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Abstract: A decrease in the miR-124 expression was observed in various epithelial cancers. Like a
classical suppressor, miR-124 can inhibit the translation of multiple oncogenic proteins. Epigenetic mech-
anisms play a significant role in the regulation of miR-124 expression and involve hypermethylation
of the MIR-124-1/-2/-3 genes and the effects of long non-coding RNAs (lncRNAs) and circular RNAs
(circRNAs) according to the model of competing endogenous RNAs (ceRNAs). More than 40 interac-
tomes (lncRNA/miR-124/mRNA) based on competition between lncRNAs and mRNAs for miR-124
binding have been identified in various epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS,
and XIST are the most represented in these axes. Fourteen axes (e.g., SND1-IT1/miR-124/COL4A1)
are involved in EMT and/or metastasis. Moreover, eight axes (e.g., OIP5-AS1/miR-124-5p/IDH2) are
involved in key pathways, such as Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch,
PI3K/Akt signaling, and cancer cell stemness. Additionally, 15 axes impaired patient survival and three
axes reduced chemo- or radiosensitivity. To date, 14 cases of miR-124 regulation by circRNAs have been
identified. Half of them involve circHIPK3, which belongs to the exonic ecircRNAs and stimulates cell
proliferation, EMT, autophagy, angiogenesis, and multidrug resistance. Thus, miR-124 and its interacting
partners may be considered promising targets for cancer therapy.

Keywords: epithelial cancers; epigenetic mechanisms; miR-124; lncRNA; circRNA; EMT; metastasis;
signaling pathways; chemoresistance

1. Introduction

Recent studies have increasingly shown that less than 1.5% of the human genome
genes encode proteins. Non-coding RNAs (ncRNAs) transcribed from non-protein-
coding genes are involved in the regulation of all biological processes. Among them,
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are of the greatest impor-
tance. These two large classes differ from each other in length [1]. miRNAs, composed
of up to 24 nucleotides, suppress the translation of protein-coding genes of wide func-
tionality. It has been shown that miRNAs are involved in many cellular processes as
regulators of homeostasis and their expression is highly conserved in various cells. The
key role of miRNAs in carcinogenesis has also been revealed. miRNAs may be onco-
genic, suppressor, or may have either function, depending on cancer localization [2,3].

miR-124, first discovered in mice, is a typical suppressor miRNA. This miRNA,
found not only in mammals but also in worms, is notable not only for its conservation
but also for the unusual decrease in expression associated with the development of
the malignant transformation of various etiologies [3,4]. Three genes encode for this
miRNA: MIR-124-1 (8p23.1), MIR-124-2 (8q12.3), and MIR-124-3 (20q13.33). All of them
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harbor CpG islands. The genes encoding miR-124 in various cancer types undergo
methylation, suppressing their expression [5–7].

The interaction between miRNA and mRNA of the target protein-coding genes
involves the formation of the RNA-induced silencing complex (RISC) [8,9]. The 3′-
UTR (3′-untranslated region) of mRNA sequences may contain sites for complemen-
tary binding of different miRNAs. RISC, together with a member of the Argonaute
(AGO) protein family, provides complementary binding of miRNA to mRNA, which
reduces protein expression through mRNA cleavage, degradation, and/or translational
repression [8,9].

The lncRNA class of ncRNAs with a length of more than 200 nucleotides has
multiple functionalities [10] and participates in the regulation of all cellular processes,
including the expression of miRNAs themselves. Similar to miRNAs, the role of
lncRNAs in cancer may be oncogenic, suppressor, or dual [11]. Noteworthy, the
two ncRNA classes—miRNAs and lncRNAs—are in a complex interaction with each
other. This interaction involves messenger RNAs and ncRNAs, such as lncRNA,
pseudogenes, circular long ncRNAs (circRNAs), and miRNAs. mRNAs and ncRNAs
interact with each other and co-regulate each other by competing for binding to shared
miRNAs [12]. Hereby, ncRNAs act as competing endogenous RNAs (ceRNAs) and form
interactomes in an ncRNA/miRNA/mRNA pattern. Such interactomes are involved in
the carcinogenesis of multiple tumors. For example, a large study showed that the axis
UCA1/miR-124/JAG1 is responsible for developing tongue cancer [13].

