
Citation: Gruzdev, D.A.; Telegina,

A.A.; Levit, G.L.; Solovieva, O.I.;

Gusel’nikova, T.Y.; Razumov, I.A.;

Krasnov, V.P.; Charushin, V.N.

Carborane-Containing Folic Acid

bis-Amides: Synthesis and In Vitro

Evaluation of Novel Promising

Agents for Boron Delivery to Tumour

Cells. Int. J. Mol. Sci. 2022, 23, 13726.

https://doi.org/10.3390/

ijms232213726

Academic Editor: Asim Debnath

Received: 21 October 2022

Accepted: 4 November 2022

Published: 8 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Carborane-Containing Folic Acid bis-Amides: Synthesis and
In Vitro Evaluation of Novel Promising Agents for Boron
Delivery to Tumour Cells
Dmitry A. Gruzdev 1,* , Angelina A. Telegina 1 , Galina L. Levit 1, Olga I. Solovieva 2,3,
Tatiana Ya. Gusel’nikova 3,4 , Ivan A. Razumov 2,3 , Victor P. Krasnov 1 and Valery N. Charushin 1,5

1 Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch),
Ekaterinburg 620108, Russia

2 Institute of Cytology and Genetics, Russian Academy of Sciences (Siberian Branch),
Novosibirsk 630090, Russia

3 Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
4 Nikolaev Institute of Inorganic Chemistry, Russian Academy of Sciences (Siberian Branch),

Novosibirsk 630090, Russia
5 Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia
* Correspondence: gruzdev-da@ios.uran.ru

Abstract: The design of highly selective low-toxic, low-molecular weight agents for boron delivery
to tumour cells is of decisive importance for the development of boron neutron capture therapy
(BNCT), a modern efficient combined method for cancer treatment. In this work, we developed a
simple method for the preparation of new closo- and nido-carborane-containing folic acid bis-amides
containing 18–20 boron atoms per molecule. Folic acid derivatives containing nido-carborane residues
were characterised by high water solubility, low cytotoxicity, and demonstrated a good ability
to deliver boron to tumour cells in in vitro experiments (up to 7.0 µg B/106 cells in the case of
U87 MG human glioblastoma cells). The results obtained demonstrate the high potential of folic
acid–nido-carborane conjugates as boron delivery agents to tumour cells for application in BNCT.

Keywords: folic acid; amides; carboranes; cytotoxicity; MTT assay; tumour cells; boron accumula-
tion; BNCT

1. Introduction

Boron neutron capture therapy (BNCT) is a modern binary approach to tumour
treatment. This method involves the combined use of two components: a chemical agent
that delivers boron to tumour cells, and irradiation with thermal or epithermal neutrons.
Thermal neutrons interact selectively with 10B atoms, causing their decay with the emission
of high-energy alpha particles and 7Li nuclei, and do not have a noticeable effect on cells and
tissues consisting of biogenic elements [1–3]. Selective delivery of compounds containing
one or more 10B atoms to tumour cells makes it possible to selectively damage them under
the action of thermal neutrons. The main requirements for boron delivery agents suitable for
BNCT include: (i) a tumour/healthy tissue distribution index of at least 3:1; (ii) the ability to
deliver 20–50 µg 10B per 1 g tumour; (iii) minimal toxicity; (iv) high solubility in biological
media [4–6]. To date, only a few compounds are clinically used for BNCT, namely sodium
borocaptate (BSH) [7] and 4-boronophenylalanine (BPA) [8], which were first synthesized
in the 1950s–1960s and are characterized by low tumour targeting. A number of more
selective boron delivery agents have shown high efficiency in in vivo experiments [9–15].
The design of many potential agents for BNCT is based on the introduction of boron-
containing groups (fragments of boric acid or polyhedral boranes and carboranes) into the
structure of natural compounds that can be selectively absorbed by tumour cells [16,17].
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In particular, considerable attention is paid to the preparation of carborane-containing
derivatives and analogues of natural amino acids and short peptides [18–25].

Folic acid (vitamin B9) is a vital compound for the growth and division of mammalian
cells. Cells of various types of tumours are characterized by active expression of folate re-
ceptors (FRs) and are able to accumulate folic acid and its derivatives [26–29]. Modification
of xenobiotics [30–35], liposomes [36–40], and nanoparticles [41–46] using folic acid is a
common way to obtain targeted agents for the tumour treatment and imaging.

In recent decades, a number of the folic acid derivatives and analogues contain-
ing residues of boric acid [47], dodecaborane [48,49], and dicarba-closo-dodecaboranes
(closo-carboranes) [50] have been proposed as boron delivery agents for BNCT. Such com-
pounds generally require extensive purification, and their preparative yields are not high.
Folic acid amide containing a 4-aminophenylboronic acid residue exhibited high hemotoxi-
city [47]. In vitro experiments have shown that the derivatives of pteroic acid containing
dodecaborane residues possess low toxicity and can accumulate in the FR-expressing
cells [48,49]. Intratumoural administration (CED, convection-enhanced delivery) made it
possible to achieve a significant accumulation of the pteroic acid–decaborane conjugate in
F98 glioma cells in vivo [51]. Modification of boron-containing liposomes and nanoparticles
by folic acid also made it possible to achieve targeted boron delivery to the tumour [52–61].

