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Abstract: The conventional treatment of neurodegenerative diseases (NDDs) is based on the “one
molecule—one target” paradigm. To combat the multifactorial nature of NDDs, the focus is now
shifted toward the development of small-molecule-based compounds that can modulate more than
one protein target, known as “multi-target-directed ligands” (MTDLs), while having low affinity for
proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to
be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost
and time for research and development. In this study more than 650,000 compounds were screened by
a series of in silico approaches to identify drug-like compounds with predicted activity simultaneously
towards three important proteins in the NDDs symptomatic treatment: acetylcholinesterase (AChE),
histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B). The compounds with affinities
below 5.0 µM for all studied targets were additionally filtered to remove known non-specifically
binding or unstable compounds. The selected four hits underwent subsequent refinement through
in silico blood-brain barrier penetration estimation, safety evaluation, and molecular dynamics
simulations resulting in two hit compounds that constitute a rational basis for further development
of multi-target active compounds against NDDs.

Keywords: neurodegenerative diseases; acetylcholinesterase; histone deacetylase 2; monoamine oxidase
B; multi-target-directed ligands; virtual screening; docking; pharmacophore; molecular dynamics

1. Introduction

Neurodegenerative diseases (NDDs) are age-related and share common underlying
characteristics such as chronic, irreversible and progressive neuronal degradation in spe-
cific brain regions. Many complex pathophysiological processes are involved in NDD
progression, including oxidative stress, neuroinflammation, misfolding and aggregation of
insoluble deposits (proteins) in the brain, mitochondrial dysfunction, proteolytic stress, and
others [1–3]. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most prevalent
among the NDDs, affecting more than 8% of adults aged ≥65 years worldwide [4,5].

The common treatment of NDDs such as AD, PD, and related dementias, is mainly
based on usage of single-target-directed small molecules that can be used either as mono
or as combined therapy at early or late stages of the NDDs. In particular, the major-
ity of the therapeutic approaches for the treatment of PD are focused on increasing the
dopamine (DA) levels in the brain of affected patients [6]. For example, the “gold stan-
dard” levodopa (L-DOPA) replacement therapy in combination with monoamine oxidase
B (MAO-B) and/or catechol-O-methyltransferase (COMT) inhibitors, DA agonists, or
DOPA-decarboxylase inhibitors still remains the most widely used treatment of PD [6–8].
However, the long-term treatment with L-DOPA is associated with several side effects such
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as dyskinesia, on-off effects, etc. [9]. Other examples include small-molecule-based drugs
for the treatment of AD, such as donepezil, galantamine, rivastigmine, and tacrine, mainly
acting as acetylcholinesterase (AChE) inhibitors [5].

The above mentioned single-target-directed drugs selectively act on biological tar-
gets related to one or several symptoms at different disease stages and do not change
the progressive course of the neurodegeneration in the respective brain regions of af-
fected patients [6,7]. Therefore, there is a medical need of new therapeutic approaches
with considerable disease-modifying features. Recent research shows involvement of
histone-deacetylase family of enzymes (HDAC) in the regulation of memory processes
in the mammal brain [10–12] mainly via modulation of the gene expression by histone
acetylation [13]. Thus, the inhibitors of HDACs, and particularly HDAC2, are considered
as potential disease-modifying agents in NDDs [14].

Nowadays, the research efforts are focused on the development of small-molecule-
based compounds known as “multi-target-directed ligands” (MTDLs) [15,16]. Such drug
molecules are able to modulate more than one pharmacologically relevant central nervous
system (CNS) targets, while having low affinity against other cellular proteins. The MTDLs
should also have suitable physicochemical and toxicological properties, including reduced
risk of side effects [5,17]. Moreover, MTDLs potentially may have synergistic or additive
effects having simultaneously a single pharmacokinetic and pharmacodynamics profile [5].

The in silico approaches have demonstrated their potential as a suitable tool to
search for MTDLs as promising drug candidates with cost and time benefits. A study by
Jaiteh et al. [18] shows the process of identifying dual-target ligands of the adenosine A2A
receptor (A2AR) and MAO-B for drug development against Parkinson’s disease. An initial
set of 5.4 million compounds is docked separately in both receptor structures and then
scored using DOCK3.6. The sum of the ranking from the two screenings is then used to nar-
row down the sample to the 500 lowest scoring compounds and after further screening—to
14 active for either MAO-B or A2AR. Among the 14 experimentally confirmed ligands,
only four displayed activities in both receptors. Analysis of the docking results revealed
structural similarities between the top-ranked ligands and the reference dual-acting A2AR
antagonist and MAO-B inhibitor (E)-8-(3-Chlorostyryl)caffeine (known also as CSC) [18–20].
Remarkable for the research is also that one of the compounds while very potent MAO-B in-
hibitor (IC50 = 100 nM) happens to be one of the highest affinity A2AR ligands (Ki = 19 nM).

