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Abstract: Circadian rhythms control almost all aspects of physiology and behavior, allowing temporal
synchrony of these processes between each other, as well as with the external environment. In the
immune system, daily rhythms of leukocyte functions can determine the strength of the immune
response, thereby regulating the efficiency of defense mechanisms to cope with infections or tissue
injury. The natural light/dark cycle is the prominent synchronizing agent perceived by the circadian
clock, but this role of light is highly compromised by irregular working schedules and unintentional
exposure to artificial light at night (ALAN). The primary concern is disrupted circadian control
of important physiological processes, underlying potential links to adverse health effects. Here,
we first discuss the immune consequences of genetic circadian disruption induced by mutation or
deletion of specific clock genes. Next, we evaluate experimental research into the effects of disruptive
light/dark regimes, particularly light-phase shifts, dim ALAN, and constant light on the innate
immune mechanisms under steady state and acute inflammation, and in the pathogenesis of common
lifestyle diseases. We suggest that a better understanding of the mechanisms by which circadian
disruption influences immune status can be of importance in the search for strategies to minimize the
negative consequences of chronodisruption on health.

Keywords: circadian rhythms; chronodisruption; inflammation; innate immunity; light at night;
phase shifts

1. Introduction

Circadian rhythms (circa = about; dies = day) represent endogenous oscillations with
a period of approximately 24 h. In most species, circadian rhythms are effectively entrained
by external factors, primarily by a light/dark (LD) cycle, allowing the anticipation of daily
periodic changes in the environment [1,2]. Mammalian circadian rhythms are governed by
a master clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. The SCN
receives photic input from the environment and transmits the information to peripheral
oscillators to coordinate the optimal timing of physiological and behavioral processes [3].

Life on Earth has evolved under relatively stable conditions of bright days and dark
nights. The sun is the primary light source for the majority of organisms, with daylight
illumination varying from 50,000 to 100,000 lx, and low illuminance levels during the
night, reaching up to 0.3 lx at the full moon [4,5]. Nowadays, light exposure is no longer
limited by the natural LD cycle in the industrialized world. Recent studies show that
more than 80% of the world’s population lives in light-polluted areas [6] and increasing
exposure to artificial light at night (ALAN) represents a novel challenge for both humans
and wildlife [7,8]. The straightforward impact of compromised LD cycles is linked with
circadian disruption, which can be manifested at multiple levels, depending on the nature
of mistimed light information. Such situations are a common part of modern society and
include especially various shift work schedules, time-zone transitions, or unintentional
ALAN exposure. Here, circadian disruption refers to transient or chronic misalignment
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between the external LD cycle and endogenous circadian clocks, which can further lead
to internal misalignment (impaired phase relationships) or desynchronization (changes in
period) among individual endogenous rhythms, diminished peak-trough differences in
these rhythms (changes in amplitude) or complete arrhythmicity [9]. The main result is
attenuated or abolished circadian control of important physiological processes, underlying
potential links to adverse health effects [10,11]. Many epidemiological studies examining
the risk of common lifestyle diseases among shift workers or due to ALAN found a positive
correlation with the incidence of sleep disorders [12,13], cancer [14,15], metabolic and
cardiovascular diseases [16–18]. A common feature of most lifestyle and chronic diseases is
low-grade inflammation, which can further potentiate disease progression [19]. Therefore,
a better understanding of the mechanisms by which circadian disruption influences the
status of the immune system and inflammatory responses can be of importance in the
search for strategies to minimize the negative consequences of environmentally induced
circadian disruption on health.

In the current review, we document the effects of circadian disruption resulting from
compromised LD information on fundamental aspects of the innate immune defense
under homeostatic conditions, as well as in response to acute inflammation and in the
pathogenesis of diseases. We focus on data obtained from experimental studies in rodents
and first compare the immune consequences in transgenic animal models with genetic
mutation or deletion of specific clock genes. In the following sections, we evaluate the
impact of different disruptive LD regimes, particularly light-phase shifts, dim ALAN, and
constant light (LL) on innate immune cells and their effector functions.

The literature search was performed in the PubMed and Google Scholar databases
based on the following keywords: artificial light at night, circadian disruption, constant
light, dim light at night, innate immunity, inflammation, jet lag, macrophages, monocytes,
neutrophils, NK cells, shift work. Relevant papers were evaluated by title and abstract,
followed by a full-text overview.

2. Mammalian Circadian System

In mammals, circadian timekeeping is organized into a multi-oscillator system operat-
ing in a hierarchical manner, with the SCN as a master oscillator [20]. The SCN neurons
are located alongside the third ventricle above the optic chiasm and form a unified cir-
cadian network [21]. Light information is perceived by the intrinsically photosensitive
retinal ganglion cells, containing the photopigment melanopsin, and conveyed via the
retinohypothalamic tract into the SCN [22]. Subsequently, the SCN communicates timing
information to individual peripheral oscillators via neural and humoral pathways [23].

At the molecular level, circadian rhythms are generated through transcriptional-
translational feedback loops of clock genes and their protein products, forming a basis of the
self-sustained and cell-autonomous molecular clocks [24]. The core feedback loop consists
of positive and negative regulators. The CLOCK and BMAL1 proteins heterodimerize to
form the CLOCK/BMAL1 complex, which activates transcription via binding to E-box
enhancer elements in the promoters of clock genes, Period (Per1, Per2, and Per3) and
Cryptochrome (Cry1 and Cry2). The PER and CRY proteins represent a negative limb of the
loop, as they form the repressive PER/CRY complex, which enters the nucleus, combines
with CLOCK/BMAL1, and inhibits the transcription of E-box-controlled genes [25]. The
availability and stability of PER and CRY proteins are regulated by protein kinases and
phosphatases [26].

Additionally, the core loop is stabilized by accessory feedback loops, consisting of
transcriptional activators and repressors, which regulate target genes either through ROR
response elements (RORE) or D-boxes [27]. In this way, nuclear receptors REV-ERBs (α/β)
repress and retinoic acid-related orphan receptors (RORα/β/γ) activate the transcription
of Bmal1, which contains RORE in its promoter. On the other hand, the CLOCK/BMAL1
complex can activate the transcription of genes encoding REV-ERBs [28]. The next feedback
loop is formed by nuclear factor interleukin-3 (NFIL3, also known as E4BP4) and D-
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box binding protein (DBP), which competitively repress or activate the transcription of
D-box regulated genes, such as those encoding the circadian proteins PER, REV-ERBs,
and RORs [24]. Importantly, circadian regulatory elements have also been identified
in the promoters of numerous immune genes, underlying direct crosstalk between the
components of the molecular clockwork and the immune system [29,30].

3. Circadian Rhythms in Innate Immunity

Innate immune mechanisms represent the first line of defense against invading
pathogens. Circulating and tissue-specific innate immune cells recognize pathogens or cell
injury via pattern recognition receptors [31]. Subsequently, initiated signaling pathways
induce the release of specific immune mediators, such as cytokines, chemokines, and an-
timicrobial peptides, which are involved in numerous effector functions [32]. Effective host
defense against infection is based on tightly regulated immune processes. Inflammation is
an essential part of the innate immunity in response to infection or tissue injury. However,
deregulated inflammatory responses or disbalance between favoring and limiting factors
can lead to chronic inflammation and tissue damage [19].