The purpose of our work is to study the possibility of obtaining water-soluble folic
acid derivatives containing two carborane residues and to evaluate their toxicity and ability
to deliver boron to cells. We tried to synthesize simple-in-structure folic acid derivatives
that contained at least 15 wt.% boron and were soluble in water at a concentration of
at least 5 mg/mL at a pH close to neutral. We used primary amines containing the
fragments of 7,8-dicarba-nido-undecaborane (nido-carborane) (compounds 1a,b) and closo-
carborane (compound 1c) as boron-containing building blocks. Functionalization of both
carboxyl groups of folic acid using compounds 1a–c makes it possible to obtain diamides
containing two carborane residues (18–20 boron atoms in one molecule); the presence of
two negatively charged fragments in the molecules of nido-carborane derivatives ensures
the water solubility.

2. Results
2.1. Synthesis

nido-Carborane-containing amines 1a and 1b were synthesized from 3-amino-closo-
carborane and (closo-carboran-1-yl)acetic acid using the coupling reaction with 6-Boc-
aminohexanoic acid and Boc-ethylenediamine, respectively, followed by deboronation us-
ing caesium fluoride and removal of the protecting groups [62]. 3-(6-Aminohexanoylamino)-
closo-carborane (1c) was obtained as hydrochloride from the corresponding Boc-derivative
2 (Scheme 1).
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Scheme 1. Synthesis of carborane-containing building blocks 1a–c. (a) BocNH(CH2)2NH2, EtOCOCl,
NMM, PhNEt2, THF, −12 ◦C . . . rt, 16 h; (b) CsF (3 equiv.), EtOH, ∆, 15 h; (c) HCl conc., 1,4-dioxane,
rt, 3 h; (d) BocNH(CH2)5CO2H, EtOCOCl, NMM, PhNEt2, THF, −12 ◦C . . . rt, 16 h.

Coupling of amines 1a–c to folic acid by the carbodiimide method in DMSO in the
presence of HOBt and an auxiliary base at a folic acid–amine 1a–c–EDCI×HCl molar ratio
of 1:2.2:2.5 smoothly led to the corresponding bis-amides 3a–c (Scheme 2). According to
TLC, the reaction was completed in 24 h, and there were no monoamides or unreacted folic
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acid in the reaction mixture. Previously, a similar approach was used for the synthesis of
bis-amides of folic acid [63] and methotrexate [64].
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Scheme 2. Synthesis of carborane-containing folic acid bis-amides 3a–c. (a) Compound 1a (1b or 1c)
(2.2 equiv.), EDCI×HCl (2.5 equiv.), HOBt (2.2 equiv.), NEt3 (6.7 equiv. for 3a,b or 4.7 equiv. for 3c),
DMSO, rt, 72 h.

Analytical samples of derivatives 3a and 3b were obtained by precipitation from
the reaction mixture with aqueous HCl followed by washing with acetonitrile; flash-
chromatography on silica gel was also used for their purification. bis-Amides 3a,b con-
taining nido-carborane fragments were isolated as internal salts (according to elemental
analysis data). Their 1H NMR spectra contained broad signals in the region of 4.5–8.3 ppm
corresponding to protonated secondary and tertiary amino groups in the pteroyl fragment.
The characteristic signals of the bridging hydrogen atoms of nido-carborane were observed
in the region of –3.2 . . . –2.4 ppm, while the signals of the CH groups of the carborane
fragment of compounds 3a and 3b had a chemical shift of 1.84 and 2.26 ppm, respectively.
Compound 3c containing two closo-carborane residues was isolated in pure form after
washing the crude reaction product with a 7:3 acetonitrile–water mixture.

While compound 3c was poorly soluble in water and most organic solvents, nido-
carborane derivatives 3a and 3b were characterized by significant solubility in MeCN and
MeOH, and were soluble in water at alkaline pH. Thus, the solubility of conjugates 3a,b in 0.5%
aqueous NaHCO3 was 5.0–6.5 mg/mL, which opens up good prospects for
biological testing.

2.2. Toxicity Assay

The toxicity profile of compounds 3a and 3b was studied in the MTT assay [65] on
healthy (nontransformed) cells (BJ-5ta human foreskin fibroblasts) and tumour cells (DU
145 human prostate carcinoma, MDA-MB-231 human breast carcinoma, SK-Mel-28 human
melanoma, T98G and U87 MG human glioblastomas) (Figure 1). The antitumour agent
cisplatin was used as a positive control (at concentrations 10 times lower than those of
compounds 3a,b). Cell viability in negative control samples (without tested compounds in
growth medium) was 100 ± 11%.
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Figure 1. Effect of compounds 3a and 3b on the viability of various cell lines in vitro within 72 h of
co-incubation: (a) BJ-5ta human foreskin fibroblasts, (b) DU 145 human prostate carcinoma, (c) MDA-
MB-231 human breast carcinoma, (d) SK-Mel-28 human melanoma, (e) T98G human glioblastoma,
and (f) U87 MG human glioblastoma.

