
with atherosclerosis. Extracellular ncRNAs are crucial regulators of many cells, including
immune cells, macrophages, and endothelial cells. They play a role in atherosclerotic
processes such as angiogenesis, foam cell formation, and atherosclerotic plaque progression
and rupture [41,54,55]. Extracellular ncRNAs serve as a useful diagnostic indicator and
potential treatment target in atherosclerosis [56]. The association of ncRNAs to disease
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development, diagnosis, therapy, and incidence, in the past few years has seen a major
advancement in the study of ncRNAs related to cardiovascular disorders. This review
article critically discusses the specific function, putative mechanism, and prospective
applications of ncRNAs in atherosclerosis, emphasizing miRNAs, circRNAs, and lncRNAs-
mediated ECM remodeling in atherosclerosis.

3.1. miRNAs and Atherosclerosis

The miRNAs are genetically conserved, containing 18–24 nucleotides, small single-
stranded non-coding RNAs that regulate gene expression at the post-transcriptional level by
binding to the 3′-untranslated region of certain target mRNA sequences, thereby reducing
protein synthesis by inhibiting mRNA translation [10,57–59]. There are more than 60% of
human protein-coding genes have miRNA target sites in their 3′-UTR, and various studies
have shown the involvement of miRNA/mRNA interactions as the key regulatory network
in different biological processes [60–62]. With the unique characteristics of miRNAs, these
have been extensively used as key regulators of mRNA and protein expression in many
diseases, including cardiovascular diseases [61–64]. Various studies (Table 1) have analyzed
the role of miRNAs in atherosclerosis and ECM remodeling.

Table 1. miRNAs, their target, and functions.

Type of ncRNA Target RNA Function References

miR-34a Sirtuin 1 (SIRT 1) Contractile function, apoptosis [65]

miR-92a Kruppel-like factor 4 (KLF4) Inhibits angiogenesis [66,67]

miR-126 Intercellular adhesion molecule 1 (ICAM-1), Vascular cell
adhesion molecule 1 (VCAM-1)

Regulation of inflammation promotes
plaque regression [68,69]

miR-27b

Peroxisome Proliferator-Activated Receptor (PPAR)
Gamma
(PPARγ), Angiopoietin-like 3
(Angptl3), mitochondrial Glycerol-3-Phosphate
Acyltransferase (Gpam)

Plaque progression and development [70,71]

miR-143/145 PPARγ, Angptl3, Gpam Maintain VSMC contractile phenotype [72]

miR-21

Phosphatase and Tensin Homolog
(PTEN)/v-Akt Murine Thymoma Viral Oncogene
(AKT)/Extracellular signal-regulated kinase (ERK)
regulation

Promotes contractile phenotype [73]

miR-125a-5p Oxysterol-binding protein (OSBP)-related protein 9
(ORP-9) Inhibits proinflammatory signals [74,75]

miR-146 Toll-like receptor 4 (TLR4) Inhibits proinflammatory signals [76]

miR-33a/b

ATP Binding Cassette (ABC) Subfamily A Member 1
(ABCA1), ABC Subfamily G Member 1 (ABCG1),
Carnitine Palmitoyl transferase 1A (CPT1A), Carnitine
O-Octanoyl transferase
(CROT), Hydroxy acyl-CoA Dehydrogenase
Trifunctional Multienzyme Complex Subunit Beta
(HADHB)

Cholesterol efflux, fatty acid β-oxidation [77,78]

miR-144, miR-758, miR-106 ABCA1 Cholesterol efflux [79,80]

miR-30c Microsomal triglyceride transfer protein (MTP),
Lysophosphatidyl glycerol Acyltransferase 1 (LPGAT1)

Cholesterol synthesis, lipoprotein
secretion [81]

miR-155
LX1, Cluster of differentiation (CD) 36 (CD36), CD68,
Myeloid differentiation primary response 88 (MyD88),
B-Cell lymphoma 6 (BCL6)

Lipid uptake and inflammation [82,83]

miR-125a-5p ORP9 Lipid uptake and inflammation [74]

miR-146a TLR4 TH1 response [76]

miR-9 PPARδ Inflammation [84]

miR-21 Tropomyosin 1(TPM1), Programmed Cell Death 4
(PDCD4), PPARα Proliferation, migration, and apoptosis [85]
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Table 1. Cont.

Type of ncRNA Target RNA Function References

miR-143/145 KLF4, KLF5, ETS domain transcription factor 1 (ELK-1) Phenotype switching, podosome
formation [86,87]

miR-21 TPM1, PDCD4, PPARα Proliferation, migration, and apoptosis [85,88]

miR-1/33 KLF4, Specificity protein 1 (Sp-1) Proliferation [89,90]

miR-221/222 Cyclin-dependent kinase inhibitor (CDKN) 1B (p27),
CDKN1C (p57), Tyrosine protein kinase c-KIT (CD117) Proliferation, migration, and apoptosis [91,92]

miR-29 Elastin Elastin formation [93,94]

miR-208 CDKN1A (p21) Proliferation [95]

let-7d Kirsten rat sarcoma virus (KRAS) Proliferation [96]

let-7 g Lectin-type oxidized LDL receptor 1 (LOX-1) Proliferation and migration [97,98]

miR-132 Leucine-rich repeat flightless-interacting protein 1
(LRRFIP1) Proliferation [99]

miR-133a Runt-related transcription factor 2
(RUNX2) Osteogenic differentiation [100]

miR-126 Sprouty-related EVH1 domain-containing protein 1
(SPRED1), VCAM-1 Monocyte adhesion [68]

miR-17-3p, miR-31 ICAM-1, E-selectin Inflammation [101]

miR-92a Endothelial nitric oxide synthase (eNOS), KLF2, KLF4,
Suppressor of cytokine signaling 5 (SOCS5) vasodilation, inflammation [102,103]

miR-155, miR-221/222 eNOS, ETS Proto-Oncogene 1 (ETS1) Inflammation [104,105]

miR-712 Tissue inhibitor of metalloproteinase 3
(TIMP3) Inflammation [106]

miR-10 VCAM-1, E-selectin Inflammation [107]

miR-181b Importin subunit alpha 3 (Importin α3) Inflammation [68]

miR-27 Semaphorin 6A (SEMA6A) EC adhesion, angiogenesis [108]

miR-34a, miR-217 SIRT-1 Senescence [109]

miR-146 Human Antigen R (HuR), Reduced nicotinamide adenine
dinucleotide phosphate (NADPH) Oxidase 4 (NOX4) EC activation, aging [110]