In other research with a main focus on A2AR and MAO-B, Perez-Castillo et al. [21]
propose a different approach. Their methodology includes docking of a set of molecules
(including known dual-target ligands and decoys) to both receptors using six different
scoring functions and subsequent rescoring of the docking poses. Then, depending on the
combination of scoring functions, a fused rank is produced. In this way, a higher value of
enrichment of known ligands is obtained compared to individual single function scoring.
According to this study, a 22-fold increase of the enrichment factor of the top 1% of the final
database ranking is observed using the fused scoring methodology.

A combined in silico approach is applied by Ganai et al. (2017) in order to identify se-
lective HDAC2 inhibitors lacking HDAC1 inhibiting activity [22]. Based on their role in reg-
ulation the homeostasis of intracellular histone acetylation, HDAC1 is found to act as neu-
roprotective agent by enhancing the synaptic plasticity and neuronal survival [23,24], while
HDAC2 is shown to downregulate the synaptic plasticity and memory formation [10,12].
Thus, Ganai et al. [22] dock structurally different groups of HDAC-inhibitors (hydroxy-
mates, cyclic tetrapeptides and short-chained fatty acids) in HDAC1 and HDAC2. The
results show that hydroxymates and cyclic tetrapeptides demonstrate different affinities
towards HDAC1 and HDAC2. The molecular dynamics (MD) simulation shows that the
presence of positive ionizable group plays a significant role in the selective inhibition of
HDAC1 while its absence is beneficial for the HDAC2 inhibition.

Research by Khalid et al. focuses on virtual screening (VS) of biaryl-scaffold-containing
compounds for possible anti-aggregatory and neuroprotective effect in AD [25]. The
screening is carried out against common targets for AD—AChE, β-secretase (BACE1),
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monoamine oxidases (MAOs), and N-Methyl-D-aspartate (NMDA) receptors. Based on
the performed docking it is concluded that very few ligands show strong affinity towards
all targets, however several have notable interactions with at least two targets. The results
suggest that biaryl scaffold, and more precisely biaryl sulphonamides, may be potential
candidates for multi-target drug therapy in patients with AD.

Despite the recent efforts in searching multi-target anti-NDD drugs, the niche of the
in silico studies remains largely unexplored yet in relation to the targets involved, the
screened small molecules, and the combination of the methods applied. In this study we
focused on a panel of three proteins involved in NDD pathology which combination hasn’t
been explored so far, including MAO-B, AChE and HDAC2 (Figure 1).
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Figure 1. PDB crystallographic structures and reference ligands of the selected target protein complexes.

We applied a variety of in silico structure- and ligand-based methods complemented
by MD simulations to reliably evaluate the binding of to these proteins and therefore
the pharmacological potential of a set of more than 650,000 small molecules, purposely
constructed as a library of unique drug-like compounds. The subsequent analysis of the
pharmacokinetic/safety profile of the top scored hits followed by MD simulations of their
behavior in the active sites of the selected proteins revealed two drug-like compounds as
potential multi-target drug candidates. Our results accomplish the first step in the selection
of multi-target acting hits for subsequent drug development against NDDs.

2. Results and Discussion

The computational workflow of the study is presented in Figure 2.

2.1. Structure-Based Virtual Screening to Identify Potential Multi-Target Ligands

The advantages of the applications of VS approaches to identify promising hit com-
pounds have been demonstrated in a number of studies [26–28]. For establishing a reliable
in silico VS protocol in this work we first analyzed the X-ray complexes of the three enzymes
and re-docked the reference ligands to set the score thresholds for selection of the drug-like
compounds with appropriate docking energies (better than the re-docked reference ligands
scores). The X-ray complexes’ binding sites and the specific ligand-protein interactions are
presented in Figure 3. Specific interactions have been recorded for each ligand, outlining
important amino acid residues in the active sites of the targeted proteins. This information
was considered in the further analysis of the reference ligands and the hit compounds.
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Figure 2. A flowchart representing the computational workflow with the main steps/approaches
applied to identify the hit compounds toward AChE, HDAC2 and MAO-B enzymes.

A cross-docking of the co-crystallized ligands in the active sites of each of the other
two proteins was performed to elucidate the compatibility of the binding sites, i.e., the
possibility of the ligands to be posed with a good docking score in the binding sites of
all three proteins. The protocols selected for this cross-docking evaluation were those
selected for initial filtering—MOE rigid docking and MOE flexible docking. The results are
summarized in Table 1.