The folic acid conjugates 3a,b were moderately toxic to healthy fibroblasts and tu-
mour cells of various lines. At the same time, compound 3a was slightly more toxic than
compound 3b. Incubation of healthy cells (human foreskin fibroblasts) in the presence of
3-amino-nido-carborane derivative 3b led to a decrease in cell viability by 12% and 29%
at concentrations of the test compound of 0.50 and 1.0 mg/mL, respectively (Figure 1a).
The (nido-carboran-7-yl)acetic acid derivative 3a exhibited slightly less toxicity against
BJ-5ta fibroblasts (decrease in cell viability by 4% and 24% at concentrations of 0.50 and
1.0 mg/mL, respectively). The susceptibility of SK-Mel-28 melanoma cells to the toxic
effects of conjugates 3a,b was comparable to that of healthy cells (cf. Figure 1a,d).

The highest toxicity of the tested compounds was observed against U87 MG glioblas-
toma cells. The survival of U87 MG cells decreased by 39–61 and 59–69% when incubated
in the presence of conjugates 3a,b at concentrations of 0.25 and 0.50 mg/mL, respectively
(Figure 1e).
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2.3. Evaluation of Boron Accumulation by Cells

Evaluation of boron accumulation by tumour and healthy (nontransformed) cells
in in vitro experiments is an essential step on the way to the design of BNCT agents.
Candidate compounds must be able to penetrate into tumour cells and be retained in them
when administered in a nontoxic dose.

The ability of compounds 3a and 3b to deliver boron into cells was tested using the
cell lines of BJ-5ta fibroblasts, DU 145 and MDA-MB-231 carcinomas, SK-Mel-28 melanoma,
and T98G and U87 MG glioblastomas (Figure 2). In most cases, the tested compounds were
used at a concentration of 0.50 mg/mL, which caused the death of no more than 60% of
cells in 72 h. In the case of the U87 MG cell line, for which the toxicity of compounds 3a,b
was the highest, the compounds were used at a concentration of 0.25 mg/mL. Incubation
was carried out for no more than 8 h to minimize the toxic effect of the compounds.
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Figure 2. Cellular uptake of compounds 3a and 3b by various cells in vitro: (a) BJ-5ta human fore-

skin fibroblasts, (b) DU 145 human prostate carcinoma, (c) MDA-MB-231 human breast carcinoma, 
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Figure 2. Cellular uptake of compounds 3a and 3b by various cells in vitro: (a) BJ-5ta human
foreskin fibroblasts, (b) DU 145 human prostate carcinoma, (c) MDA-MB-231 human breast carcinoma,
(d) SK-Mel-28 human melanoma, (e) T98G human glioblastoma, and (f) U87 MG human glioblastoma.

It has been found that a higher level of boron accumulation by cells is observed during
incubation in the presence of 3-amino-nido-carborane derivative 3b compared to (nido-
carboran-7-yl)acetic acid derivative 3a. The greatest accumulation of boron was observed
in U87 MG glioblastoma cells; moreover, the content of boron in cells during incubation
with compound 3b increased with time (up to 7.0 µg B/106 cells after 8 h) (Figure 2f).

MDA-MB-231 carcinoma cells accumulated up to 2.5 µg B/106 cells when incubated
with conjugate 3b for 1 h; the amount of boron accumulated when compound 3a was used
did not exceed 0.8 µg B/106 cells (Figure 2c). The maximum level of boron accumulation in
SK-Mel-28 and T98G cells was the same as in the case of BJ-5ta human foreskin fibroblasts
(0.8–0.9 µg B/106 cells) (Figure 2a,d,e). The DU 145 prostate carcinoma cells were character-
ized by the least accumulation of conjugates 3a,b (no more than 0.65 µg B/106 cells in the
case of conjugate 3a) (Figure 2b).
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3. Discussion

New carborane-containing folic acid bis-amides 3a–c were prepared from readily
available precursors using easy-to-perform synthetic procedures. Folic acid derivatives 3a,b
containing nido-carborane residues and secondary and tertiary nitrogen atoms capable of
protonation were isolated as internal salts. The nido-carborane derivatives are able to form
salts with bases, therefore the presence of two negatively charged nido-carborane fragments
ensured high solubility of compounds 3a,b in 0.5–1% NaHCO3 aqueous solutions. Thus,
these derivatives meet the requirements for potential agents for BNCT, namely high boron
content and good solubility in biological media.