The expression of MiR-1a-3p, miR-1b-5p, and miR-1 was found to be the most promi-
nently increased in different diseases related to subclinical atherosclerosis. The miR-1
mimics can activate endothelial inflammation through increased production of E-selectin,
intercellular adhesion molecule (ICAM)-1, and vascular cell adhesion molecule (VCAM)-1
at both the mRNA and protein levels. The in-vivo findings showed that miR-1 knockdown
by antagomiR-1 reversed the endothelial and inflammatory activation at the lesion site,
revealing a novel therapeutic target for atherosclerosis [19]. Wu et al. [111] demonstrated
that miR-142-5p targeted myocardin-like protein 2 to drive the amplification and migration
of human aortic smooth muscle cells, promoting atherosclerosis. Su et al. [112] reported
the presence of miR-181a-5p and miR-181a-3p in atherosclerotic lesions of ApoE mice fed
with a high-fat diet and in the plasma of patients with coronary artery disease (CAD).
These findings indicate the potential role of these two miRNAs in atherogenesis. Also, the
overexpression of miR-181a-5p and miR-181a-3p in ApoE mice decreased the plaque size.
In contrast, the gain-of-function mutation decreased inflammatory genes like ICAM-1 and
VCAM-1 and leukocyte infiltration in the aortic intima.

Raitoharju et al. [113] reported 58 miRNAs that were differentially expressed between
atherosclerotic plaques and non-atherosclerotic left internal thoracic arteries. Of these,
up-regulated five miRs viz. miR-21, miR-34a, miR-146a, miR-146b-5p, and miR-2010 were
involved in the regulation of 187 mRNAs in atherosclerotic plaques. The proteins translated
from these genes were involved in signal transduction, transcription control, and vesicular
transport. In another study, it was reported that miR-130a expression was increased
in atherosclerotic mice. In an in-vitro model of atherosclerosis, miR-130a overexpression
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enhanced inflammatory factors like tumor necrosis factor (TNF)-α and interleukin (IL)-1, IL-
6, and IL-8 and its downregulation reduced the inflammation by attenuating TNF-α, IL-1, IL-
6, and IL-8. Furthermore, in the in-vitro model, over-expression of miR-130a might reduce
peroxisome proliferator-activated receptor (PPAR) protein expression while inducing NF-
κB protein expression. Still, its suppression promoted PPAR protein expression while
suppressing NF-κB protein expression. PPAR activation inhibited the pro-inflammatory
effects of miR-130a in an atherosclerosis-induced in-vitro model [114]. Polyakova et al. [115]
reported that the SYNTAX (tool to score complexity of CAD) score I index and serum
miR-203 expression level exhibited a positive association in patients with CAD. In the
atrial myocardium of patients with triple vessel disease, miR-27a, miR-133a, and miR-203
expressions were substantially greater than those of patients with 1–2 vessel disease. This
association was also observed for miR-27a, miR-133a, and miR-203 expressions in the blood.
Another study revealed that targeting miR-33 in atherosclerotic macrophages by anti-miR-
33 conjugated pH low-insertion peptide (pHLIP) constructs to inhibit miR-33 improves
collagen formation and reduces lipid accumulation, thereby improving atherosclerotic
regression. Additionally, a single-cell RNA sequencing study showed that macrophages
from atherosclerotic lesions targeted by pHLIP-anti-miR-33 had lower levels of matrix
metalloproteinase (MMP)-12 and greater levels of fibrotic genes (Col2a1, Col3a1, Col1a2,
Fn1, etc.) and tissue inhibitor of metalloproteinase (TIMP)-3 [116].

Another study reported that the expression of three miRs, miR-129-1-3p, miR-4312,
and miR-5196-3p differed significantly between the acute ischemic stroke and atheroscle-
rosis/healthy control groups. Twelve pathways were affected by the miR-129-1-3p target
genes, three of which were related to axonal and synaptic function: sphingolipid signal-
ing, retrograde endocannabinoid signaling, and axon guidance. Cortical neurite length
and Runx2 levels were considerably reduced by miR-129-1-3p mimics, whereas Runx2
expression was elevated, and neurite growth was boosted by miR-129-1-3p inhibitors [117].

Egea et al. [118] demonstrated that the treatment of human mesenchymal stem cells
(hMSCs) with LL-37 boosted let-7f and N-formyl peptide receptor 2 (FPR2) production,
which ultimately helped in the stabilization of atherosclerotic plaque. Circulating hM-
SCs attach to athero-prone endothelium more frequently in an ApoE animal model of
atherosclerosis. High levels of let-7f in the hMSCs, as determined by two-photon laser
scanning imaging and ex-vivo artery perfusion, contributed to increased attachment of
MSCs. Additionally, the exposure of hMSCs to homogenized human atheromatous plaque
material significantly increased the production of different cytokines, chemokines, MMPs,
and TIMPs. Moreover, the exposure of hMSCs to human plaque extracts causes hMSCs to
differentiate into cells of the myogenic lineage, indicating a potential stabilizing influence
on the plaque.

3.2. circRNAs and Atherosclerosis

A group of RNA molecules known as circRNAs is produced through exon reverse
splicing or intron lariat. Due to their closed ring structure, which shields them from
the effects of RNA exonuclease, circRNA production is generally stable and tissue- and
developmental stage-specific [119]. Due to the self-regulating, transposing, and other
salient features of circRNAs, many studies have been recently conducted to investigate
the role of circRNAs in the initiation and progression of atherosclerotic plaque and other
cardiovascular diseases [120,121]. The studies have proposed the diagnostic value of
different circRNAs in preventing and treating atherosclerosis (Table 2).
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Table 2. Circular RNAs, their targets, and functions.