With the MOE rigid docking, we observed the HDAC2 active site compatibility to the
ligands of MAO-B and AChE (cross-docking score ranges of safinamide and donepezil
overlapped with the re-docking score range of the benzamide derivative). However, with
MOE flexible docking, when the induced fit refinement was performed, the overlap of cross-
docking and re-docking score ranges was observed for all three co-crystallized ligands in
all three active sites. Inspection of the protein-ligand interactions in the cross-docking poses
indicated reasonable orientations and conformations of the co-crystallized ligands. Specific
interactions were observed in all studied complexes also including residues involved in
interactions with the own ligand of the protein (Figure 3): Gln206 in MAO-B; Trp86 and
Phe295 in AChE; Gly154 and Asp181 in HDAC2. Specific interactions with Zn2+ were
recorded for safinamide and donepezil in the HDAC2 binding site. These observations
confirmed the compatibility of the binding modes of the reference ligands in the MAO-B,
AChE and HDAC2 and thus outlined a possibility to find triple-active compounds among
those in the selected library.
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Figure 3. Active sites together with the bound reference ligands (in orange) of the selected proteins:
the amino acids involved in specific interactions are presented in sticks & balls: AChE (Trp86, Trp286,
Phe295); HDAC2 (Gly154, Asp181, Tyr308 and Zn2+ cofactor, represented as a sphere); MAO-B
(Leu171, Gln206).
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Table 1. Re-docking (in bold) and cross-docking scores of the co-crystallized ligands in the three
enzymes using two docking protocols in MOE; the ranges span the scores of the best 10 poses.
The lowest RMSD values (root mean square deviations; MOE rigid/flexible docking protocol) for
the re-docked ligands (in bold) are the following: AChE—1.19 Å/0.93 Å; HDAC2—1.29 Å/0.66 Å;
MAO-B—1.71 Å/0.78 Å.

Enzyme (PDB Code) Docking Protocol
Docking Scores of the Reference Ligands, kcal/mol

Safinamide Benzamide Derivative Donepezil

AChE (4EY7)
MOE rigid −13.05 ÷ −11.16 −12.13 ÷ −11.43 −14.71 ÷ −12.64

MOE flexible −7.35 ÷ −5.83 −7.84 ÷ −6.62 −8.52 ÷ −6.29

HDAC2 (4LYI)
MOE rigid −11.72 ÷ −10.42 −13.01 ÷ −11.30 −13.24 ÷ −10.92

MOE flexible −7.17 ÷ −5.62 −7.68 ÷ −6.74 −8.51 ÷ −6.10

MAO-B (2V5Z)
MOE rigid −13.56 ÷ −12.45 −7.84 ÷ −4.66 −9.12 ÷ −5.28

MOE flexible −8.34 ÷ −7.69 −9.08 ÷ −8.17 −9.96 ÷ −8.31

After the analysis of the co-crystallized ligands, VS of the input CCG lead-like con-
former database was performed in a number of steps to retrieve hits with a potential to
interact in the active sites of the three investigated enzymes (outlined in Figure 3). All
653,214 compounds were docked by MOE rigid docking in the active site of each of the
three enzymes. From them, 11,085 compounds were selected based on their docking scores
that exceed those of the re-docked reference ligands for all the proteins. The subsequent
application of the MOE flexible docking protocol on those 11085 compounds resulted in
1011 structures, which passed the triple-activity criteria according to the scores reported in
Table 1 for this protocol.

Further, these 1011 structures were subjected to docking in SeeSAR and a putative
affinity range (Ki HYDE range) was calculated for each ligand applying HYDE post-docking
procedure. This procedure resulted in elimination of 566 structures which were not docked
successfully or Ki HYDE range was not calculated for any of the three target proteins
(Table 2). The remaining 445 compounds were further filtered in KNIME by applying
sub-structural filters in order to remove chemical compounds known to show false-positive
results by reacting non-specifically with numerous biological targets, and, therefore, with
a high probability to be non-active against the target of interest [29]. Such frequent hitters
or false-positive inhibitors are known as pan assay interference compounds (PAINS) or
colloidal aggregators [30–33]. In addition, compounds containing a Schiff base substructure
known to undergo a rapid degradation (hydrolysis) were also filtered from the set of
compounds [34]. The above sub-structural filters were used to identify and remove from
further screening sets the compounds that may interfere with biological assays due to their
reactivity, interference with assay conditions, false activities (e.g., oxidizers, detergents),
chemical instability (e.g., Schiff bases, latent aldehydes), and others [35].

Table 2. Results of the multi-step VS with the number of triple-acting compounds remaining after
each step.