Immune functions, including innate immune mechanisms, are under circadian control.
Leukocyte trafficking, inflammatory responses and susceptibility to pathogens exhibit their
peaks and troughs at specific times of the day [33,34]. In steady state, circulating immune
cell numbers reach a peak during the day in mice and rats [35,36] and during the night
in humans [37]. High and low leukocyte numbers in the blood over 24 h mirror their
mobilization from the bone marrow in the passive phase (light phase for rats) and their
recruitment to tissues at the onset of the active phase (dark phase for rats) [38]. Leukocyte
oscillations persist in an absence of external entraining cues, such as the LD cycle, thereby
indicating their endogenous nature [39,40]. Rhythmic leukocyte trafficking is complemen-
tary controlled by extrinsic factors, including neural and humoral outputs of the central
oscillator, immune cell-autonomous clocks, and tissue-specific microenvironment [35,41,42].
For example, reported data show that β3-adrenergic signaling in the mouse bone marrow
down-regulates C-X-C motif chemokine ligand 12 (Cxcl12) expression during the light
phase, controlling the rhythmic release of hematopoietic progenitors from the bone marrow
into the circulation [43]. Additionally, low corticosterone levels at the onset of the light
phase allow proliferation of hematopoietic cells and contribute to their egress into the
circulation [44].

The exit of leukocytes from the circulation to the tissues is facilitated by coordinated
interactions between adhesion molecules on the endothelium and the surface of leuko-
cytes [45]. In general, rhythmic expression of adhesion molecules, such as intercellular
adhesion molecule 1 (ICAM1), vascular cell adhesion molecule 1 (VCAM1), and selectins
on endothelial cells promotes time-of-day-dependent leukocyte transmigration into the
lymphoid and non-lymphoid tissues [35].

Susceptibility of the immune system to bacterial, viral, and parasitic infections varies
across 24 h [46]. One of the first evidence was provided by the experiment, in which mice
were administrated a lethal dose of lipopolysaccharide (LPS). An immune challenge given
at the end of the rest period led to a mortality rate of 80%, whereas the same LPS dose given
in the middle of the active period resulted in a mortality rate of only about 20% [47]. A
subsequent study demonstrated that this time-of-day-dependent mortality rate following
LPS administration correlates with the increased cytokine response at the end of the light
phase (ZT11; ZT—Zeitgeber time) compared to the dark period (ZT19) [48]. Daily variation
in susceptibility to inflammatory challenge has also been shown to correlate with nuclear
factor kappa B (NF-κB) activation, as mice administrated with a toll-like receptor (TLR)
5 ligand in the middle of their passive phase (ZT6) displayed higher NF-κB activation
compared to mice injected in their active phase (ZT18) [49].

Macrophages represent one of the main sources of pro-inflammatory cytokines, and
their inflammatory response is controlled by the circadian clock [50]. Mouse peritoneal
macrophages show higher LPS-induced expression of inflammatory cytokines, mainly
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interleukins Il-6, Il-12b, and chemokines Cxcl1 and C-C motif chemokine ligand 2 (Ccl2),
when isolated at the end than at the beginning of the subjective passive phase [51]. More-
over, the rhythm of inflammatory monocytes Ly6Chigh in the blood corresponds with the
time-of-day-dependent immune response to Listeria monocytogenes infection, reflected by
higher levels of CCL2 in the serum and peritoneal fluid upon the induction of infection at
ZT8 compared to ZT0 [52].

Neutrophil infiltration into the skeletal muscle was increased upon tumor necrosis
factor-alpha (TNFα) challenge at the beginning of the active phase (ZT13) compared to the
passive phase (ZT5), and positively correlated with greater Icam1 expression on the muscle
endothelial cells [53]. On the other hand, in a mouse model of acute lung inflammation, the
recruitment of neutrophils was promoted by the rhythmic release of chemokine CXCL5 from
bronchiolar epithelial cells with higher levels upon LPS administration at the beginning of
the resting phase compared to the active phase [41].

4. Effects of Circadian Disruption on Innate Immunity

Disruption of the circadian timing system can directly impact daily rhythms in the
immune parameters, bearing potential negative consequences on the host’s ability to
effectively cope with pathogens or tissue injury. Other complications can include a dis-
turbed balance between anti- and pro-inflammatory mechanisms that can lead to either im-
munosuppression or promote a pro-inflammatory microenvironment favorable for chronic
inflammatory diseases.

The following sections will evaluate the abovementioned ways, in which innate
immune cells can respond to circadian disruption induced by the targeted deletion of
individual clock genes or by exposure to disruptive LD regimes, including light-phase
shifts, dim ALAN, and LL.

4.1. Genetic Circadian Disruption

Many important functional interactions between components of the molecular clock
and the immune system have been revealed using animal models with the deletion of clock
genes at the systemic or cell-specific levels [29,30]. These studies show that individual clock
proteins can differ in their pro-inflammatory and anti-inflammatory properties. Typical
immune phenotypes associated with deficiency of the main circadian genes, including
Bmal1, Clock, Per1/2, Cry1/2, Rev-erbα, Rorα, and Nfil3, are presented in Table 1.

Table 1. Animal models with genetic disruption in specific clock components and their effects on
processes related to innate immune functions and inflammation.

Genotype Immune Challenge Effects Refs.

Bmal1−/− mice (global KO)
Lost daily rhythms in the
circulating numbers of white blood
cells and their progenitors

[43,54]

Bmal1−/− mice (global KO) KLA (in vitro)

Disturbed transcriptome response
to TLR4 activation in BMDMs
(enhanced and prolonged response
of Il-1β, iNos and Hif1α)

[55]

Bmal1−/− mice (global KO) ↑ severity of DSS-induced colitis [56]

ArntlLoxP/LoxPLyz2Cre mice
(myeloid-specific Bmal1 KO)

Lost daily variability in Ly6Chigh

monocyte counts in the blood,
spleen, and bone marrow

[52]

ArntlLoxP/LoxPLyz2Cre mice
(myeloid-specific Bmal1 KO)

TG-induced peritoneal
inflammation

↑ peritoneal recruitment of
Ly6Chigh monocytes and amplified
CCL2, CCL8, IL-1β, and IL-6
response

[52]
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Table 1. Cont.

Genotype Immune Challenge Effects Refs.

ArntlLoxP/LoxPLyz2Cre mice
(myeloid-specific Bmal1 KO)

Listeria monocytogenes
infection

↓ survival and ↑ serum levels of
IL-1β, IL-6, IFNγ, and CCL2 [52]

Bmal1−/−Lys-MCre mice
(myeloid-specific Bmal1 KO)

LPS 25 mg/kg (i.p.) Lost protection to LPS-induced
lethality at ZT0 compared to ZT12 [57]

Bmal1−/−Lys-MCre mice
(myeloid-specific Bmal1 KO)

LPS 100 ng/mL (in vitro)

↑ LPS-induced production of IL-6,
TNFα, CXCL1 and CCL2 and ↓
levels of IL-10 in BMDMs
↑ pro-inflammatory microRNA
miR-155 induction upon LPS in
BMDMs

[57]

Bmal1LoxP/LoxPLyz2Cre mice
(myeloid-specific Bmal1 KO)

LPS 100 ng/mL (in vitro) or
LPS 5 mg/kg (i.p.)