Type of circRNA Target RNA Function Reference

CircANRIL N/A Apoptosis, inhibits proliferation [122]

Has_circ_0010729 Hypoxia-inducible factor 1-alpha
(HIF-1α)

Cell proliferation, and migration,
inhibits apoptosis [123]

cZNF609 Myocyte Enhancer Factor 2A (MEF2A) Apoptosis, inflammation, Inhibits
proliferation and migration [124]

circRELL1 MyD88/Nuclear factor kappa B
(NF-kB) Increases Inflammation [125]

Circ_CHFR Forkhead Box O1 (FOXO1), Cyclin D1
(CCND1) Cell proliferation and migration [126]

Circ-SATB2 Stromal Interaction Molecule 1 (STIM1) Cell proliferation and migration,
inhibit apoptosis [127]

CircWDR77 Fibroblast growth factor 2 (FGF2) Cell proliferation and migration [128]

CircTM7SF3 Aspartate Beta-Hydroxylase (ASPH) Apoptosis, inflammation,
oxidative stress [129]

CircSCAP/has_circ_0001292 Phosphodiesterase 3B (PDE3B) Accumulation of lipids, inflammation,
and oxidative stress [130]

has_circ_0054633 Roundabout homolog 1 (ROBO1) and
Heme Oxygenase 1 (HO-1)

Cell proliferation, migration,
angiopoiesis, apoptosis inhibition [131]

CircHIPK3/mmu_circ_0001052 Frizzled Class Receptor 4 (FZD4) and
Wingless family member 2 (WNT2) Cell proliferation and inflammation [132]

CircHIPK3 Insulin-like growth factor 1 (IGF-1) Apoptosis and oxidative stress
inhibition [133]

CircDNMT3B
Bone morphogenetic protein (BMP)
And Activin Membrane Bound
Inhibitor (BAMBI)

Cell proliferation and migration [13]

Circ_0003575 Forkhead Box O3 (FOXO3), Forkhead
Box O4 (FOXO4)

Cell proliferation and migration,
inhibit apoptosis [134]

Hsa circ 0068087 TLR4 Increases Inflammation [135]

CircRNA-0044073 Janus kinase/signal transducers and
activators of transcription (JAK/STAT) Cell proliferation and migration [136]

hsa_circ_0003575 miR-9, miR-199 Cell proliferation, angiogenesis [137]

hsa_circ_000595 miR-19a Apoptosis [138]

Circ_Lip6 miR-145 Cell proliferation and migration [139]

To discover circRNAs involved in atherosclerosis, human umbilical vein endothelial
cells (HUVECs) stimulated with oxidized low-density lipoprotein (ox-LDL) were subjected
to circRNA microarray analysis, where Hsa circ 0003575 showed the highest upregulation
among all the circRNAs. Loss-of-function tests demonstrated that Hsa circ 0003575 inhibits
endothelial cell (EC) growth, promotes apoptosis, and may act as a sponge for miRs miR-
199-3p, miR-9-5p, miR-377-3p, and miR-141-3 [140]. Some circRNAs, such as ANRIL and
LincP21, have significantly higher circulating levels and are associated with the severity of
atherosclerosis [141,142].

CircRNAs play a major role in atherosclerosis and CAD [143–146]. In patients with
CAD, nine circRNAs were reported by Pan et al. [147]. Ox-LDL treatment of HUVECs
and feeding a high-fat diet to mice resulted in a downregulation of circHIPK3 expression,
whereas overexpressing circHIPK3 increased autophagy, which was inhibited in atheroscle-
rosis [143]. The expression of circHIPK3 was downregulated in mice on a high-fat diet
and in ox-LDL-treated HUVECs. The level of autophagy was decreased in atherosclerosis,
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which was reversed by the overexpression of circHIPK3. Meanwhile, forced expression of
circHIPK3 would reduce the accumulation of lipids in HUVECs.

In an atherosclerotic rabbit model, analysis of a variably expressed circRNA-miR-
mRNA triple network showed that competition among circRNAs and their mRNAs might
be a key factor in the onset of atherosclerosis [16]. When Hsa circ 0030042 was overex-
pressed, it acted as an internal eukaryotic initiation factor, inhibiting ox-LDL-induced
aberrant autophagy in HUVECs, and sustaining plaque stability in-vivo. Furthermore, Hsa
circ 0030042 inhibited autophagy by sponging eIF4A3 and preventing its recruitment to the
mRNAs for beclin1 and forkhead box O1 (FOXO1), though the suppression of beclin1 and
FOXO1 caused by Hsa circ 0030042 was offset by increased eIF4A3 expression or decreased
Hsa circ 0030042 interaction. In ApoE−/− rats fed a high-fat diet, Hsa circ 0030042 also
increased plaque stabilization and reversed eIF4A3-induced plaque instability [148]. A
microarray examining the circRNAs in the peripheral blood of CAD patients showed a
strong correlation of hsa-circRNA11783-2 with the condition, and Hsa circ 0008507, Hsa circ
0001946, and Hsa circ 0000284 are independent risk factors for CAD [149]. Wang et al. [150]
revealed that in CAD patients, 624 circRNAs and 171 circRNAs were significantly elevated
and downregulated, respectively, compared to controls. In large cohorts, Hsa circ 0001879
and Hsa circ 0004104 were shown to be considerably elevated. The combination of Hsa
circ 0001879 and Hsa circ 0004104, along with CAD risk variables, performed best in distin-
guishing CAD patients from healthy controls. Additionally, two non-coding RNA, namely,
ANRIL (antisense non-coding RNA at the INK4 locus) and circANRIL (circular ANRIL),
transcribed at the chromosome 9p21 region, were found to be associated with a high risk
of cardiovascular disease. However, it was discovered that they had opposing effects on
the onset of CAD. Although upregulation of circANRIL prevented the onset of CAD [151],
upregulation of ANRIL was linked to an increase in the incidence of atherosclerosis [141].