Virtual Screening Steps Number of Docked
Compounds

Number of Compounds Passing the Criteria for
Inclusion in the Next Step

MOE rigid docking 653,214 11,085

MOE flexible docking 11,085 1011

SeeSAR flexible docking 1011 445

PAINS filtering 445 377

Affinity constraints 377 16

Pharmacophore filtering 16 4
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The MTDL effect of the compounds was considered according to the predicted binding
affinities as approximated by their HYDE scores. The dataset of 377 compounds after the
PAINS filtering was analyzed based on the predicted affinity of the compounds to each
individual protein. Figure 4 illustrates the distribution (in %) of these compounds according
to the calculated affinity values for each of the three enzymes. The affinity threshold for
each individual enzyme was set to be less than 5.0 µM thus narrowing the selection to
41% for AChE, 25% for HDAC 2 and 43% for MAO-B. The threshold value was chosen
based on the understanding that for a hit molecule, the affinity is expected to be in the
micromolar range [36]. The final selection was based on the multiplication product of the
all compound’s three affinity values less than 100 × 106.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 24 
 

 

oxidizers, detergents), chemical instability (e.g., Schiff bases, latent aldehydes), and others 
[35]. 

Table 2. Results of the multi-step VS with the number of triple-acting compounds remaining after 
each step. 

Virtual Screening Steps Number of Docked Compounds 
Number of Compounds Passing the Criteria for 

Inclusion in the Next Step 
MOE rigid docking 653,214 11,085 

MOE flexible docking 11,085 1011 
SeeSAR flexible docking 1011 445 

PAINS filtering 445 377 
Affinity constraints 377 16 

Pharmacophore filtering 16 4 

The MTDL effect of the compounds was considered according to the predicted 
binding affinities as approximated by their HYDE scores. The dataset of 377 compounds 
after the PAINS filtering was analyzed based on the predicted affinity of the compounds 
to each individual protein. Figure 4 illustrates the distribution (in %) of these compounds 
according to the calculated affinity values for each of the three enzymes. The affinity 
threshold for each individual enzyme was set to be less than 5.0 µM thus narrowing the 
selection to 41% for AChE, 25% for HDAC 2 and 43% for MAO-B. The threshold value 
was chosen based on the understanding that for a hit molecule, the affinity is expected to 
be in the micromolar range [36]. The final selection was based on the multiplication 
product of the all compound’s three affinity values less than 100 × 106. 

 
Figure 4. Distribution (in %) of the top 377 compounds based on the predicted Ki values for each of 
the three proteins. 

The application of these affinity constraints resulted in 16 hits, which are shown in 
Table 3. 

  

Figure 4. Distribution (in %) of the top 377 compounds based on the predicted Ki values for each of
the three proteins.

The application of these affinity constraints resulted in 16 hits, which are shown
in Table 3.

In general, all 16 hit compounds may represent good candidates for further in vitro
screening. However, to narrow the range of experimental testing, the selection of hits was
further refined using pharmacophore-based screening. For this purpose consensus pharma-
cophore models were built for each protein. A complex-based pharmacophore modeling ap-
proach was chosen, meaning that the best docking poses for each of the 16 compounds were
extracted from each binding site and further used to generate a consensus pharmacophore
model for each protein. The consensus pharmacophore of the 16 top scored hits showed
three or more pharmacophore features for each protein with the aromatic/hydrophobic
one present in all three of them (Figure 5).
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Table 3. Selected hits with their names, structures (incl. SMILES), affinity values (predicted Ki, nM) and affinities’ multiplication product. Compounds are ranked
according to the Ki multiplication product.

No. Name/Structure
Ki Predicted (nM)

Multi-Plication Product
AChE HDAC2 MAO-B

1

Specs AH-487/42478269
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Table 3. Cont.

No. Name/Structure
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Figure 5. Consensus pharmacophore models of the top 16 hit ligands of AChE, HDAC2, and
MAO-B. The following pharmacophoric features are outlined in the models: AChE—F1 (hydropho-
bic/aromatic feature), F2 (functional groups capable of performing hydrogen bonds (HB)), F3 (func-
tional groups capable of performing HBs as HB acceptors); HDAC2—F1, F2 (hydrophobic/aromatic
features), F3, F4 (functional groups capable of performing HBs as HB acceptors), F5 (functional
groups capable of performing HBs as HB donors); MAO-B—F1, F2, F3 (hydrophobic/aromatic
features).Individually for each protein, the pharmacophore features were present in 11 ligands for
MAO-B, 8 for HDAC2 and 7 for AChE. Finally, four ligands contained every single pharmacophore
feature for each protein (compounds: Specs AH-487/42478269 (1), Comgenex CGX-3274395 (8), Chem
T&I AMCLME-10390 (10), and Asinex BAS 07211091 (16) in Table 3). These compounds were outlined
as potential multi-target acting hits and subjected to further analyses as described below.