↓ NRF2 response in LPS stimulated
BMDMs
↑ basal and LPS stimulated ROS
levels, ↑ LPS stimulated IL-1β and
HIF1α levels in BMDMs
↑ serum IL-1β response to in vivo
LPS stimulation

[58]

Bmal1FloxP/FloxP;LysMCre mice
(myeloid-specific Bmal1 KO)

LPS 10 or 100 ng/mL
(in vitro)

Lost daily variability in
IL-12p40-producing cells in
LPS-stimulated peritoneal
macrophages

[59]

LysM-Bmal1−/− mice
(myeloid-specific Bmal1 KO)

Streptococcus pneumoniae or
Staphylococcus aureus infection

Protection against pneumococcal
infection
↑ phagocytic activity in peritoneal
and alveolar macrophages

[60]

LysM-Bmal1−/− mice
(myeloid-specific Bmal1 KO)

LPS 1 mg/kg (i.p.)
Lost daily variability in IL-6
response to LPS in peritoneal
macrophages

[51]

BmallLoxP/LoxPLyz2Cre mice (ApoE-/-
background)
(myeloid-specific Bmal1 KO)

↑ size of atherosclerotic lesions
↑ recruitment of Ly6Chigh

monocytes and accumulation of
pro-inflammatory M1 macrophages
in atherosclerotic lesions

[61]

Bmal1∆N mice
(neutrophil-specific deletion of
Bmal1)

Lost daily variability in neutrophil
proteome, granule content and NET
formation

[62]

Clock−/− mice (global KO)
TNFα 2 ng/mL or
CBLB502 100 ng/mL (in vitro)

↓ NF-κB activation upon TNFα
treatment in MEFs and upon
bacterial flagellin (CBLB502)
treatment in hepatocytes

[49]

Clock mutant mice LPS 1 µg/mL or
S. Typhimurium (in vitro)

↓ expression of pro-inflammatory
genes Il-6, Il-1β, Tnfα, Cxcl1, Ifnβ,
and Ccl2 and ↓ TNFα and IL-6
response in BMDMs

[63]

Clock mutant mice Salmonella infection (in vivo)
Impaired rhythmicity in bacterial
colonization in the gut and reduced
pro-inflammatory gene expression

[63]
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Table 1. Cont.

Genotype Immune Challenge Effects Refs.

Clock mutant mice LPS 1 µg/mL (in vitro)

↓ LPS-induced expression of Il-6,
Il-1β and Cxcl1 in MEFs
↑ RELB and p100/52 protein levels
in MEFs independent of LPS

[64]

Per1tm1Drw mutant mice
Modified circadian rhythms of
perforin, granzyme B and IFNγ in
the splenic NK cells

[65]

mPer2Brdml mutant mice
Lost daily IFNγ rhythms (splenic
mRNA and protein expression, and
serum levels) in the spleen

[66]

mPer2Brdml mutant mice LPS 25 mg/kg (i.p.)

↑ survival upon lethal dose of LPS
and suppressed daily rhythm in
susceptibility to endotoxic shock
↓ serum IFNγ and IL-1β levels and
↓ IFNγ production by splenic NK
cells in response to LPS

[67]

mPer2Brdml mutant mice TLR9 ligand (in vitro)
↓ TNFα and IL-12 production in
challenged peritoneal macrophages
and ↓ Tlr9 expression

[68]

Cry1−/−Cry2−/− mice and
fibroblasts (double KO)

Constitutive activation NF-κB via
PKA signaling in fibroblasts
↑ constitutive expression of
pro-inflammatory molecules in the
hypothalamus and fibroblasts (Il-6,
Tnfα and iNos), and in the BMDMs
(Il-6, Cxcl1 and iNos)
↑ inflammatory response of
BMDMs to LPS (TNFα and IL-6)

[69]

Rev-erbα−/− mice (global KO)
LPS 1 mg/kg (i.p.)
LPS 1 µg/mL (in vitro)

Lost circadian response of IL-6 to
LPS challenge in vivo and in vitro
using isolated PECs

[51]

Rev-erbα−/− mice (global KO) aerosolized LPS 2 mg/mL
↑ neutrophil numbers and CXCL1,
CXCL2 and CXCL5 levels in BAL
fluid

[70]

Rev-erbα−/− mice (global KO) LPS 100 ng/mL (ex vivo)

↑ cytokine and chemokine response
to LPS (Il-6, Ccl2 and Ccl5
expression) in alveolar
macrophages

[70]

Rev-erbα−/− mice (global KO) LPS 1 µg/mL (in vitro)
↑ basal and LPS-stimulated Ccl2
gene expression in peritoneal
macrophages

[71]

Rev-erbα−/− mice (global KO)

↑ basal NF-κB signaling and
pro-inflammatory microglial
activation in the hippocampus
↑ LPS-induced neuroinflammation

[72]

Rev-erbα−/− mice (global KO)
↑ complement transcripts (C4b and
C3) in the hippocampus [73]

Rev-erbα−/− mice (global KO) DSS-induced colitis

↑ severity of DSS-induced colitis
↑ colonic levels of NLRP3, IL-1β,
and IL-18 in DSS-induced colitis
suppressed daily rhythm of Nlrp3
in the colon

[56]
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Table 1. Cont.

Genotype Immune Challenge Effects Refs.

Rev-erbα−/− mice (global KO) LPS 100 ng/mL (in vitro)
↑ LPS-induced protein levels of
NLRP3 and IL-1β in peritoneal
macrophages

[56]

staggerer (RORαsg/sg) mice intra-tracheal LPS 2 µg/50 µL

↑ susceptibility to LPS-induced
airway inflammation
↑ neutrophil counts and cytokine
levels IL-1β, IL-6, and MIP-2 in
BAL fluid

[74]

staggerer (RORαsg/sg) mice LPS 5 µg/mL (in vitro) ↑ Il-1β, Il-1α, and Tnfα expression in
LPS-stimulated splenocytes [75]

Nfil3−/− mice (global KO)
Lack of CD8α+ cDC population in
the lymphoid organs [76]

Nfil3−/− mice (global KO)
Lack of NK cells and impaired
NK-cell mediated cytotoxicity [77]

Nfil3−/− mice (global KO) Clostridium difficile infection

↓ numbers of innate lymphoid cells
in the intestinal mucosa
↓ immune defence against acute
intestinal bacterial infection with
Clostridium difficile

[78]

Nfil3−/− mice (global KO) LPS 10 ng/mL (in vitro)

↑ LPS-induced Il-12b expression
and IL-12p40 release from BMDMs
Spontaneous expression of Il-12b in
colonic CD11b+ LPMCs

[79]

Nfil3−/− mice (global KO) LPS 10 ng/mL (in vitro)