The circRNAs are crucial in controlling the stability of atherosclerotic plaques, as in
acutely ruptured carotid plaques. It was discovered that circRNA-16 was elevated while
miR-221, which is linked to VSMC proliferation and death, was downregulated [152]. Axis
inhibition protein 2 was another target of miR-221-3p, which enhanced the proliferation of
pulmonary arterial smooth muscle cells. Therefore, through the miR-221/Ets-1 and AXIN2
axes, circRNA-16 may play a significant regulatory function in the stability of arterial
plaques [153].

3.3. lncRNA and Atherosclerosis

Several lncRNAs with a role in atherosclerosis have been identified. lncRNAs are
expressed in different cell types, present in atherosclerotic lesions, and have been implicated
in several atherogenic processes, such as endothelial dysfunction and lipid deposition [154].
Some of the lncRNAs, their targets, and their functions are listed in Table 3.
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Table 3. Long noncoding RNAs, their targets, and functions.

Type of lncRNA Target RNA Function Reference

Lnc-Ang362 miR-221/222 Proliferation [155]

HIF-AS1 Cholecystokinin-8 (CCK-8) Apoptosis, inhibits proliferation [156,157]

HULC DNA (cytosine-5)-methyltransferase 1
(DNMT1) Apoptosis [158]

lincRNA-p21 Tumor protein 53 (p53), Mouse double minute
2 homolog (MDM2) Apoptosis, inhibits proliferation [159,160]

TUG1 miR-62, miR-21, Phosphatase and Tensin
Homolog (PTEN) Apoptosis, Cell proliferation [161,162]

MALAT1 C-X-C Motif Chemokine Receptor 2 (CXCR2) Apoptosis, inflammation, inhibits
proliferation [163]

MeXis Abca1 Lipid metabolism, inflammation [164]

H19 Wingless family member 1 (WNT1) Apoptosis, inhibits proliferation [165]

DIL4-AS CD31, Hairy, and enhancer of split-1 (HES1) Cell proliferation and migration [166]

GAS5 Matrix metalloproteinases
(MMPs), High Mobility Group Box 1 (HMGB1) Inflammation, apoptosis [167]

MIAT STAT3 Cell proliferation, inhibits apoptosis [168,169]

SENCR Myocardin (Myocd), Midkine (MDK), and
pleiotrophin (PTN) Cell proliferation and migration [170,171]

XIST Nucleotide-binding oligomerization
domain-containing protein 2 (NOD2) Apoptosis [172]

sONE eNOS, c-myc Inhibits cell proliferation [173]

MEG3
NLR family pyrin domain containing 3
(NLRP3), Ras Homolog Family Member B
(RhoB)/PTEN

Inflammation, proliferation [174–176]

ANRIL CDKN2A (p16) Cell proliferation [141,177]

SIRST1 antisense SIRT1 Cell proliferation and migration [178]

LncRNAs are more than 200 nucleotides long and account for the majority of
ncRNA [179,180]. However, less than 5% have been characterized to date, owing in part to
poor conservation among species [181–183]. Although lncRNAs lack functional initiation
codon and termination codons [184], some lncRNAs have been shown to translate into
micropeptides [185]. In a study conducted by Ann et al. [186], it was shown that among
the 380 RNAs that differed in expression between plaque and control tissues, lncRNA
HSPA7 was increased by oxidized low-density lipoprotein (oxLDL). HSPA7 knockdown
decreased human aortic smooth muscle cell migration as well as IL-1 and IL-6 secretion
and expression. However, HSPA7 knockdown reversed the oxLDL-induced reduction in
contractile marker expression. HSPA7 had an effect on miR-223 via an AGO2-dependent
mechanism. HSPA7 is variably expressed in human atheroma and promotes transdiffer-
entiation of contractile VSMCs phenotype to inflammatory de-differentiated/secretory
phenotype through sponging miR-223. Li et al. [162], examining the serum samples of 38
patients with atherosclerosis, found that the level of the lncRNA TUG1 had dramatically
increased in atherosclerotic plaques and VSMC damage models, and the expression of the
lncRNA TUG1 was likewise elevated. A study by Hu et al. [187] demonstrated significant
downregulation of the NEXN gene, lncRNA gene, and NEXN-AS1 in atherosclerotic lesions.
An in-vivo experiment showed that the lncRNA NEXN-AS1 could increase the expression
of NEXN in ECs and that NEXN-AS1 overexpression decreased endothelial inflammatory
activation by blocking the NF-κB pathway [187]. It is widely accepted that oxLDL is one
of the most potent inflammatory triggers for atherosclerosis and that autophagy is the
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survival mechanism for cells under stress. Studies demonstrated that oxLDL lowered
the number and activity of mature-Cathepsin D, resulting in decreased lysosome activity,
which largely contributed to impaired autophagic flux and decreased cell survival during
atherogenesis [188,189].