The search for new markers for diagnosing and predicting epithelial tumors
remains the most important task of current molecular oncology. In this regard, miRNAs
and lncRNAs involved in the regulation of cellular processes and detected in various
cancer types are very promising candidates [14,15]. The same refers to circRNAs,
which are a useful tool for diagnosis and the assessment of the quality of treatment.
CircRNAs were first discovered in viroids and are annular single-stranded molecules
without 5′ caps or 3′ poly(A) tails. CircRNAs demonstrate high conservation, stability,
and expression level in cells. Recently, the association of these ncRNAs with the
development of various cancer types, as well as their interaction with the other classes
of ncRNAs has been discovered, necessitating a further study of circRNAs [15].

In this review, various aspects of the regulation of miR-124, the suppressor miRNA
that interacts with both ncRNAs and its targets in various types of epithelial tumors,
will be considered.

2. Protein-Coding Target Genes of miR-124 and Their Role in the Biological Processes
Involved in the Carcinogenesis of Epithelial Tumors

miR-124 is a subject of interest for the study for several reasons, including its
high conservativeness in various tissues of many organisms, as well as the fact that its
abnormal expression is associated with cancer of various etiologies. miR-124 has been
shown to be involved in the regulation of cell growth, differentiation, and development,
while the disruption of this miRNA can lead to the development of malignant cell trans-
formation, in particular, to cell cycle arrest, epithelial-mesenchymal transition (EMT),
metastasis and resistance to chemotherapy. Therefore, this miRNA is considered a
potential biomarker for developing new therapeutic strategies for treating tumors [16].

Several studies have shown the suppressive nature of miR-124 in cancers of var-
ious etiologies. Also, for several cancers, the ability to suppress the proliferation,
invasion, and migration of tumor cells has been shown. It is noted that, depending
on the process and ectopic location, miR-124 uses different targets to suppress a par-
ticular type of cancer, although in tumor cells, regardless of etiology, this miRNA is
suppressed in various ways, including hypermethylation of genes encoding it. The CBL
(Casitas B-lineage lymphoma; encodes ubiquitin ligase E3), PDCD6 (programmed cell
death 6), ROCK1 (Rho-associated protein kinase 1), SNAI1/2 (Snail family transcription
repressors 1 and 2), TWIST1/2 (Twist family BHLH transcription factors 1 and 2), ASPP
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(apoptosis-stimulating protein p53), iASPP (inhibitor of apoptosis-stimulating protein
p53), SPHK1 (sphingosine kinase 1), NRP1 (neuropilin 1) genes are the previously
discovered target genes of this miRNA in different types of cancer. All these genes
show oncogenic properties affecting the development and progression of epithelial
tumors [3,4].

Note that not only proteins encoding by miR-124 target genes are important in the
development of cancer. To assess the picture of pathological transformation, one should
consider the cellular signal pathways that trigger when various system processes are
disrupted. In particular, the involvement of miR-124 in the process of suppressing
tumor activity as part of a cascade of interactions within the Wnt/β-catenin pathway
deserves attention. Thus, it was revealed that miR-124 with miR-340 cooperation
participates in the specific suppression of the SRGAP1 gene (SLIT-ROBO Rho GTPase
Activating Protein 1). As a result, this leads to the suppression of the growth of the
gastric cancer cell line. The SRGAP1 gene is an oncogene that, according to several
studies, is not only triggered in cancer cells of various etiologies but is also part of
the Wnt/β-catenin pathway as the main regulator of the activity of this pathway.
Alternatively, miR-124 suppresses the expression of this gene, resulting in the entire
cascade “fade” [3,4].