↑ proportion of IL-12p40 producing
macrophages in response to LPS
and ↑ expression of Ccr2 in
unstimulated BMDMs

[59]

APOE—apolipoprotein E; BAL-bronchoalveolar lavage; BMDMs—bone marrow-derived macrophages;
CCL2/5/8—CC motif chemokine ligand 2/5/8; cDC—conventional dendritic cells; CXCL1/2/5—CXC motif
chemokine ligand 1/2/5; DSS—dextran sulphate sodium; HIF1α—hypoxia-inducible factor 1α; IFNγ—interferon
gamma; IL—interleukin; iNOS—inducible nitric oxide synthase; KLA—Kdo2-lipid A (TLR4 ligand); KO—knock-
out; LPMCs—lamina propria mononuclear cells; LPS—lipopolysaccharide; MEFs—mouse embryonic fibroblasts;
MIP-2—macrophage inflammatory protein 2; NET—neutrophil extracellular trap; NF-κB—nuclear factor kappa B;
NLRP3—NOD-like receptor family pyrin domain containing 3; NRF2—nuclear factor-like 2; PECs—peritoneal
exudate cells; PKA—protein kinase A; RELB—subunit of nuclear factor kappa B; ROS—reactive oxygen species;
TG—thioglycolate; TLR—toll-like receptor; TNFα—tumor necrosis factor alpha; ZT—zeitgeber time.

BMAL1 is a central component of the mammalian molecular clock and plays a central
role in circadian–immune interactions. Systemic deletion of Bmal1 eliminated circadian
rhythmicity in the central pacemaker and periphery, resulting in a complete behavioral
arrhythmicity [80,81]. Bmal1−/− mice also lost rhythmicity in the numbers of leukocytes
and immature hematopoietic cells in the peripheral blood [43,54]. However, particularly
models with targeted Bmal1 deletion in myeloid cell lineages have revealed an essential
role of BMAL1 in the control of the time-of-day-dependent effector functions of monocytes
and macrophages. Mice with deletion of Bmal1 in myeloid cells lost daily variability in
circulating inflammatory Ly6Chigh monocytes, showing higher susceptibility to Listeria
monocytogenes infection [52]. In another study, myeloid Bmal1-deficient mice on the Apoe−/−

background showed increased recruitment of Ly6Chigh monocytes to atherosclerotic lesions
with polarization to pro-inflammatory M1 macrophages [61]. In vitro experiments using
bone marrow-derived macrophages (BMDMs) demonstrated that Bmal1 deficiency ampli-
fied acute inflammatory response to LPS, as was manifested by enhanced production of
pro-inflammatory cytokines, suppressed antioxidant pathways. and increased reactive oxy-
gen species levels [57,58]. Surprisingly, myeloid Bmal1 deficiency was also found to confer
protection against pneumococcal infection that was attributed to increased motility and
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phagocytic activity of Bmal1 deficient macrophages [60]. In neutrophils, specific deletion of
Bmal1 eliminated daily variability in granule content and neutrophil extracellular traps for-
mation [62]. In general, the above-mentioned studies demonstrated the anti-inflammatory
effects of BMAL1, which are probably mediated by CLOCK/BMAL1-dependent transcrip-
tional regulation of genes containing E-box. For example, circadian monocyte trafficking is
driven by time-of-day-dependent expression of chemokines (such as Ccl2), which are under
the repressive transcriptional control of BMAL1 through recruitment of the polycomb
repressive complex 2 [52].

In contrast to BMAL1, CLOCK protein has been shown to enhance NF-κB-mediated
transcription and production of pro-inflammatory cytokines, and these effects were inde-
pendent of the transactivation capacity of the CLOCK/BMAL1 complex on E-box contain-
ing promoters [49]. CLOCK was found in protein complexes with the p65 subunit of NF-κB
and CLOCK overexpression was associated with enhanced NF-κB activation [49]. These
findings were supported by reduced activation of NF-κB in response to immune challenge
in mouse embryonic fibroblasts (MEFs), as well as hepatocytes of Clock-deficient mice
compared to wild-type controls [49]. Similarly, reduced induction of pro-inflammatory
cytokines upon LPS challenge has been observed in MEFs and BMDMs from Clock-mutant
mice [63,64]. Moreover, day/night differences in inflammatory response to Salmonella
infection were eliminated in the gut of Clock mutants [63].

Models with genetic disruption of clock genes Per and Cry have revealed distinct
roles of these clock components in the regulation of immune functions. A study in Per1
mutant mice showed that they maintained circadian expression of perforin, granzyme
B, and interferon-gamma (IFNγ) in splenic NK cells, though these rhythms were either
attenuated or phase-shifted [65]. On the other hand, in Per2 mutant mice, serum IFNγ

concentrations as well as mRNA and protein levels in the spleen completely lost daily
rhythmicity [66]. These eliminated IFNγ rhythms can be translated to impaired IFNγ pro-
duction by the splenic NK cells upon LPS challenge in Per2 mutant mice, and suppressed
response in serum IFNγ and IL-1β levels [67]. Moreover, this study found an increased
survival rate of Per2 mutants following a lethal dose of LPS compared to controls [67].
Mutation of Per2, disrupting the ability of PER2 to interact with other clock proteins, can
also significantly affect TLR9-mediated immune responses, as peritoneal macrophages
from Per2 mutants showed reduced expression of Tlr9 and decreased TLR9 ligand-induced
production of TNFα and IL-12 [68]. In contrast to Per2 defects, the absence of Cry genes
leads to a pro-inflammatory phenotype. In Cry1 and Cry2 double knockout fibroblasts,
enhanced constitutive expression of pro-inflammatory factors was observed, and this was
mediated by the constitutive activation of NF-κB and protein kinase A (PKA) signaling [69].
The proposed mechanism shows that CRY1 can inhibit PKA-mediated phosphorylation of
p65 through binding to adenylyl cyclase and suppression of cyclic adenosine monophos-
phate levels [69]. In this study, Cry1−/−Cry2−/− mice exhibited not only enhanced basal
expression of Il-6, Cxcl1, and inducible nitric oxide synthase (iNos) in the BMDMs but also
elevated cytokine responses to LPS compared to wild-type animals [69].