In another study conducted by Vacante et al. [190], it was demonstrated that lncRNA
CARMN and related microRNAs were downregulated in advanced versus early atheroscle-
rotic lesions in humans and animals. Under homeostatic settings, CARMN deletion af-
fected the expression of miR-143 and miR-145. When atherosclerosis was produced in
mice, CARMN deletion increased the volume, size, and content of proinflammatory Lgals3
(galectin 3)-expressing cells and altered plaque composition, resulting in an advanced
phenotype. Wang et al. [191] reported that in atherosclerotic mice and ox-LDL-stimulated
VSMCs, SNHG16 and HMGB2 expression were enhanced, but the miR-22-3p expression
was decreased. SNHG16 inhibited miR-22-3p expression through direct binding, and
miR-22-3p mimicked reduced proliferation, migration, and invasion in ox-LDL-treated
VSMCs. In addition, because HMGB2 was a target of miR-22-3p, SNHG16 increased
HMGB2 levels by functioning as a competitive endogenous RNA (ceRNA) of miR-22-3p.
The sh-HMGB2 inhibited ox-LDL-induced VSMC proliferation, migration, and invasion
when combined with a miR-22-2p inhibitor. Through miR-22-3p/HMGB2 axis, SNHG16
accelerated atherosclerotic plaque production and increased ox-LDL-activated VSMC prolif-
eration and migration. It has been observed that EC pyroptosis and atherosclerotic plaque
formation were greatly reduced when Gaplinc was silenced. Gaplinc may interact with SP1
to bind to the NLRP3 promoter and upregulate NLRP3 target gene expression in high-fat
diet-fed animals, promoting EC pyroptosis and atherosclerotic plaque growth [192]. Ni
et al. [193] studied lncRNA from smooth muscle cells, which regulates cell plasticity and
atherosclerosis by interacting with serum response factors. It was observed that CARMN,
a lncRNA, is a key regulator of VSMC plasticity and atherosclerosis. Moreover, it was
documented that in HUVECs, plasmacytoma variant translocation (PVT)1 knockdown
reduced ox-LDL-induced inflammation, apoptosis, and oxidative stress. PVT1 worked
as a sponge for miR-153-3p, while growth factor receptor binding protein 2 (GRB2) was
identified as a miR-153-3p target. Overexpression of MiR-153-3p reduced the effects of
PVT1 on ox-LDL-induced cell injury. Overexpression of GRB2 reduced the protective
effects of miR-153-3p against ox-LDL-induced damage. Inhibition of PVT1 attenuated the
activation of the ERK1/2 and p38 pathways via the miR-153-3p/GRB2 axis. Furthermore,
in atherosclerotic mice, silencing of the PVT1 gene reduced atherosclerotic plaques, lipid
formation, inflammation, oxidative stress, and apoptosis [194].

Though most atherosclerotic plaques are therapeutically silent, inflammation and
persistent monocyte mobilization lead to plaque growth and instability, which might
result in potentially fatal complications like myocardial infarction (MI), dementia, and
brain/cerebral edema. LncRNA CCL2 controls the expression of the CCL2 gene, which
codes for monocyte chemoattractant protein 1 and increases the course of vascular inflam-
mation [195]. lncRNA NEAT1, which also interacts with a chromatin modification and
decreases the production of smooth muscle cell proteins, hence promoting the phenotypic
switch of VSMCs from a contractile to a synthetic state, has also been demonstrated to
enhance plaque destabilization [196].

4. Regulation of ECM Components by ncRNAs

In the past few years, various studies have investigated the upregulation or downreg-
ulation of ncRNAs and their modulation in different animal models, clinical samples, and
cell systems that mimic different diseases or diseased states to understand their specific role.
The ncRNAs are directly or indirectly involved in the regulation of expression of different
ECM components within the atherosclerotic plaque, discussed below. The ncRNAs regulate
the gene expression of ECM proteins and different cellular processes and their modula-
tory effects on plaque pathogenesis through post-transcriptional and post-translational
regulation (Figure 2).
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Figure 2. Schematic representation of ncRNAs acting on various cellular processes and their mod-
ulatory effects. Non-coding RNAs (ncRNAs) regulate gene expression at the transcriptional and
post-transcriptional levels and are also involved in the epigenetic regulation of various genes. The
ncRNAs play a critical role in heterochromatin formation and histone modification involving methy-
lation, acetylation, ubiquitination, citrullination, alternative splicing, and gene silencing. Modified
protein structure and levels regulate various molecular mechanisms involved in angiogenesis, cell
proliferation and migration, inflammation, and remodeling.

The production of type III collagen is regulated by miR-29, whose target gene is
COL3A. As shown in atherosclerotic mice, chronic administration of miR-29 antagonist
(LNA-miR-29) results in beneficial plaque remodeling [197]. In human leiomyomas, the
miR-29 effect on collagen type III expression has also been confirmed [198]. In addition,
collagen type VIII may play a crucial role in the plaque destabilization process. These
short collagen fibers stimulate the formation of atherosclerotic plaques by encouraging the
migration and proliferation of smooth muscle cells (SMCs). In addition, apolipoprotein E
(ApoE) is an endogenous inhibitor of collagen type VIII, which may explain why ApoE−/−

mice develop atherosclerosis. Lopes et al. [199] reported that double-knockout Col8−/−

ApoE−/− mice display a more susceptible plaque with a thin fibrous cap than single
knockout ApoE−/− mice. However, type I collagen reduces arterial flexibility. The amount
of miR-145 is decreased in ApoE−/− mice, resulting in enhanced expression of the lysyl
oxidase gene (LOX). Lysyl oxidase crosslinks collagen helices and strengthens collagen
fibers, hence increasing the arterial rigidity of these mice [200]. The expression of elastin is
controlled by microRNA from the miR-15 family (particularly miR-195) and the miR-29
family, and these inhibit the expression of collagen and proteoglycan. Antagomir-29b
significantly reduces aortic aneurysm diameter in ApoE−/− mice, whereas the miR-195
serum level corresponds with the aortic aneurysm diameter in humans [201]. Surprisingly,
this is an inverse association, as miR-195 inhibits elastin and collagens and the ECM-
degrading enzyme MMP-9 [201]. The molecule miR-181b is an additional epigenetic



Int. J. Mol. Sci. 2022, 23, 13731 12 of 27

regulator of elastin gene expression [202]. In ApoE−/− mice, its suppression by anti-
miR-181b reduced the formation of aortic aneurysms, increased the fibrotic response, and
stabilized atherosclerotic plaques or aneurysms. Decorins, a proteoglycan, are frequently
used in relation to microRNA involvement. The expression of this gene is negatively
regulated by miR-181b, as proven by studies on hypertrophic scars [203]. Decorin also
stimulates the activation of proinflammatory macrophages via PDCD4 (programmed cell
death 4) and adversely regulates miR-21 expression. Given that miR-21 is considered an
oncogene (oncomir), decorin appears to inhibit cancer development [204]. However, it is
thought that hyaluronic acid increases miR-10 expression. miR-10 stimulates blood vessel
development by direct control of fms-related tyrosine kinase-1 (flt-1) and Mib-1 [205,206].
The significance of hyaluronic acid in the instability of atherosclerotic plaques and its
regulation by microRNA molecules must be explored. Specifically, the hyaluronic acid
receptor CD44 is blocked by miR-328, which has been observed in renal tubular cells [207].
Notably, proteoglycan expression can also be regulated by miR-599 in conjunction with
collagen expression [208].