Another important requirement for promising agents for BNCT is their low cytotoxicity.
Low toxicity at doses sufficient for the accumulation of boron in the tumour guarantees the
successful implementation of this method.

The results shown in Figure 1 indicate that cell incubation in the presence of com-
pounds 3a and 3b dissolved in 0.5% aqueous NaHCO3 practically does not lead to a
decrease in cell survival. Compound 3a containing residues of (nido-carboran-7-yl)acetic
acid and ethylenediamine was slightly more toxic than derivative 3b based on 3-amino-
nido-carborane and 6-aminohexanoic acid.

The low toxicity of folic acid conjugates against SK-Mel-28 melanoma cells may be
due to the low level of accumulation of folic acid derivatives in this cell type. Thus, it is
known that melanosomal sequestration and cellular export may underlie the resistance of
melanoma cells to the action of methotrexate [66] and cisplatin [67].

Literature data on the level of FR expression in glioma cells are rather contradictory. It
has been reported that glioma cells, including U87 MG glioblastoma cells, express folate
receptors and are able to capture folic acid conjugates [68–72]. But there is also evidence
that the U87 MG cells are not very susceptible to the action of folic acid conjugates [73]. In
our case, incubation with folic acid bis-amides 3a,b induced the highest toxic effect on the
U87 MG cells. This indicates that folic acid derivatives are able to actively penetrate into
tumour cells.

It is known that in some cases, folic acid derivatives functionalized at the γ-carboxylic
group of glutamic acid have a higher affinity for FRs compared to α-functionalized deriva-
tives [74–76]. At the same time, in some cases the ability of α- and γ-derivatives of folic
acid to bind to FRs and transport into the tumour is comparable [77–80]; folic acid diamides
also show high selectivity for tumour targeting [81].

Testing of boron accumulation by cells has shown that incubation in the presence of
3-amino-nido-carborane derivative 3b generally provides a higher concentration of boron
in cells compared to (nido-carboran-7-yl)acetic acid derivative 3a. Thus, the observed level
of boron accumulation in U87 MG glioblastoma cells (up to 7 µg B/106 cells) significantly
exceeds the reported results of boron accumulation during incubation with standard BNCT
agents (not more than 0.2 µg B/106 cells in the case of BSH, including in the form of targeted
liposomes [82,83], and not more than 1.1 µg B/106 cells in the case of BPA [13,48,84]) and
with boron-containing analogues of folic acid (at the level of 1.2–1.8 µg B/106 cells for U87
MG glioma and KB carcinoma [47,48]).

The U87 MG cells showed the highest capacity for boron accumulation when incu-
bated with folic acid bis-amide 3b. The MDA-MB-231 carcinoma cells actively expressing
FR-α [85,86] were characterised by somewhat lower boron accumulation
(up to 2.5 µg B/106 cells). In this case, the amount of boron contained in cells upon
incubation with compound 3b reached a maximum after 1 h and then decreased, which
may indicate the presence of mechanisms for the active excretion of folic acid derivatives
from cells. The low level of accumulation of conjugates 3a,b by DU 145, SK-Mel-28, and
T98G cells, as well as by fibroblasts, seems to be associated with a significantly lower
amount of the surface FRs-α compared to U87 MG and MDA-MB-231 cells. Thus, it is
known that DU 145 prostate carcinoma and T98G glioblastoma cells are characterised by
low expression of FRs-α [87,88], while SK-Mel-28 cells are capable of cellular export of folic
acid analogues.
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Apparently, the degree of boron accumulation by cells during incubation with folic
acid bis-amides 3a and 3b correlates with the level of FR-α expression. This indicates
that the process of boron accumulation is based on the binding of carborane-containing
conjugates 3a,b to surface FRs-α and subsequent internalization into cells.

The results obtained indicate that folic acid bis-amide 3b containing 18 boron atoms
per molecule is suitable for targeted delivery of boron and can be considered as a potential
agent for BNCT of FR-α-positive tumours. Moderate cytotoxicity and a high level of
accumulation of compound 3b by glioblastoma cells in in vitro experiments allows us to
count on the possibility of using this derivative even with the natural distribution of boron
isotopes for the successful implementation of BNCT. Testing the toxicity and biodistribution
of compound 3b and related derivatives in in vivo experiments seems to be a promising
direction in the development of new convenient and highly efficient agents for BNCT.

4. Materials and Methods
4.1. Chemistry General Section

[2-(7,8-Dicarba-nido-undecaboran-7-yl)acetylamino]ethylamine (1a) and 3-(6-tert-butox
ycarbonylamino)hexanoylamino-1,2-dicarba-closo-dodecaborane (2) were obtained accord-
ing to procedure published elsewhere [62]. Other reagents are commercially available.
Solvents were purified according to traditional methods [89] and used freshly distilled.