2.2. BBB Penetration and Safety Profile Prediction of the Identified Hits

The database explored in this study consists of drug-like molecules, thus with generally
suitable pharmacokinetic properties according to physicochemical parameters’ based rules
such as Lipinski’s rule of five for oral compounds [37]. Furthermore, considering the fact
that drugs used for NDD treatment have to be CNS-active, we subjected the four hits to
an in silico estimation of their BBB penetration potential using the SwissADME web-based
tool and the ACD/Percepta software platform (the results summarized in Table 4). Taking
into account that the models differ in the coverage of the parameters/mechanisms predicted,
a consensus final prediction was assigned to each compound in order to keep the different
information provided by both models—the compound was classified as a “BBB penetrant”
if one of the models classified it as such. For the purpose of the consensus classification
the weak penetrants (in terms of ACD/Percepta predictions) were considered as “non-
penetrants”. Based on the predictions (Table 4) the compound Asinex BAS 07211091 was
considered as “non-penetrant” and excluded from further analyses.
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Table 4. BBB penetration and toxicity predictions for the hits identified in the virtual screening.

Structure/Name
BBB Prediction BBB Prediction

(Consensus)
Derek Nexus

Toxicity PredictionSwissADME ACD/Percepta
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a Cardiotoxicity endpoint: HERG channel inhibition in vitro.

Further, to assess the safety profile of the selected hits, Derek Nexus expert system
was employed searching for specific structural alerts (toxicophores) associated with spe-
cific toxicities. In particular, liver and cardiac toxicities were predicted which are often
identified as the main reason for toxicity-driven non-clinical safety-related drug candidate
attrition [38]. Derek Nexus results provided predictions with “plausible” level of likelihood
for the compound Chem T&I AMCLME-10390 to exhibit hepatotoxicity and cardiotoxicity
in mammals (Table 4). Nevertheless, this compound was included in the subsequent MD
simulations to investigate its interactions with the three enzymes.

2.3. Molecular Dynamics Simulations of the Selected Hits

The retained three hits (Table 4) were subjected to MD simulations in order to inves-
tigate the stability of binding to the investigated enzymes. The calculated RMSDs of the
displacements of the protein-ligand complexes over the simulation time are presented in
Figure 6. They are indicators for the stability of the complexes.

Although the position of donepezil in the complex with AChE had some large fluctua-
tions around 50 and 90 ns of the simulation, the complex reached equilibrium after 175 ns
with RMSD fluctuating within around 0.5 Å for the protein and within around 1 Å for the
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ligand. This was also valid for the complexes with the selected three hit compounds, after
175 ns stable complexes were obtained with the RMSD fluctuating within 0.5 Å for the
proteins, and within 1 Å for the ligands.

The MD results showed a stable complex of HDAC2 with the benzamide derivative—the
RMSD for the protein fluctuated within less than 0.5 Å and the RMSD for the ligand
fluctuated within around 1 Å after 150 ns of the simulations. The complex of HDAC2
with Specs AH-487/42478269 was less stable—the protein RMSD fluctuated within less
than 0.5 Å, but the ligand position varied with RMSD within a range of around 3 Å at
the end of the simulation. The complex of HDAC2 with Comgenex CGX-3274395 reached
equilibrium after 180 ns with RMSD of the protein and ligand fluctuating within 0.5 Å and
1.0 Å, respectively. The complex of HDAC2 with Chem T&I AMCLME-10390 had strong
fluctuations between 50 and 140 ns, at the end of the simulation it was stable with protein
RMSD varying less than 0.5 Å and ligand RMSD varying within around 1.0 Å.
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The complexes with MAO-B reached equilibrium, with protein RMSD fluctuating
within less than 0.5 Å and ligand RMSD within 1 Å or less after 160 ns. Exception was the
complex of MAO-B with Chem T&I AMCLME-10390 where the ligand position reached
equilibrium, but the protein position did not stabilize around a fixed RMSD value.

The protein-ligand interactions (PLIs) are presented in Figure 7, including 2D dia-
grams of the interaction points and histograms with the interacting amino acids. In the
histograms the PLIs are categorized into four types—hydrogen bonds, hydrophobic, ionic,
and water bridges. The histograms height represents the proportion of the simulation
time (normalized to 1) during which the specific interaction was present (i.e., a value of
0.7 means that the interaction took place during 70% of the simulation time). Values over
1.0 were obtained in cases where the protein residue makes multiple contacts of the same
type with the ligand. The 2D diagrams present specific interaction subtypes. Hydrophobic
contacts are divided in Pi-cation, Pi-Pi, and other non-specific interactions. Water bridges
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are hydrogen-bonded PLIs mediated by a water molecule. In the 2D diagrams interactions
that occurred during at least 20% of the simulation time, are shown.