Peptidylarginine deiminase (PAD) plays an important role in ECM stability and remod-
eling. Increased levels of PAD in cardiovascular diseases (CVDs), including atherosclerosis,
coronary heart disease, venous thrombosis, cardiac fibrosis, heart failure, and acute inflam-
mation, suggesting its critical role in CVDs. PAD-mediated deamination or citrullination
is involved in various physiological and pathological conditions in the body [209]. Cit-
rullination, a post-translational process, causes the deamination of arginine (Arg) and
conversion of peptidyl-based arginine to peptidyl-based citrulline. This alters the original
three-dimensional structure and function of target proteins and results in dysregulated
inflammatory signaling [210]. MMPs play a critical role in ECM remodeling, and along
with glycosylation, nitrosylation, and proteolysis, citrullination is also involved. Hyper-
citrullination of MMP-9 results in a higher affinity for MMP-9 gelatin compared to control
MMP-9 [211]. Further, the association of PAD-mediated citrullination of fibronectin, an
important constituent of ECM, with CVDs, fibrosis, carcinogenesis, rheumatoid arthritis,
alteration of integrin clustering, and focal adhesion stability suggests its role in regulat-
ing vascular remodeling because fibronectin-mediated inflammatory signaling through
integrin α5 is important for vascular remodeling [212–214].

Collagen and elastin are the main ECM components contributing to the structural
matrix and elasticity of the arteries. Collagen type I, III, IV, V, VI, XVI, XVII, nidogen,
perlecan, agrin, fibronectin, laminin, and prostaglandins (PGs) are major components of the
vascular wall, and type I and III fibrillar collagens, chondroitin sulfate, and dermatan sulfate
PGs, and fibronectin are major ECM component in the adventitia. During remodeling,
the levels of these components get altered to provide a favorable microenvironment to
get a vessel to remodel during CVDs [210,215]. Various mediators regulate ECM and
vascular remodeling, and post-transcriptional regulation is an important evolving aspect
(Table 4). The studies presented in Table 4 suggest that IncRNAs play a regulatory role in
the expression of various ECM components and the proteases modulating their expression.
These findings are further supported by the involvement of ox-LDL with the inflammatory
response of macrophages in atherogenesis [216], LASER, LeXis, and CHROME IncRNA
in cholesterol homeostasis and foam cell formation, and MANTIS, lncRNA-CCL2, and
MALAT1 in vascular inflammation [154]. Further, the functional relevance of IncRNAs
with atherosclerosis [217] and the association of MALAT1, GAS5, lncRNASNP, HAND2-
AS1, H19, and others, and miRNAs in atherosclerotic plaque formation [218,219] support
the notion that IncRNA plays an important role in atherosclerotic plaque formation and
progression. Moreover, the regulation of smooth muscle cell proliferation and calcification
plays a critical role in plaque formation and regulation of MMP-16, co-expressed with
MMP-2 and MMP-9 and various other MMPs by IncRNAs [220]. All these effects support
the role of and warrant a further in-depth understanding of the role of lncRNA-mediated
regulation of plaque formation and progression, ECM and vascular remodeling, and
associated complications.



Int. J. Mol. Sci. 2022, 23, 13731 13 of 27

Table 4. Various ECM components regulated by ncRNAs.

Protein ncRNA Strategy Outcome

Collagen [221] lncRNA8975-1

In-vitro studies to investigate the effects
of overexpression and knockdown of
lncRNA8975-1 on collagen expression in
dermal fibroblasts.

lncRNA8975-1 was overexpressed in
hypertrophic scar tissues and dermal
fibroblasts
lncRNA8975-1 regulates the protein
expression levels of COL1A2, COL1A1,
COL3A1

Collagen [222] LncRNA AC067945.2

In-vitro studies to investigate the effects
of overexpression of LncRNA
AC067945.2 on collagen expression in
normal skin fibroblasts.

LncRNA AC067945.2 overexpression
inhibits the expression of COL1A1,
COL1A2, COL3A1
LncRNA AC067945.2 represses VEGF
secretion

Collagen [223] lncRNA TP53TG1

In vivo (6 weeks old C57BL/6 male mice)
overexpression of TP53TG1 by
adeno-associated virus 5 to examine its
effect on idiopathic pulmonary fibrosis

Overexpression of TP53TG1 attenuates
the increased expression of FN1, Col1α1,
Col 3α1, ACTA2 mRNA, FN1, and Col I
protein level

Collagen [224] LncRNA
SCARNA10

In vitro and in vivo (Balb/c mice)
evaluation of the effects of LncRNA
SCARNA10 overexpression and
knockdown on fibrosis

High expression of SCARNA10 is
positively associated with Col1α1
expression

Collagen [225] shRNA-NEAT1-1

To investigate the roles of LncRNA
NEAT1 and microRNA-455-3p in
pulmonary fibrosis using alveolar
epithelial cells

shRNA-NEAT1-1 abrogates the
promotional effects of TGF-β1 on the
protein expression levels of collagen I
and III and regulate pulmonary fibrosis
involving microRNA-455-3p/SMAD3
axis

Collagen [226] LncRNA PVT1

Evaluated the role of LncRNA PVT1 in
atrial fibrosis in Ang-II-treated human
atrial fibroblasts and Ang-II-induced
atrial fibrosis in mice

Increased expression of LncRNA PVT1 is
positively associated with Col I and Col
III
Regulates atrial fibrosis via
miR-128-3p-SP1-TGF-β1-Smad axis in
atrial fibrillation

Collagen [227] Lnc-HOTAIR Role of Lnc-HOTAIR in gastric cancer
growth and metastasis