Melting points were obtained on a SMP3 apparatus (Barloworld Scientific, Stafford-
shire, UK) and are uncorrected. Optical rotations were measured on a Perkin Elmer
341 polarimeter (Perkin Elmer, Waltham, MA, USA). The 1H, 11B and 13C NMR spectra
of compounds 3a,c and 1H NMR spectra of compounds 1c and 3b were recorded on a
Bruker Avance 500 instrument (Bruker, Karlsruhe, Germany) (500, 160, and 126 MHz,
respectively) at ambient temperature. The 11B and 13C NMR spectra of compounds 1c and
3b were recorded on a Bruker DRX-400 instrument (Bruker, Karlsruhe, Germany) (128
and 100 MHz, respectively) at ambient temperature. TMS and BF3 × Et2O were used as
internal and external standards, respectively. NMR spectra of the compounds obtained,
see the Supplementary Materials, Figures S1–S12. Microanalyses were carried out using a
Perkin Elmer 2400 II automatic analyser (Perkin Elmer, Waltham, MA, USA). Analytical
TLC was performed using Sorbfil plates (Imid, Krasnodar, Russia). Flash column chro-
matography was performed using Silica gel 60 (230–400 mesh) (Alfa Aesar, Heysham,
Lancashire, UK). The high-resolution mass spectra were obtained on a Bruker maXis Im-
pact HD mass spectrometer (Bruker, Karlsruhe, Germany), electrospray ionization (ESI)
in negative (compounds 3a, 3b) or positive mode (for compound 3c) or atmospheric pres-
sure chemical ionization (APCI) in positive mode (compound 1c) with direct sample inlet
(4 L/min flow rate).

4.2. Synthesis

3-(6-Aminohexanoyl)amino-1,2-dicarba-closo-dodecaborane hydrochloride (1c). Concen-
trated HCl (4 mL, 47.68 mmol) was added to a cooled (0–5 ◦C) solution of compound
2 (0.76 g, 2.04 mmol) in 1,4-dioxane (18 mL). The reaction mixture was stirred at room
temperature for 2.5 h, then evaporated to dryness under reduced pressure. The residue was
dried in vacuo over P2O5 and KOH at 60 ◦C. Yield 0.63 g (100%). Colourless hygroscopic
powder. 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.27–1.32 (m, 2H, 2 × H-4 hexanoyl),
1.47–1.57 (m, 4H, 2 × H-3 and 2 × H-5 hexanoyl), 2.20 (t, J = 7.4 Hz, 2H, 2 × H-6 hexanoyl),
2.71–2.78 (m, 2H, 2 × H-2 hexanoyl), 1.2–2.8 (br. s, 9H, 9 × BH), 5.08 (s, 2H, 2 × CH
carborane), 7.90 (br. s, 3H, NH3

+), 8.30 (s, 1H, NH). 11B{H} NMR (160 MHz, DMSO-d6)
δ (ppm): 15.1, 13.5, 10.7, –5.5.13CNMR (100 MHz, DMSO-d6) δ (ppm): 24.77, 25.90, 27.17,
36.80, 39.03, 57.66 (2C), 176.89. HRMS (APCI): m/z [M+H]+ calcd for [C8H25

11B10N2O]+:
275.2892, found: 275.2898.

General Procedure for the Synthesis of Carborane-Containing Folic Acid bis-Amides 3a,b.
EDCI×HCl (0.37 g, 1.92 mmol) was added to a solution of folic acid dihydrate (0.37 g,
0.77 mmol), amine 1a or 1b (1.69 mmol), HOBt hydrate (0.26 g, 1.69 mmol), and NEt3
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(0.72 mL, 5.16 mmol) in DMSO (17 mL). The reaction mixture was stirred at room tem-
perature for 48 h, then poured into H2O (100 mL). 1N NaOH (15 mL) was added to the
resulting suspension, and the resulting solution was extracted with EtOAc (3 × 25 mL)
and n-hexane (25 mL). Combined organic layers were washed with 0.5N NaOH (20 mL).
Aqueous layers were combined and acidified with 4N HCl (~8 mL) to pH 1–2 and left at
5–10 ◦C for 72 h. The precipitate was filtered off, dried, and subjected to flash column
chromatography on silica gel (eluent n-BuOH–EtOH–16% aq. NH4OH 5:7:3). The fractions
containing the fast-eluting component were combined and evaporated to dryness under
reduced pressure. The residue was washed with 1N HCl (15 mL), then dried in vacuo over
P2O5 and KOH. Analytical samples of compounds 3a and 3b were obtained by treatment
with MeCN (13 mL per 0.5 g of compound) followed by centrifugation (15,000 rpm at 10 ◦C,
5 min).