For the complex of AChE with donepezil Trp86, Trp286, Phe295, Tyr337, Phe338,
Tyr341, and His447 were shown to participate in the PLIs. Trp86, Trp286, and Phe295
were also outlined in the analysis of the PLIs of the co-crystalized reference ligands
(Figure 3). The interactions with the three selected hits involved more protein residues,
including the above residues, and other residues with longer interaction times, i.e., Glu202
for Specs AH-487/42478269, Tyr133 for Comgenex CGX-3274395, Asp74 and Tyr124 for
Chem T&I AMCLME-10390.

For the interaction of benzamide derivative with HDAC2 residues Asp104, Leu144,
His145, His146, Gly154, Phe155, Asp181, His183, Phe210, Asp269, Gly307 and Tyr308 were
outlined. Metal coordination interactions with Zn2+ involving Asp181, His183 and Asp269
were maintained during 100% of the simulation time. In the docking analysis Gly154,
Asp181, and Tyr308 were shown to interact with the ligand (Figure 3). Some of the above
residues took part in the interactions of Comgenex CGX-3274395 with HDAC2—Leu144,
Gly154, Phe155, Asp181, His183, Phe210, Asp269, and Tyr308, including also interactions
with Arg39 and Gly305. This complex showed to be stable by the RMSD values. Some of
the above residues participated in the interactions of the complex of HDAC2 with Specs
AH-487/42478269—Asp104, His146, Gly154, Phe155, Asp181, His183, Phe210, Asp269,
including also Gly143. However, apart from the metal coordination with Zn2+ and the
interaction with Phe210 (hydrophobic and H-bonding), the other interactions were present
in less than 50% of the simulation time, which may explain the lower stability of the
complex. For the complex of HDAC2 with Chem T&I AMCLME-10390 shown by the
RMSD values also to be less stable, no PLIs were taking place during the whole period of
the simulation—the interactions with the residues Asn100, His146, Glu151, Ala152, Phe155,
His183, Phe210 and Tyr308 were present during or less than 50% of the simulation time,
the interactions with Asp104 (hydrophobic, ionic, water bridge) were present around 70%
of the simulation time. No metal coordination with Zn2+ was observed for this complex.
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The residues interacting during almost 100% of the simulation time for MAO-B with
safinamide were Leu171 and Tyr326. Leu171 and Gln206 were outlined above (Figure 3).
Gln206 was also shown to interact by the MD simulations (through H-bonding and water
bridge), but only in around 20% of the simulation time. Ile198, Ile199, Lys296, Ile316, Phe343,
Tyr398 and Tyr435 also took part in the interactions in around 20% of the simulation time.
Interactions with most of these residues were present in the other MAO-B complexes. For
the complex with Specs AH-487/42478269 the interactions were with Leu167, Leu171,
Gln206, Tyr326, Tyr398 and Tyr435. The complexes with Comgenex CGX-3274395 and
Chem T&I AMCLME-10390 involved the same interacting residues as with safinamide
except that Lys296 was excluded and Tyr188 was included in the interactions.

According to the above results, in general the enzyme-ligands complexes of the
selected hits included similar interactions as those involved in the complexes with the
crystallographic ligands. Some complexes involved more interaction points than the
crystallographic ligands suggesting stronger binding compared to the reference ligands.

The binding energies of the enzyme ligand complexes were calculated from the most
abundant cluster of the simulation trajectory poses. The calculated binding energies are
presented in Table 5. The energies for the selected compounds are lower than the energies
calculated for the crystallographic ligands confirming possible stable binding of these
compounds to the investigated enzymes.

Table 5. Binding energies of the protein-ligand complexes from the MD simulations (kcal/mol).

Ligand AChE HDAC2 MAO-B

Crystallographic ligand −71.49 −21.41 −45.29

Specs AH-487/42478269 −76.01 −30.16 −77.37

Comgenex CGX-3274395 −72.83 −45.41 −83.35

Chem T&I AMCLME-10390 −82.14 −48.94 −74.57

In general, the results from the MD simulations showed that the selected compounds
may form stable complexes with the investigated enzymes involving interactions which
resemble those in the crystallographic complexes. Exceptions are the complexes of Specs
AH-487/42478269 and Chem T&I AMCLME-10390 with HDAC2, which may be less
stable. In addition, the complex of Chem T&I AMCLME-10390 with MAO-B did not reach
equilibrium at the simulation.

Based on the above computational analyses, two of the final multi-target hits, Specs
AH-487/42478269 and Comgenex CGX-3274395, were outlined as the most suitable lead
structures for NDDs drug development.