The nuclear receptors REV-ERBα and RORα represent important regulatory compo-
nents linking the circadian and immune systems and exert mostly anti-inflammatory effects.
Peritoneal macrophages isolated from global REV-ERBα knockout mice (Rev-erbα−/−) dis-
played augmented pro-inflammatory response to LPS [51,56,71]. Simultaneously, the
absence of circadian rhythmicity in LPS-induced IL-6 response was demonstrated in the
cultured Rev-erbα−/− macrophages and in vivo upon endotoxin challenge in Rev-erbα−/−

mice [51]. Furthermore, these studies showed that REV-ERBα is a direct transcriptional
repressor of several pro-inflammatory genes, including Ccl2 and NOD-like receptor family
pyrin domain containing 3 (Nlrp3), which contain RORE binding sites in their promoter
regions [56,71]. Moreover, Rev-erbα−/− mice have been found to display exaggerated LPS-
induced pulmonary inflammation [70], increased severity of dextran sulphate sodium
(DSS)-induced colitis [56], as well as a neuroinflammatory phenotype with basal activation
of microglia in the hippocampus [72]. Likewise, in mice with deficient Rorα expression
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(RORαsg/sg, staggerer mutants), several immune defects were described besides typical
cerebellar neurodegeneration. For example, splenocytes isolated from these mice were more
sensitive to LPS challenge, showing increased expression of pro-inflammatory cytokines
compared to wild-type controls [75]. Moreover, similarly to Rev-erbα deficient mice, also
RORαsg/sg mice showed increased susceptibility to LPS-induced lung inflammation, higher
neutrophil numbers, and increased levels of pro-inflammatory cytokines (IL-1β, IL-6, and
macrophage inflammatory protein 2) in the bronchoalveolar lavage compared to wild-
type mice [74]. An anti-inflammatory action of RORα can occur through RORE-mediated
up-regulation of inhibitor of NF-κB (IκBα) and reduced p65 nuclear translocation [82].

REV-ERBα can transcriptionally regulate and repress another circadian repressor
NFIL3 [83], which is also implicated in numerous immune processes. Studies in NFIL3-
deficient (Nfil3−/−) mice have shown a critical role of NFIL3 in the development of several
types of immune cells, including CD8+ conventional dendritic cells [76], NK cells, as
well as all other innate lymphoid cell lineages [77,78]. Later, NFIL3 was identified as an
important regulator of macrophage responses via transcriptional repression of Il-12b [79].
Interestingly, the inflammatory response of macrophages has been shown to depend on the
phase of circadian oscillations of NFIL3 and DBP, which competitively bind at the Il-12b
enhancer [59]. Therefore, desynchronization of the molecular clock in the macrophage
population can contribute to the heterogeneity of the inflammatory response [59].

Together, accumulating evidence indicates a complexity of circadian-immune crosstalk,
highlighting diverse immunomodulatory effects of individual clock components, which are
determined by transcription-dependent mechanisms, direct protein–protein interactions,
or the phase of circadian oscillations.

4.2. Light-Phase Shifts

Shift work and jet lag represent frequent circadian challenges associated with a mod-
ern lifestyle that lead to desynchronization of the SCN and downstream oscillators with the
external environment [84]. Shift work refers to work outside the regular daytime hours and
involves non-standard work schedules, such as night shifts, early morning shifts, or rotat-
ing shifts, which are also associated with alterations in the sleep/wake cycle [85]. Reduced
amplitude or disturbance of the key circadian rhythms, such as melatonin, cortisol, and
body temperature, has been observed among shift workers [86]. Misalignment between
endogenous circadian rhythms and the LD cycle in shift workers can also predispose to an
increased risk of negative health outcomes, such as cancer, and metabolic and cardiovas-
cular diseases [87,88]. Moreover, shift workers are at a higher risk of common respiratory
infections, including cold, flu, or COVID-19 [89–91].

Epidemiological studies revealed increased numbers of total leukocytes, neutrophils,
monocytes, and lymphocytes [92–94], and reduced activity of NK cells in the circulation of
shift workers compared to daytime workers [95]. Moreover, shift workers had significantly
elevated markers of systemic inflammation, including C-reactive protein and the cytokines
TNFα, IL-6, IL-1β, and IL-10 than daytime workers [94]. One limitation of most observa-
tional studies is that they measure these parameters only during the daytime and do not
consider their 24 h variability, emphasizing the importance of an interventional approach.
In healthy volunteers under laboratory conditions, simulated night shift work protocol
with a 10 h delayed sleep period resulted in the reduced amplitude of rhythmic transcripts
in peripheral blood mononuclear cells [96] and caused a misalignment of the rhythmic
secretion of cytokines IL-6, IL-1β, and TNFα following ex vivo immune stimulation [97].

In animal models, jet lag is induced by single (acute models) or repeated (chronic
models) phase delays or advances in the LD cycle [98], while shift work experimental
schedules use exposure to contrasting signals, such as light during the dark phase and
forced activity or food consumption during the resting period [99]. Chronic jet lag (CJL)
protocols have been shown to induce circadian desynchronization in the locomotor activity
pattern, which is documented by the appearance of two components of activity rhythms,
one with a free-running period and the other with the mean period of a specific shift-lag
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schedule [100]. Furthermore, CJL modified acrophases of the main clock gene rhythms in
the central oscillator, as well as in the peripheral tissues [101].

Experimental studies in mice and rats exploring how circadian disruption induced by
light-phase shifts impacts innate immunity and inflammatory responses are summarized
in Table 2.

Table 2. The effects of different light-phase shift paradigms on the immune parameters and functions
under the steady state and challenged conditions in rodents.

Species Shift Paradigm Immune Challenge Effects Ref.

Humanized NSG mice 8 h PA/2 days for 10
days

Eliminated circadian rhythm of
mouse and human blood
leukocytes

[102]

Lyzs-Cre mice LD reverse/5 days for 3
weeks

Eliminated circadian rhythm of
neutrophil hepatic infiltration
and ↑ triacylglycerol levels in
the liver

[103]

C57BL/6J mice

6 h PA/7 days for 4
weeks and
1 week of
re-synchronization

LPS 50 µg/mL (ex vivo)
or 1 µg/mL (in vitro)

↑ LPS-induced IL-6 response of
the whole blood and incubated
PECs, preserving a daily
rhythm in this immune
response

[104]
[105]

C57BL/6J Per2Luc mice

6 h PA/7 days for 4
weeks and
1 week of
re-synchronization

LPS 10 µg/mL
(in vitro)

↑ LPS-induced IL-6 response of
incubated PECs [106]

C57BL/6J Per2Luc mice

6 h PA/7 days for 4
weeks and
1 week of
re-synchronization

LPS 12.5 mg/kg (i.p.)

Persistent hypothermia, ↑
mortality rate, ↑ response of
pro-inflammatory cytokines
(IL-1β, GM-CSF, IL-12, IL-13)
to LPS

[106]

C57BL/6J mice 6 h PA/2 days for 3
weeks LPS 20 mg/kg (i.p.)

80% mortality rate
independent of time of LPS
administration, ↑ hypothermic
and serum TNFα response

[107]

C57BL/6J Per2Luc mice
on HFD

LD reverse/5 days for
10 weeks

↑ adipose tissue macrophage
infiltration and
pro-inflammatory M1
polarization associated with
amplified expression of Il-1β,
Il-6 and Tnfα
↑ pro-inflammatory activation
of BMDMs with ↑
LPS-induced expression of
Il-1β, Il-6, and Tnfα

[108]

APOE*3-Leiden.CETP
mice on HFD

LD reverse/7 days for
10 and 15 weeks

↑ atherosclerosis development
in the aortic root
↑ lesion macrophage content
and ↑ vascular expression of
markers for inflammation
(Nfκb1, Tnfα, iNos), oxidative
stress (Sod1, Gpx1, Hif1α, Nox2),
and leukocyte recruitment
(Icam1, Ccr2, CCL2) at ZT0
Phase-shifted rhythms of
circulating leukocytes

[109]
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Table 2. Cont.