(2S)-2-[(4-{[(2-Amino-4-hydroxypteridin-6-yl)methyl]amino}phenyl)-formamido]-N1,N5- bis-
{2-[(7,8-dicarba-nido-undecaboran-7-yl)acetylamino]ethyl}pentanediamide semihydrate (3a). Yield
0.47 g (69%). Dark orange powder m.p. > 350 ◦C. [α]20−4.5 (578 nm), −5.1 (546 nm) (c
0.32, 1N NaOH). 1H NMR (500MHz, DMSO-d6) δ (ppm): −2.75 (br. s, 1H, BH), −2.61 (br.
s, 1H, BH), −0.45 . . . 2.30 (br. m, 18H, 18 × BH), 1.69–1.74 (m, 1H, H-3B Glu), 1.84 (s, 2H,
2 × CH carborane), 1.94–1.99 (m, 1H, H-3A Glu), 2.00–2.05 (m, 2H, 2 × H-2B acetyl),
2.13 (m, 2H, 2 × H-4 Glu), 2.36 (d, J = 14.1 Hz, H-2A acetyl), 2.37 (d, J = 14.3 Hz, H-2A
acetyl), 3.00–3.13 (m, 8H, 4 × CH2 ethylenediamine), 4.25 (br. s, 1H, H-2 Glu), 4.60 (s, 2H,
CH2 pteroyl), 4.75–6.25 (6H, OH, NH+, NH2

+ pteroyl and H2O), 6.64 (d, J = 8.1 Hz, 2H,
pteroyl), 7.41 (br. s, 1H, NH), 7.43 (br. s, 1H, NH), 7.67 (d, J = 8.1 Hz, 2H, pteroyl), 7.83
(s, 1H, NH), 7.91 (s, 1H, NH), 8.05 (br. s, 1H, NH), 8.18 (br. s, 2H, NH2 pteroyl), 8.75 (s,
1H, CH pteroyl). 11B{H} NMR (160 MHz, DMSO-d6) δ (ppm): −37.2, −33.4, −22.2, −17.6,
−14.2, −10.7. 13C NMR (126 MHz, DMSO-d6) δ (ppm): 27.31, 31.93, 38.07, 38.13, 38.46,
38.49, 40.41, 42.19, 45.26, 45.31, 45.70, 46.41 (br. s), 53.18, 54.58 (br. s), 111.24 (2C), 121.68,
127.96, 129.02 (2C), 147.54, 148.06, 150.36, 151.96, 152.22, 158.78, 166.08, 171.03, 171.07,
171.81, 171.86. Calcd (%) for C31H57B18N11O6 × 0.5H2O: C 42.15, H 6.62, N 17.44. Found
(%): C 42.36, H 6.53, N 17.19. HRMS (ESI): m/z [M−2H]2− calcd for [C31H55

11B18N11O6]2−:
437.8011, found: 437.8040; m/z [M−2H+Na]− calcd for [C31H56

11B18N11NaO6]−: 899.5993,
found: 899.5944.

(2S)-2-[(4-{[(2-Amino-4-hydroxypteridin-6-yl)methyl]amino}phenyl)-formamido]-N1,N5- bis-
{5-[(7,8-dicarba-nido-undecaboran-3-yl)aminocarbonyl]pentyl}pentanediamide (3b). Yield 0.48 g
(67%). Orange powder m.p. 240–245 ◦C (decomp.) (MeCN). [α]20 −38.7 (578 nm), −50.3
(546 nm) (c 0.44, 1% NaHCO3). 1H NMR (500 MHz, DMSO-d6) δ (ppm): −2.96 (br. s, 2H,
2 × BH), −0.45 . . . 2.3 (br. m, 18H, 18 × BH), 1.11–1.19 (m, 4H, 4 × H-4 hexanoyl), 1.28–
1.42 (m, 8H, 4 × H-3 and 4 × H-5 hexanoyl), 1.81–1.97 (m, 2H, 2 × H-3 Glu), 1.97–2.00 (m,
4H, 4 × H-2 hexanoyl), 2.06–2.15 (m, 2H, 2 × H-4 Glu), 2.26 (s, 4H, 4 × CH carborane),
2.95–3.03 (m, 4H, 4 × H-6 hexanoyl), 4.24–4.28 (m, 1H, H-2 Glu), 4.59 (s, 2H, CH2 pteroyl),
4.8–6.2 (4H, OH, NH+, NH2

+ pteroyl), 6.64 (d, J = 8.5 Hz, 2H, pteroyl), 6.88 (s, 2H, 2 ×
NH), 7.65 (d, J = 8.5 Hz, 2H, pteroyl), 7.75–7.82 (m, 2H, 2 × NH), 7.97 (br. s), 7.98 (br. s),
and 8.02 (br. s) (3H, NH and NH2 pteroyl), 8.75 (s, 1H, CH pteroyl). 11B{H} NMR (128
MHz, DMSO-d6) δ (ppm): −38.5, −37.5, −22.4, −21.3, −18.6, −17.6, −12.1, −11.6, −9.9.
13C NMR (100 MHz, DMSO-d6) δ (ppm): 25.58, 25.62, 26.57, 26.67, 28.16, 29.37 (2C), 32.54,
37.33 (2C), 38.95 (2C), 45.09 (br. s, 4C), 46.19, 53.73, 111.78 (2C), 122.27, 128.48, 129.47 (2C),
148.01, 148.05, 150.86, 152.30, 153.01, 159.22, 166.42, 171.99, 172.08, 176.02 (2C). Calcd (%)
for C35H65B18N11O6: C45.18, H 7.04, N 16.56. Found (%): C 44.95, H 6.93, N 16.60. HRMS
(ESI): m/z [M−2H]2− calcd for [C35H63