3. Materials and Methods
3.1. Protein-Ligand Complexes

For the purposes of the investigation all crystallographic structures of MAO-B, AChE
and HDAC2 available in the Protein Data Bank (PDB) [39] were analyzed. The final selec-
tion of protein-ligand complexes was carried out based on the X-ray structures’ resolution
and availability of experimental data on the inhibitory effects of the co-crystallized ligands
to be used as reference structures in the subsequent computational studies. The following
complexes were selected as reference structures for VS: 4EY7 (AChE with donepezil; resolu-
tion 2.35 Å; binding affinity annotations in PDB: Ki-min: 2.9, max: 38 nM from 9 assays) [40],
4LY1 (HDAC2 with a benzamide derivative; resolution 1.57 Å; binding affinity annotations
in PDB: Ki-min: 0.2, max: 1.5 nM from 2 assays) [41], and 2V5Z (MAO-B with safinamide;
resolution 1.57 Å; binding affinity annotations in PDB: Ki = 450 nM from one assay) [42].
For the purposes of the subsequent VS the B chains were selected from 4EY7 (for AChE)
and 2V5Z (for MAO-B), which are homodimers, and the C chain from 4LY1 for HDAC2
that is homotrimer. The selection of these chains was based on the highest estimated ligand
binding affinity to the particular chain using the post-scoring function HYDE (HYdrogen
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DEsolvation) in SeeSAR in order to predict the so called Ki HYDE ranges (SeeSAR v. 10; Bio-
SolveIT GmbH, Sankt Augustin, Germany, https://www.biosolveit.de/SeeSAR/, accessed
on 22 August 2022) [43]. The cofactors flavin (in 2V5Z) and Zinc (in 4LY1), were kept in the
structures for further computations [41,42].

3.2. Compounds Library

The initial dataset consisted of 653,214 unique small drug-like compounds taken from
the Lead-like Conformer Database compiled by Chemical Computing Group (CCG) and
provided with Molecular Operating Environment (MOE) platform (CCG Inc., Montreal,
QC, Canada, https://www.chemcomp.com/, accessed on 22 August 2022). The structures
in the database have been selected from 44 public catalogs of chemical suppliers, curated,
protonated at physiological pH, and filtered for drug-likeness.

3.3. Docking and Virtual Screening

A multi-step computational workflow using different software and protocols for
docking/VS was employed:

(i) Docking in MOE software v. 2020.09, using triangle matcher placement, Lon-
don dG scoring function [44], no water molecules considered. Two subsequent runs
were performed: with no refinement of the ligand (“MOE rigid-receptor docking”) and
with induced fit refinement (flexible side chains—optimization of the ligand and the
active site amino acids side chains) with GBVI/WSA dG scoring function [45] (“MOE
flexible-receptor docking”).

(ii) Docking in SeeSAR software, using FlexX 4 placement [46], Böhm’s scoring
function [47], subsequent induced fit refinement (flexible side chains) with HYDE scoring
function [48]; water molecules in the active site were considered (“SeeSAR flexible-receptor
docking”). Based on the HYDE score the affinity range of the docked ligands was estimated
(Ki HYDE range). The predicted Ki is presented as a geometric mean of the lower and upper
boundaries of the Ki HYDE range.

(iii) Filtering-out the compounds with undesirable features (unstable compounds and
those reacting non-specifically with numerous biological targets) in the KNIME analytics
platform (https://www.knime.com/, accessed on 22 August 2022).

(iv) Pharmacophore analysis: consensus pharmacophores were generated in MOE
from the top-scored ligands posed in the binding pocket of each of the three proteins. The
applied settings were: neighborhood distance tolerance up to 1.45 Å, threshold 50%.

Each ligand was docked in the binding pocket of each of the three enzymes. Ten poses
were generated for each ligand but only the best one was retained.

3.4. Selection of the Potential Multi-Target Ligands

The compounds exhibiting docking scores better than the best re-docking score of
each of the three co-crystallized ligands in the receptor site of each enzyme were selected
for the next VS step. Final ranking of the compounds was performed according to the
multiplication product of the predicted Ki values. The use of multiplication products,
instead of sums, allows avoiding possible distortion due to differences in scaling of the
docking scores in different proteins.