Species Shift Paradigm Immune Challenge Effects Ref.

C57BL/6J mice 8 h PA/2–3 days for 8
weeks

↑ severity of DSS-induced
colitis [56]

C57BL/6J mice 6 h PA/2 days for 3
weeks

B16F0 nonmetastatic
melanoma cells (s.c.)

↑mortality rate, ↑ tumor
growth rate, lost daily
variability and M1/M2
macrophage ratio in melanoma
tumors

[110]

C57BL/6J mice LD reverse/4 days for
12 weeks

↓ NK cell numbers in the
spleen and lungs
↓ expression of CD107a and
IFNγ in non-stimulated and
activated splenic NK cells
↑ lung metastasis of B16
melanoma

[111]

Fischer rats
6 h PA/2 days for 3
weeks
and 1 week in DD

↓ rhythm and cytotoxicity of
splenic NK cells
↓ or shifted circadian rhythms
of perforin, granzyme B and
IFNγ in NK cells

[112]

Fischer rats
6 h PA/2 days for 3
weeks
and 1 week in DD

MADB106 tumor cells
(i.v.)

↑ lung tumor frequency (after
6–8 weeks in LD) and ↑
cytolytic activity of NK cells
(24 h post stimulation)

[112]

BMDMs—bone marrow-derived macrophages; CCL2—CC motif chemokine ligand 2; CCR2—CC chemokine
receptor 2; DD—constant darkness; DSS—dextran sulphate sodium; GM-CSF—granulocyte-macrophage colony-
stimulating factor; GPX1—glutathione peroxidase 1; HFD—high fat diet; HIF1α—hypoxia-inducible factor 1α;
ICAM1—intercellular adhesion molecule 1; IFNγ—interferon gamma; IL—interleukin; iNOS—inducible nitric
oxide synthase; LD—light/dark; LPS—lipopolysaccharide; NF-κB1—nuclear factor kappa B; NOX2—NADPH ox-
idase 2; PA—phase advance; PECs—peritoneal exudate cells; SOD1—superoxide dismutase type 1; TNFα—tumor
necrosis factor alpha; ZT0—beginning of the light phase.

In mice, 24 h following acute jet lag (12 h phase advance), an arrhythmic pattern of
circulating blood progenitors [43] and abolished daily variability of leukocyte recruitment
to the skeletal muscle were found under both steady state and inflammatory conditions [53].
Similar results were obtained using a CJL protocol. Specifically, jet lag eliminated circadian
rhythms in mouse and human blood leukocytes in humanized mice [102] and abolished
the rhythm in neutrophil infiltration into the liver, which correlated with increased hepatic
accumulation of lipids [103]. The consequences of chronic jet lag on inflammatory responses
have been demonstrated in mice using a protocol with 6 h phase advances of the LD cycle
every 7 days for 4 weeks followed by 1 week of re-synchronization [104–106]. The CJL mice
challenged in vivo with a lethal dose of LPS exhibited a higher mortality rate, persistent
hypothermia, and amplified serum response of pro-inflammatory cytokines [106]. Corre-
sponding data showing an exaggerated IL-6 response to LPS were also found after ex vivo
stimulation of the whole blood or in vitro stimulation of isolated peritoneal macrophages
harvested from CJL mice [104–106]. Interestingly, LPS-induced IL-6 responses showed a
rhythmic pattern in CJL mice, indicating adaptation to a new LD cycle during 1 week of
re-synchronization [104]. On the other hand, increased frequency of shifts over one week
eliminated time-of-day-dependent mortality rate upon the lethal dose of LPS and enhanced
hypothermic and serum TNFα responses in mice [107].

Circadian disruption in shift workers is associated with an increased incidence of
metabolic diseases. Macrophages represent key mediators of obesity-induced inflammation
in mice and humans [113,114]. In mice on a high-fat diet (HFD), chronic exposure to shifts
of the LD cycle amplified adipose tissue macrophage infiltration and pro-inflammatory
M1 polarization, together with enhanced expression of pro-inflammatory cytokines [108].
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Similarly, in hyperlipidemic APOE*3-Leiden.CETP mice on an HFD, circadian disrup-
tion induced by weekly LD reversals over several weeks accelerated the development of
atherosclerosis, increased the macrophage content in atherosclerotic lesions, and promoted
a pro-inflammatory state in the vessel wall [109].

Circadian clocks have been studied as an important player in many aspects of cancer-
immune cell interactions [115]. Experimental research has shown that circadian disruption
induced by different jet lag models can accelerate tumor growth and the incidence of
metastasis as compared to a normal lighting regime [110–112,116]. Innate lymphoid NK
cells are an integral part of anti-tumor immunity and provide effective immune surveillance
by destroying tumor cells [117]. This ability is ensured by a stable count of NK cells and
their production of various cytolytic factors and cytokines, mainly perforin, granzyme B,
and IFNγ [118,119]. In mice, chronic shifts in the LD cycle reduced the numbers of NK cells
in the spleen and lungs [111] and attenuated their cytolytic activity through suppressed
expression of CD107a, a sensitive indicator of NK cell cytotoxicity and degranulation [120].
Another study in rats showed that repeated phase advances of the LD cycle suppressed
rhythmic cytotoxicity of splenic NK cells, and modified circadian expression of granzyme
B, perforin, and IFNγ in NK cells [112]. In addition to NK cells, tumor progression is
controlled by the tumor microenvironment, which contains a variety of immune cells with
a tumor-promoting or tumor-suppressing phenotype [121]. In a melanoma mouse model,
circadian disruption induced by CJL abolished daily variability and decreased the M1
(pro-inflammatory)/M2 (anti-inflammatory) macrophage ratio in the tumor, promoting
immunosuppression of the tumor microenvironment [110]. These effects accelerated tumor
growth, and were also associated with increased mortality [110]. Other studies found
reduced survival in aged mice exposed to chronic phase-advances for 8 weeks [122] or even
as a result of long-term exposure (for 85 weeks) to phase-advances in 4-day intervals [123].
Additionally, epigenetic changes are known to participate in carcinogenesis, and they
can also have the potential to mediate deregulation of immune mechanisms induced
by circadian disruption. For example, rats, experienced chronic circadian disruption,
exhibited aberrant changes in the expression of several cancer-related microRNAs in
mammary tissues and, these changes were associated with increased protein levels of
pro-inflammatory transcription factors, phosphorylated NF-κB and STAT3 [124].

4.3. Dim ALAN

The advancement of lighting technologies, including the implementation of light-
emitting diode (LED) technology, goes in parallel with increasing levels of light pollu-
tion [125]. Moreover, evening use of devices with light-emitting screens as well as the use
of night lamps, especially for small children while sleeping, considerably contribute to
unintentional exposure to ALAN [126].