11B18N11O6]2−: 465.8324, found: 465.8356.
(2S)-2-[(4-{[(2-Amino-4-hydroxypteridin-6-yl)methyl]amino}phenyl)-formamido]-N1,N5- bis-

{5-[(1,2-dicarba-closo-dodecaboran-3-yl)aminocarbonyl]pentyl}pentanediamide (3c). EDCI×HCl
(0.44 g, 2.28 mmol) was added to a solution of folic acid dihydrate (0.44 g, 0.91 mmol), amine
1c (0.62 g, 2.01 mmol), HOBt hydrate (0.31 g, 2.01 mmol), NEt3 (0.60 mL, 4.29 mmol) in
DMSO (16 mL). The reaction mixture was stirred at room temperature for 22 h, then poured
into H2O (170 mL). The precipitate was filtered off, dried in vacuo, then cold (0–5 ◦C) 0.15N
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aqueous NaOH (48 mL) was added, and the reaction mixture was stirred at 5 ◦C for 30
min. The precipitate was separated by centrifugation (12,000 rpm, 15 min), washed with
H2O (50 mL), and centrifuged again (washing was repeated thrice). The precipitate was
dried, treated with a MeCN–H2O 7:3 mixture (100 mL) at room temperature, cooled to 5 ◦C,
centrifuged (12,000 rpm, 15 min), washed with a MeCN–H2O 7:3 mixture (2 × 40 mL) and
dried in vacuo over P2O5 at 50 ◦C. Yield 0.44 g (50%). Yellowish powder m.p. 248–253 ◦C
(decomp.). [α]D

20 +2.5 (c 0.33, DMSO). 1H NMR (500 MHz, DMSO-d6) δ (ppm): 1.19–
1.25 (m, 4H, 4 × H-4 hexanoyl), 1.31–1.40 (m, 4H, 4 × H-3 hexanoyl), 1.43–1.51 (m, 4H, 4 ×
H-5 hexanoyl), 1.55–2.45 (br. m, 18H, 18 × BH), 1.79–1.87 (m, 1H, H-3B Glu), 1.91–2.02 (m,
2H, H-3A Glu and H-2B hexanoyl), 2.07–2.14 (m, 1H, H-2B hexanoyl), 2.15–2.17 (m, 4H,
2 × H-4 Glu and 2 × H-2A hexanoyl), 2.97–3.04 (m, 4H, 4 × H-6 hexanoyl), 4.25–4.29 (m,
1H, H-2 Glu), 4.49 (d, J = 5.8 Hz, 2H, CH2 pteroyl), 5.07 (s, 4H, 4 × CH carborane), 6.63 d,
J = 8.6 Hz, 2H, pteroyl), 6.81 (br. s, 1H, NH), 6.92–6.94 (m, 2H, NH2 pteroyl), 7.65 (d,
J = 8.6 Hz, 2H, pteroyl), 7.77 (t, J = 5.3 Hz, 1H, NH), 7.79 (t, J = 5.5 Hz, 1H, NH), 8.22 (s, 2H,
2 × NH aminocarborane), 8.64 (s, 1H, CH pteroyl), 11.41 (s, OH). 11B{H} NMR (160 MHz,
DMSO-d6) δ (ppm): –15.1, –13.5, –10.7, –5.6. 13C NMR (126 MHz, DMSO-d6) δ (ppm): 24.46,
24.49, 25.85, 25.95, 27.68, 28.81 (2C), 32.06, 36.48 (2C), 38.31 (2C), 45.88, 53.17, 57.01 (4C),
111.11 (2C), 121.46, 127.86, 128.91 (2C), 148.43, 148.60, 150.67, 153.63, 156.51, 160.73, 166.02,
171.48, 171.51, 176.47 (2C). Calcd (%) for C35H63B20N11O6: C 44.24, H 6.68, N 16.22. Found
(%): C44.26, H 6.85, N 16.20. HRMS (ESI): m/z [M+Na]+ calcd for [C35H63

11B20N11NaO6]+:
976.6790, found: 976.6796.