Lnc-HOTAIR is positively associated
with COL5A1 expression by sponging
miR-1277-5p

Fibronectin and
Myh-11 [228] lncRNA-AK098656

LncRNA microarray and whole-genome
microarray in human plasma samples
and transgenic rats

Highly upregulated in the plasma of
hypertensive patients and predominantly
expressed in VSMC
Binds to myosin heavy chain-11 and FN1
and promotes degradation
Promote synthetic phenotype in VSMCs

Elastin [229] lncRNA TUG1
Investigated the role and mechanism of
lncRNA TUG1 in bronchopulmonary
dysplasia using a mouse model

lncRNA TUG1 negatively regulates
miR-29a-3p
miR-29a-3p negatively regulates elastin
lncRNA TUG1 suppresses the
inflammatory response and cell apoptosis

Collagen and
fibronectin [230]

IncRNAs (n379599,
n379519, n384648,
n380433, and
n410105)

RNA deep sequencing of protein-coding
and non-coding RNAs from cardiac
samples of patients with ischemic
cardiomyopathy and cardiac fibroblasts
from the mouse were used

lncRNA expression is positively
associated with the expression of
COL3A1, COL8A1, and FN1
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Table 4. Cont.

Protein ncRNA Strategy Outcome

Collagen [231] lncRNA GATA6-AS

Investigated the role of
hypoxia-responsive lncRNA GATA6-AS
in endothelial cells growth and
proliferation by RNA sequencing using
HUVECs

Acts as a negative regulator of nuclear
LOXL2 function
GATA6-AS regulates H3K4me3
methylation of periostin and
cyclooxygenase-2
Collagen IV scaffolding is inversely
regulated by LOXL2 and GATA6-AS
silencing
GATA6-AS is upregulated in endothelial
cells during hypoxia

Collagens and
elastin
PMID: 33473324

lncRNA Cfast Investigated the role of lncRNA Cfast in
cardiac fibrosis

Inc RNA Cfast is positively associated
with Col1α1, Col3 α 1, elastin, and
α-SMA expression, and depletion of
Cfast attenuate their expression

MMP-9 [232] lncRNA LINC00460
Investigated the role of lncRNAs in
meningioma using human tissues and
meningioma cell line (Ben-Men-1)

LINC00460 is positively associated with
MMP-2 and MMP-9 expression
LINC00460 promotes MMP-9 expression
by targeting miR-539

MMP-16 [233] LncRNA NEAT1
To investigate the role of LncRNA NEAT1
in regulating inflammation in asthma
using BEAS-2B cells

NEAT1 negatively regulates miR-200a/b
expression
MMP-16 is a target gene of miR-200a/b

MMP-2 [234] lncRNA GAS5
Investigating the effect and mechanism of
lncRNA GAS5 in cardiac fibrosis using
C57BL/6 mice

lncRNA GAS5 was significantly
downregulated in cardiac fibrosis
Overexpression of GAS5 decrease
MMP-2 and Col 1

MMP-1 [235] LncRNA WTAPP1

Investigated the role of LncRNA
WTAPP1 in the regulation of efficient
recruitment and angiogenesis of
endothelial progenitor cells (EPCs;
in-vitro)

WTAPP1 positively regulated migration,
invasion, and tube formation in EPCs by
increasing MMP-1 expression and
activating PI3K/Akt/mTOR signaling.
lncRNA WTAPP1 is a molecular decoy
for miR-3120-5p

MMP-9 [236]
TET2-interacting
long noncoding
RNA (TETILA)

To investigate the interaction between
demethylation enzymes like TET2 with
lncRNA to target specific promoters

TETILA indirectly activates MMP-9
promoter demethylation

5. Translational Aspects and Clinical Significance

As discussed above, the expression levels of various components of ECM are regu-
lated by ncRNA. However, the research studies investigating this correlation are limited
in the literature. The available studies and clinical trials (NCT03603431, NCT03494712,
NCT02603224, and NCT04045405) [237] have discussed the role of miR-92a, miR-29b, and
miR-132 in association with cutaneous healing and cardiac fibrosis, both having similar
pathogenesis of inflammation and ECM remodeling. This implies that these miRNAs
may also regulate ECM remodeling during plaque formation and progression, an inflam-
matory pathology of the vessels. This notion is supported by the fact that miR-92a is
involved in angiogenesis, vascular inflammation, and vasodilation; miR-29b regulates
elastin degradation; miR-132 regulates vascular smooth muscle cell proliferation and neoin-
timal hyperplasia [66,67,99,102,103]. Although the studies investigating ncRNA-mediated
ECM remodeling are limited, the involvement of ncRNAs regulating molecular mecha-
nisms in plaque pathogenesis warrants further research. In the context of the treatment
of plaque pathology, preclinical investigations have proven that several methods have a
plaque-stabilizing impact by targeting apolipoprotein E, apolipoprotein B, and LDLs in
SMCs, macrophages, monocytes [238–241]. Most of these studies are in animal models;
thus, the positive outcomes have not been replicated in human clinical trials [242–246].
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This may be due to different molecular compositions (macrophage subsets), locations,
pathophysiological processes involved in atherosclerotic plaque instability, the animal
model used, and varying human populations [247–249].

The clinical trials conducted in the treatment of atherosclerosis are mainly focused
on the outcomes of cardiovascular diseases and acute ischemic events. Canakinumab
administered to individuals with a prior myocardial infarction resulted in a substantial
decline in subsequent cardiovascular problems in comparison to placebo [250]. Accordingly,
in the COLCOT study [251], colchicine administered to patients after a myocardial infarction
resulted in a considerable decline in composite endpoint and a significant reduction in
recurrent myocardial infarction. In comparison, an experiment called STABILITY with
darapladib, which was performed on patients with stabilized cardiac artery disorder (no
prior myocardial infarction), was unable to show a statistically considerable difference
between the darapladib and placebo groups in terms of composite endpoint and mortality,
despite showing a subtle but notable decline in significant cardiac problems [252]. Similarly,
the cholesterylester transfer protein (CETP) inhibitor anacetrapib, which causes an increase
in HDL, showed a minor but substantial reduction in major coronary events [253]. The
results from these and other clinical trials (Table 5) suggest that these drugs mainly stabilize
plaque or attenuate atherosclerosis and target the ncRNA involved in ECM remodeling,
inflammation, stabilization of atherosclerotic plaque, or other related events will be of
significance in the treatment of atherosclerosis. Of note, to determine whether a specific
type of therapy results in atherosclerotic plaque stability, the composition and morphology
of the plaque must be visualized, and their stability exponents must be assessed using
intravascular ultrasonography and optical coherence tomography [254,255] to enhance the
therapeutic efficacy of the agent under consideration.