Evidence provided by experimental studies has demonstrated that dim ALAN (≤5 lx) can
compromise circadian coordination in laboratory rodents. The rhythmic profile of locomotor
activity was preserved in rats exposed to dim ALAN for 2 weeks, but mean night-time levels
were reduced, and daytime activity was increased compared to controls [127]. Another study
in rats reported that dim ALAN diminished the power of 24 h activity rhythm and induced
a second approximately 25 h free-running rhythm, indicating internal desynchronization
of locomotor activity [128]. In the SCN, dim ALAN exposure clearly suppressed the daily
rhythms of clock genes in both rats [129,130] and mice [131,132]. In peripheral tissues, clock
gene rhythms appeared to be less affected by ALAN than in the master oscillator, though
they showed lowered amplitude or shifts in acrophase [127,129,131]. The daily plasma
melatonin rhythm was eliminated in rats after 2 weeks of dim ALAN (2 lx) exposure
due to suppressed nocturnal melatonin levels [129], which were also reported in other
studies, not only in rats [133,134] but also in diurnal birds [135,136] and humans [137].
Moreover, circadian disruption induced by dim ALAN has been observed in other hormonal
rhythms, e.g., suppressed and phase-advanced corticosterone rhythm, and abolished daily
rhythmicity in plasma testosterone and vasopressin levels in rats [129].
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Several experimental studies have demonstrated that ALAN can affect innate immune
mechanisms, including inflammatory response (Table 3). However, in most of these studies,
the immune status was evaluated only at one time point, neglecting consequences on
circadian rhythms in the immune system. Indeed, a recent study showed that rats exposed
to dim ALAN (2 lx) for 5 weeks exhibited impaired daily variation of the main leukocyte
subsets in the blood, especially monocytes and T cells [138]. Moreover, ALAN reduced
blood monocyte counts and altered gene expression of macrophage marker Cd68 and
chemokine Ccl2 in the kidney, indicating that weakened circadian control of circulating
leukocyte numbers was associated with disturbed renal immune homeostasis [138].

Table 3. Summary of the effects of dim artificial light at night (ALAN) on the immune parameters
under steady state and challenged conditions in rodents.

Species ALAN Intensity
and Duration Immune Challenge Effects Ref.

Wistar rats L: 150 lx; dimL: 2 lx
for 2 and 5 weeks

Impaired daily variation in the
numbers of circulating monocytes
and T cells
↓ numbers of blood monocytes
↑ expression of macrophage
marker Cd68 and ↓ Ccl2 expression
in the kidney

[138]

Swiss Webster mice L: 150 lx; dimL: 5 lx
for 4 weeks

↑ expression of Mac-1 and Tnfα in
WAT
Exacerbated peripheral
inflammation associated with HFD

[139]

CFW mice L: 125 lx; dimL: 5 lx
for 4 weeks

↑ Il-6 expression in the medulla
associated with cold hyperalgesia
and mechanical allodynia

[140]

Swiss Webster mice L: 150 lx; dimL: 5 lx
for 4 weeks LPS 0.5 mg/kg (i.p.)

Exaggerated changes in body
temperature and prolonged
sickness responses to LPS
↑ LPS-induced expression of Tnfα
and Il-6 in microglia

[141]

Swiss Webster mice L: 150 lx; dimL: 5 lx
for 1 week

Model of global cerebral
ischemia

↑mortality rate 7 days following
injury
↑ neuroinflammation 24 h
following injury (amplified Tnfα
mRNA levels in the hippocampus)

[142]

C3H mice L: 150 lx; dimL: 5 lx
for 3 weeks

FM3A mammary
carcinoma cells

↓ latency to tumor onset and ↑
tumor volume [143]

Nude rats L: 345 lx; dimL: 0.2 lx
for 6 weeks

MCF-7 human breast
cancer xenografts ↑ tumor growth rate [144]

Siberian hamsters L: 150 lx; dimL: 5 lx
for 4 weeks

↑ Tnfα and ↓ Bdnf expression in
the hippocampus
↓ hippocampal dendritic spine
density

[145]

Siberian hamsters L: 150 lx; dimL: 5 lx
for 4 weeks

LPS 0.4 mg/kg (i.p.)
or DNFB treatment

↓ plasma bactericidal capacity
following LPS
↓ delayed-type hypersensitivity
response to DNFB

[146]

Nile grass rats L: 150 lx; dimL: 5 lx
for 3 weeks

↑ basal plasma bactericidal
capacity
↑ delayed-type hypersensitivity
response to DNFB

[147]

BDNF—brain-derived neurotrophic factor; CCL2—CC motif chemokine ligand 2; dimL—dim light phase; DNFB—2,4-
dinitro-1-fluorobenzene; HFD—high fat diet; IL—interleukin; L—light phase; LPS—lipopolysaccharide;
MAC-1—macrophage-1 antigen; TNFα—tumor necrosis factor-alpha; WAT—white adipose tissue.

Immune disbalance caused by ALAN is considered one of the key mechanisms that
can promote a pro-inflammatory state or accelerate various pathologies. For example, mice
exposed to either ALAN (5 lx) or an HFD for 4 weeks showed up-regulated expression
of inflammatory markers Tnfα and macrophage-1 antigen (Mac-1) in white adipose tissue,
while ALAN further potentiated HFD-induced inflammation [139]. In cancer research,
dim ALAN has been shown to favor tumor growth, especially in models of mammary
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cancer [143,144]. C3H mice exposed to ALAN (5 lx) for 3 weeks and then injected with
FM3A mammary carcinoma cells displayed earlier tumor onset and increased terminal
tumor volume compared to tumor-bearing mice housed in the LD regime [143]. In another
study in nude rats, chronic ALAN even with a very low light intensity of 0.2 lx accelerated
mammary tumor growth [144].

Another process that can drive the impact of ALAN on the progression of diseases
is the ability of ALAN to promote neuroinflammation. Exposure to ALAN for 4 weeks
increased hippocampal Tnfα and Il-6 expression simultaneously with depression-like be-
havior in female Siberian hamsters (Phodopus sungorus) [145], and up-regulated Il-6 mRNA
levels in the medulla of mice that concomitantly exhibited cold hyperalgesia and mechan-
ical allodynia [140]. Moreover, mice that underwent global cerebral ischemia and were
subsequently exposed to ALAN showed decreased survival associated with increased neu-
ronal damage that was preceded by amplified neuroinflammation, compared to animals in
the control regime [142].

Till now, the effects of ALAN on inflammatory response were examined only in
a limited number of studies. In mice challenged with LPS following 4 weeks of dim
ALAN (5 lx), exaggerated changes in body temperature, prolonged sickness responses,
and elevated pro-inflammatory cytokine expression (Tnfα and Il-6) in microglia were
found compared to controls [141]. Additionally, diminished bactericidal capacity of blood
upon LPS challenge and reduced delayed-type hypersensitivity response was observed
in Siberian hamsters exposed to dim ALAN compared to animals in the standard LD
regime [146]. Interestingly, the opposite effects of ALAN were obtained in a diurnal
rodent model, Nile grass rats (Arvicanthis niloticus), which exhibited enhanced delayed-
type hypersensitivity response and elevated basal bactericidal capacity when exposed to
ALAN for 3 weeks [148]. Thus, the currently available data demonstrate that ALAN affects
the responsiveness of the immune system to challenges, but clearly more studies are needed
to reveal potentially differential responses between diurnal and nocturnal mammals, and
to evaluate whether immune responses are impacted by ALAN in a time-of-day-dependent
manner. Moreover, surprisingly limited data are available on the effects of ALAN on innate
immunity and inflammation in humans.