4.3. Cell Lines

The following cell lines were used: BJ-5ta human foreskin fibroblasts (ATCCCRL-
4001™), U87 MG human glioblastoma (ATCCHTB-14™), T98G human glioblastoma (ATCC
CRL-1690™), SK-Mel-28 human melanoma (ATCCHTB-72™), MDA-MB-231 breast carci-
noma (ATCCCRM-HTB-26™), and DU 145 prostate adenocarcinoma (ATCCHTB-81™),
stored in the SPF-vivarium cryobank at the Institute of Cytology and Genetics of the Rus-
sian Academy of Sciences (Siberian Branch), Novosibirsk. Cells were cultured in 5% CO2 in
DMEM/F12 (1:1) nutrient medium (Biolot, St. Petersburg, Russia) supplemented with 10%
fetal bovine serum (Invitrogen, Waltham, MA, USA). Cells were counted on a Countess
automatic cell counter (Invitrogen, Waltham, MA, USA).

4.4. MTT Cytotoxicity Assay

Cells were seeded in 96-well plates in the amount of 2 × 104 cells per well and
cultivated for 24 h. Stock solutions of compounds 3a and 3b in 0.5% aqueous NaHCO3
(concentration 5.0 mg/mL) were prepared under stirring for 10 min, then incubated at
37 ◦C for 20 min and sonicated on a Sonicator Q700 ultrasonic homogenizer (Qsonica
L.C.C, Newtown, CT, USA) for 30 min. A solution of the commercial anticancer agent
Cisplatin (Cisplatin Teva, Pharmachemie B.V., Haarlem, the Netherlands) with an initial
concentration of 0.50 mg/mL was used as a positive control. Nutrient medium without
additives was used as a negative control. The stock solutions of compounds 3a,b were
added to the nutrient medium with cells in a volume of 1/5 of the total volume of the
medium in the well, as a result of which the concentration of compounds 3a and 3b in
the medium was 1.00 mg/mL; cisplatin concentration was 0.10 mg/mL. Then, a series of
twofold dilutions of stock solutions was prepared and added to the nutrient medium with
cells in such a way as to obtain nutrient media with the concentration of compounds 3a and
3b of 0.50, 0.25, 0.125, 0.063, 0.031, 0.016, and 0.008 mg/mL. The concentration of cisplatin
in the positive control samples was 0.10000, 0.0500, 0.0250, 0.0125, 0.0063, 0.0031, 0.0016,
and 0.0008 mg/mL. The duration of cell incubation was 3 days at 37 ◦C in an atmosphere
containing 5% CO2. After that, the culture medium was removed from each well, a solution
of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] in DMEM/F12
(1:1) culture medium (MTT concentration 5 mg/mL) was added and incubated for 4 h;
then, the supernatant was removed, and the formazan precipitate was dissolved in DMSO
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(100 µL). The optical density of the resulting solutions was determined on a Multiskan Sky
High Microplate Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) at a
wavelength of 595 nm. Cell viability was determined based on optical density; cell viability
in the negative control was taken as 100%. Experiments were performed in three parallel
runs (for detailed information on cell viability of various cell lines, see the Supplementary
Materials, Table S1).

4.5. Boron Uptake and Accumulation Assay

Stock solutions of compounds 3a and 3b were prepared in 0.5% aqueous NaHCO3
(concentration 5.0 mg/mL). BJ-5ta, SK-Mel-28, T98G, DU 145, MDA-MB-231, and U87 MG
cells were cultured in 5 mL of nutrient medium at 37 ◦C in a 5% CO2 atmosphere until
a monolayer was obtained (from 3 × 106 up to 5 × 106 cells). The nutrient medium was
removed, a mixture of the nutrient medium (4.75 mL in the case of U87 MG cells or 4.50 mL
in other cases) and the stock solution of compound 3a or 3b (0.25 mL in the case of U87 MG
cells or 0.50 mL in other cases) was added to the cells and incubated at 37 ◦C in a 5% CO2
atmosphere. Cells cultured without the addition of test compounds were used as controls.

After the cells were incubated for various times (10 min, 30 min, 1 h, 3 h, 6 h, and
8 h), the culture medium was separated from the cells, and the cells were removed from
the substrate with a trypsin–versene solution (1:1) (Biolot, St. Petersburg, Russia), and the
number of cells was counted (for the number of cells used for assay, see the Supplementary
Materials, Tables S2–S7). The resulting cell suspension was divided into three equal parts,
centrifuged (1000 rpm, 5 min), and the cells were separated from the supernatant. 16M
Nitric acid (1.0 mL) was added to the resulting cells, the mixture was kept at 95 ± 1 ◦C
for 30–40 min, then cooled to 20 ◦C, and deionized water (3.0 mL) was added. The boron
content in the obtained solutions was determined on an iCAP 6500 DUO high-resolution
atomic emission spectrometer with inductively coupled plasma (Thermo Fisher Scientific,
Waltham, MA, USA) according to the procedure described in [90].

5. Patents

Gruzdev, D.A.; Krasnov, V.P.; Telegina, A.A.; Levit, G.L.; Solovieva, O.I.; Razumov,
I.A.; Kanygin, V.V.; Gusel’nikova, T.Ya.; Charushin, V.N. nido-Carborane-containing folic
acid bis-amides for boron delivery to tumour cells, Pat. Appl. RU2022123758A (priority
2022-09-07).
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