3.5. Blood-Brain Barrier Penetration Prediction

The hits, retrieved by the VS, were evaluated for their ability to cross blood-brain
barrier (BBB). For this purpose, two in silico tools were employed:

(i) SwissADME web tool (http://www.swissadme.ch/, accessed on 22 August 2022).
It predicts passive BBB-permeation based on a classification model including two physico-
chemical parameters—topological polar surface area (tPSA) and lipophilicity expressed
as logP. According to the model compounds with moderate polarity (tPSA < 79 Å2) and
lipophilicity (0.4 < logP < 6.0) possess a high probability to cross the BBB by passive
diffusion and to access the CNS [49].

https://www.biosolveit.de/SeeSAR/
https://www.chemcomp.com/
https://www.knime.com/
http://www.swissadme.ch/
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(ii) ACD/Percepta software (ACD/Labs Release 2021.2.2, Advanced Chemistry Develop-
ment, Inc., Toronto, ON, Canada, https://www.acdlabs.com, accessed on 22 August 2022).
This tool classifies the compounds as “penetrant”, “weak penetrant” and “non-penetrant”
based on an equation, that is a combination of predicted quantitative characteristics of trans-
port across BBB, namely brain/plasma equilibration rate and steady-state brain/plasma
distribution ratio.

3.6. Safety Profile Elucidation

In silico prediction of the potential toxic effects of the retrieved hits was performed using
Derek Nexus v.6.2.0 expert system (Lhasa Limited, Leeds, UK, https://www.lhasalimited.org,
accessed on 22 August 2022). Derek Nexus generates a prediction by comparing the struc-
tural features of the compound with a toxicophore (structural alert) encoded as structural
pattern(s) in its knowledge base. The final predictions are derived from a reasoning scheme
which takes into account other relevant factors, for example physicochemical properties,
as well as the presence of a toxicophore in the query structure [50]. The predictions in
Derek Nexus are provided with the following levels of likelihood, from highest to low-
est one: “certain”, “probable”, “plausible”, “equivocal”, “doubted”, “improbable”, and
“impossible” [51]. In this study, the level of likelihood “plausible” was selected as a thresh-
old, meaning “the weight of evidence supports the proposition”. The predictions were
restricted to mammal species.

3.7. Molecular Dynamics Simulations

Schrödinger molecular modeling software (v. 2022.2, Schrödinger, Inc., New York,
NY, USA https://www.schrodinger.com/, accessed on 30 June 2022) was used for MD
simulations. Before the simulations “Protein Preparation” feature in Schrödinger with
default settings was applied, including “Optimize H-bond Assignments” step. LigPrep
feature with OPLS4 force field was used for ligand preparation. MD was done with
Desmond module of Schrödinger [52]. The systems were prepared with “System Setup”
feature. Solvent was added by applying “Water TIP3P” model in orthorhombic simulation
box with minimum distance between the protein surface and the solvent surface of 10 Å.
The systems were neutralized by adding Na+ or Cl− as counter ions. A 0.15 M NaCl was
used to obtain isosmotic environment. During the simulations Nose-Hoover thermostat
at temperature 300 K and atmospheric pressure (1.013 bars), with the default setting for
relaxation before simulation, were applied. The simulations were performed for a total
of 200 ns, and 5000 frames were saved. The trajectories were examined with “Simulation
Interaction Diagram” module of Desmond.

MM-GBSA tool in Prime module of Schrödinger was used to calculate the protein-
ligand binding energies. For this purpose, the trajectory frames were clustered with the
“Desmond Trajectory Clustering” module. All 5000 frames were used to generate (MSD
matrix based on the protein backbone and the ligand positions (including Zn2+ for HDAC2).
The representative of the most abundant cluster for each protein-ligand complex was used
to calculate the binding energies by MM-GBSA tool with OPLS4 force field. The “VSGB
solvation model” was applied for the calculations (default setting, water solvent).

4. Conclusions

In this study, we applied a series of computational and ranking procedures to identify
suitable multi-target drug candidates for NDDs symptomatic treatment. We focused on
three important enzymes involved in the NDD pathology—AChE, MAO-B and HDAC-2,
the combination of which as a multi-target goal has not been explored so far. We stepped
on a database of more than 650,000 compounds pre-screened for their physicochemical
drug-like properties, thus reducing the initial signal-to-noise ratio. The compounds with
decent affinities for all studied targets were selected and passed through additional analy-
ses to remove possible false-positive hits or known non-specifically binding compounds.
This multi-step procedure yielded 16 drug-like compounds with predicted activity simulta-

https://www.acdlabs.com
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neously towards AChE, MAO-B, and HDAC-2. Consensus pharmacophore models were
developed for each protein and the structures that contained all pharmacophoric features
were selected as potential multi-target hits. From them, one was predicted as BBB non-
penetrant. The remaining three hits were subjected to MD simulations. The MD results
for one of the hits suggested a lower potential for binding to two of the three enzymes.
In addition, it was predicted as a potential hepatotoxic and cardiotoxic agent. The MD
results for two of the ligands were promising thus yielding two final hits with possible
multi-target action.

In summary, our results outline the potential of the in silico approaches as a rational
basis for the development of multi-target compounds against NDDs.
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