4.4. Constant Light

Exposure to LL and low-intensity ALAN are often considered interchangeable con-
ditions. However, circadian disruption caused by LL differs from that induced by low-
intensity ALAN in several ways [149]. In general, LL leads to the complete loss of locomotor
activity rhythms [150], and this behavioral arrhythmicity develops as soon as one month
after changed lighting conditions in rats [151,152]. In the master clock, LL causes desyn-
chronization of SCN neurons [150] and reduces the amplitude of SCN neuronal activity
rhythm [153], which is further attenuated by long-term LL exposure [154]. Suppressed noc-
turnal melatonin levels have been found under both LL and dim ALAN regimes [155,156]
but corticosterone is arrhythmic in LL [133,157], and preserves its rhythmicity with de-
creased amplitude in the dim ALAN regime [129].

The effects of LL exposure on immune functions have been reported by several studies,
which are summarized in Table 4. Circadian disruption induced by LL was shown to
facilitate a pro-inflammatory state even under unchallenged conditions. Specifically, in
rats, 4-week LL exposure up-regulated the expression of the pro-inflammatory markers
Stat3, Il-17ra, and Il-1α in the colonic mucosa [151]. In another study, rats exposed to LL
for 5 weeks displayed amplified plasma TNFα response and sickness symptoms, such as
febrile reaction and food intake reduction, following LPS administration [152]. Interest-
ingly, in rats, 24 h leukocyte rhythms in the circulation persisted 8 weeks after LL exposure,
despite suppressed circadian rhythms in body temperature and locomotor activity [158].
Nevertheless, in the same study, prolonged LL exposure (for 11 and 16 weeks) did elimi-
nate the circadian rhythm in blood leukocytes that was not restored even 16 weeks after
re-synchronization in the LD regime [158]. In mice exposed to LL for 8 weeks, increased
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numbers of blood neutrophils and reduced numbers of lymphocytes were found together
with an enhanced response of pro-inflammatory cytokines to LPS challenge [154]. Inter-
estingly, these effects were transient, as no further changes were observed in mice after
24 weeks of the LL regime [154]. However, the study did not monitor the whole 24 h profile
in white blood cells.

Table 4. Summary of the effects of constant light (LL) on the immune parameters under steady state
and challenged conditions in rodents.

Species LL Intensity
and Duration Immune Challenge Effects Ref.

Sprague-Dawley rats
300 lx for 17 weeks
and 16 weeks of
re-synchronization

Lost 24 h rhythm in blood
leukocytes after 11/16 weeks
in LL, (the rhythm was not
restored after 16 weeks of
re-synchronization in LD
regime)
↓ NK cell counts in the blood

[158]

Wistar rats 150 lx for 4 weeks

Activated pro-inflammatory
state (↑ expression of Stat3,
Il-1α and Il-17ra) in the colonic
mucosa

[151]

Wistar rats 200–250 lx for 5 weeks LPS 2 µg/kg (i.v.) ↑ plasma TNFα response and
sickness symptoms upon LPS [152]

Wistar rats 200–250 lx for 5 weeks C6 tumor cells (s.c.)
↑ tumor growth
↑ tumor infiltration of
monocytes/macrophages

[152]

Sprague-Dawley rats 200 lx for 7 days
Endotoxemia model
(daily i.p. LPS injection
for 7 days)

↑ hypothalamic expression of
Il-1β and Tnfα [159]

C56BL/6J mice 105 lx for 24 weeks LPS 50 µg/kg (i.v.)

Transient ↑ of neutrophil and ↓
of lymphocyte numbers in the
blood was associated with
enhanced inflammatory
response to LPS (↑ IL-1β,
TNFα, IL-6, and ↓ IL-10 plasma
levels) after 8 weeks of LL
No immune changes after 24
weeks of LL

[154]

CD-1 mice 750 lx for 4 weeks Complete Freund’s
adjuvant (100 µL)

↑ proportion of
myeloid-derived suppressor
cells in the spleen under LL
was potentiated by chronic
inflammation
↑ plasma TGF-β1 levels and ↑
chronic inflammation induced
elevation of IL-6 levels

[160]

IL—interleukin; LD—light/dark; LPS—lipopolysaccharide; STAT3—signal transducer and activator of transcrip-
tion 3; TGF-β1—transforming growth factor beta 1; TNFα—tumor necrosis factor-alpha.

The disruption of circadian rhythms due to LL has also been demonstrated to promote
tumorigenesis and adversely affect chronic inflammatory processes [152,159,160]. Rats
implanted with C6 tumor cells and exposed to LL for 5 weeks exhibited faster tumor
growth and increased tumor infiltration with macrophages compared to controls in the
LD regime [152]. The mechanisms behind these effects are not clear, but may involve
reduced NK cell counts, also found in rats exposed to LL [158]. In addition, recent evidence
suggests that myeloid-derived suppressor cells are associated with a poor prognosis in
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cancer [161]. In the mouse model of chronic inflammation, 4-week LL potentiated the
accumulation of myeloid-derived suppressor cells (granulocytic CD11b+Ly6Ghigh and
monocytic CD11b+CD49d+ cell subsets) in the spleen and elevated IL-6 levels in the circu-
lation [160].

5. Conclusions

Chronodisruptive risk factors, such as mistimed light information due to shift work
or ALAN exposure, are not associated with acute pain, increasing the chance that their
negative health consequences will be overlooked. Innate immune cells represent the
first line of defense against pathogenic stimuli. The effector functions of innate immune
cells are profoundly controlled by cell-intrinsic molecular clocks, which can coordinate
immune cell trafficking and the production of immune-regulatory molecules in a time-of-
day-dependent manner. Accumulating evidence from experimental studies in mice and rats
demonstrates that disruptive LD regimes can compromise these surveillance mechanisms
and shift the immune balance to a pro-inflammatory state. Indeed, the obvious effects,
observed under light-phase shifts, dim ALAN, and LL, are represented by exaggerated
acute inflammatory response upon LPS challenge, promoted tumorigenesis, and amplified
symptoms associated with chronic inflammation (Figure 1).
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Figure 1. Comparison of three disruptive light/dark regimes and their effects on the immune
measures based on the current knowledge in laboratory animals. ALAN—artificial light at
night; LD—standard light/dark cycle of 12/12 h; LL—constant light; WAT—white adipose tissue;
WBCs—white blood cells; ZT—Zeitgeber time.

These effects can result from disrupted immune rhythms and disrupted circadian
gating of immune responses, though there is still a lack of experimental data, particularly
under dim ALAN exposure. Moreover, existing studies rarely specify other details regard-
ing the quality of light than light intensity, and this can be critical for the evaluation of
adverse health consequences.

Collectively, a better understanding of the mechanisms by which circadian disruption
influences the immune status can be of importance in the search for strategies to prevent or
limit the negative consequences of chronodisruption on health.
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