Table 5. Clinical trials in atherosclerosis.

Trial Name, Acronym Intervention Outcome References

Anti-inflammatory therapy for CAD Placebo vs. colchicine Reduces the risk of recurrent
myocardial infarction [256]

Aggressive Reduction of inflammation
stops events Succinobucol vs. placebo Succinbucol did not affect the

primary endpoint [257]

Anti-inflammatory medications on
cardiovascular outcomes of coronary
artery disease patients

Pexelizumab, anakinra,
colchicine, darapladib,
varespladib, canakinumab,
inclacumab, and losmapimod

Failed to reduce adverse
cardiovascular outcomes [258]

Investigation of Lipid Level Management
to Understand Its Impact on
Atherosclerotic Events

Torcetrapib + atorvastatin vs.
atorvastatin

Torcetrapib increased HDL levels,
decreased LDL levels, increased
blood pressure, increased
cardiovascular mortality

[259]

Association between bleeding and
subsequent major adverse cardiac and
cerebrovascular events (MACCE)

Rivaroxaban or rivaroxaban
plus an antiplatelet agent

In patients with atrial fibrillation and
stable coronary artery disease, major
bleeding was strongly associated
with subsequent MACCE

[260]

A Study of RO4607381 in Stable Coronary
Heart Disease Patients With Recent Acute
Coronary Syndrome

Optimal medical
therapy—dalcetrapib vs.
optimal medical therapy +
placebo

Dalcetrapib increased HDL levels but
did not reduce cardiovascular events [261]

anti-inflammatory agents in CAD Colchicine

Gout patients who took colchicine
had a significantly lower prevalence
of myocardial infarction and reduced
all-cause mortality and CRP level

[262]
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Table 5. Cont.

Trial Name, Acronym Intervention Outcome References

Randomized Evaluation of the Effects of
Anacetrapib Through Lipid-modification Anacetrapib vs. placebo Not published yet [263]

anti-inflammatory agents in CAD Colchicine Reduced risk of a CV event among
patients with gout. [264]

Stabilization Of Atherosclerotic Plaque
By Initiation of DarapLadIb Therapy

Optimal medical therapy +
Darapladib vs. optimal
medical therapy + placebo

Darpladib did not reduce the
composite endpoint [265]

Efficacy of Pioglitazone on Pacrovascular
Outcome in Patients with Type 2 Diabetes Pioglitazone vs. Placebo

Pioglitazone reduces the composite of
all-cause mortality, non-fatal
myocardial infarction, and stroke in
patients with type 2 diabetes

[266]

Rosiglitazone evaluated for
cardiovascular outcomes in oral agent
combination therapy for type 2 diabetes
(RECORD): a multicenter, randomized,
open-label trial

Rosiglitazone vs. Placebo

Rosiglitazone does not increase the
risk of overall cardiovascular
morbidity or mortality compared
with standard glucose-lowering
drugs

CAD, coronary artery disease; CV, cardiovascular; CRP, C-reactive protein; HDL, high-density lipoprotein; LDL,
low-density lipoprotein.

A convergence of basic and clinical research has significantly transformed the strate-
gies for managing atherosclerosis and involves mainly targeting inflammatory components.
This was mainly due to the advancement in the approach of randomized clinical trials
involving individuals with an atherosclerotic plaque at different stages and treatment strate-
gies. Furthermore, understanding plaque pathology has also been aided by improvements
in human genetic studies enabled by next-generation sequencing and other technological
innovations, along with an ever-evolving toolbox in the form of genetically modified mice
models allowing for gene-editing and induced pluripotential stem cell methodology [267].
Understanding the activities of ncRNAs in atherosclerosis has progressed beyond DNA
and mRNA analyses because of the involvement of microRNAs and lncRNAs regulating
gene transcription in atherosclerosis [67,268].

6. Conclusions

Based on the studies discussed in this article, it is evident that ECM remodeling is
epigenetically regulated involving miRNAs, lncRNA, and circRNA, and these ncRNAs
regulate the expression of various proteins involved during plaque formation and vulnera-
bility. Since ECM remodeling plays a critical role in plaque vulnerability to stabilize plaque,
ncRNAs can be strong contenders to target. Additionally, the levels of these change during
the process of plaque formation, as evidenced by various studies. ncRNAs may also serve
as diagnostic and prognostic biomarkers for atherosclerosis. Therefore, ncRNAs can be
strong contenders for therapeutic targets for atherosclerosis and related disorders, and
the identification and characterization of relative ncRNAs may have clinical applications,
both as prognostic tools and for therapeutic targets. Further investigations are required to
develop and use specific ncRNAs in diagnosis and therapeutics in patients with cardiovas-
cular diseases. Translating these scientific advancements in therapeutics has necessitated
large-scale clinical trials, which have necessitated increased creativity and money due to the
success of conventional treatments. Placebo-controlled, randomized clinical trials continue
to be the most reliable approach for evaluating the applicability of lab findings to patients.
Indeed, the globalization of cardiovascular disease risk has raised the overall burden of
atherosclerotic disease. However, the progress in laboratory and clinical research promises
to provide us with methods to combat this global epidemic. To make progress in the control
of atherosclerosis, a multidisciplinary collaboration of public health measures, applied
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behavioral psychology, risk factor control, consistent implementation of existing therapies,
and the development and validation of new therapeutic approaches will be required.
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