Recent studies provide an opportunity for a more complete assessment of the
role of miRNAs in the development of cancers of various localizations. A study by a
group of Chinese scientists on the role of miR-124 in the development of malignant
transformation of liver cells has revealed a new target. The study consisted of several
stages. At the stage conducted on hepatocellular cancer stem cell lines, it was shown
that miR-124, whose expression level was high, suppressed the activity of the CAV1
(Caveolin-1) gene found using bioinformatic screening. A mutual regulation within
this pair was also noted. Moreover, the results showed tumor progression and revealed
an unfavorable prognosis for patients with such gene interaction. One of the possible
reasons for this outcome was called resistance to the standard therapeutic agent in
this type of cancer when suppressing miR-124 in tumor cells. The authors consider
a decrease in resistance to the therapeutic agent and oncogene expression with an
artificial increase in miR-124 expression to be an optimistic result. Similar results were
obtained for colon cancer [17,18].

Noteworthy, several other target genes have been identified for liver cancer:
C/EBPa (CCAAT enhancer binding protein α), which encodes an important transcrip-
tion factor and is also regulated by miR-124 [19], CRKL (V-crk sarcoma virus CT10
oncogene homolog (avian)-like), which is involved in various cellular processes [20],
BIRC3 (Baculoviral IAP Repeat Containing 3) and some others, the suppression of
whose expression by miR-124 reduced the proliferative activity of tumor cells, inva-
sion, and migration [21–23].

According to some studies, one of the important characteristics of malignant
neoplasms is uncontrolled cell growth. The results of a study of a colon cancer-specific
marker of the IQGAP1 gene (IQ motif containing GTPase activating protein) have
shown that there is a mechanism for suppressing this process. Scientists have found
that direct regulation through miR-124 significantly reduces the level of oncogene
expression by stopping the growth of tumor cells. It is supposed to be interesting the
role of this pair in the launch of the mentioned Wnt/β-catenin pathway [24].

Another important characteristic of cancer is progression. Identifying a marker
that allows you to assess the metastatic potential of a tumor is extremely important for
understanding the anatomy of any type of cancer. Thus, in assessing the metastatic
potential of miR-124 in breast cancer, the ABCC4 (ATP-binding cassette subfamily C
member 4) target gene was identified. The miR-124/ABCC4 pair was associated not
only with tumor progression but also with drug resistance [25].

When studying the metastatic potential of miR-124, our group obtained some
convincing results indicating a high level of metastasis formation in the resection
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material in ovarian and breast cancers. In a study of 20 miRNA genes in ovarian
carcinoma, we showed an association of aberrant methylation of several miRNA genes,
including miR-124, with the subsequent development of metastases [26]. It has been
shown that because of aberrant methylation, the entire regulatory cascade is disrupted,
which leads to the deregulation of the ZEB1 and ZEB2 (zinc finger E-box linking the
genes homeobox 1 and 2) genes, involved in EMT, which subsequently leads to the
development of metastases.

In our other work, a comprehensive assessment of the interaction between miRNAs,
their target genes, and possible regulatory long non-coding RNAs in ovarian carcinoma
was carried out. Analysis of the study results revealed a potential interaction between the
AURKA (Aurora Kinase A) gene and miR-124 [27].

EMT is considered to be the early and most significant stage of cancer progression.
This process is characterized by the transition of adhesive cells into motile cells and is
regulated by miRNAs by reducing the expression level of genes responsible for adhesive or
epithelial processes, such as E-cadherin, and increasing the expression of genes responsible
for mesenchymal processes, such as N-cadherin. Normally, this process is reversible and is
extremely important in the formation of various organs during embryonic development, as
well as necessary for wound healing [4].

However, as the results of various studies show, violations of the regulation of the
expression of several genes associated with this process can lead to the development and
progression of cancers of various localizations, as well as affect resistance to different
therapeutic markers. In particular, in a study conducted on breast cancer, it was shown that
the interaction of miR-124 with the most significant genes regulating EMT, namely ZEB1/2,
may be crucial for understanding the formation of cancer. Thus, the study showed that a
decrease in the expression level of miR-124 in the tumor increased the expression level of
the ZEB2 gene, followed by the launch of EMT and the development of metastases. With
a high level of miR-124 expression in the tumor, the reverse process was observed. Thus,
using the example of triple-negative breast cancer, it was revealed that this gene is a direct
target of miR-124 and is associated with both EMT and metastasis [28].

It should be noted that in the study of clear cell renal cell carcinoma, the synergy
of miR-124 with another miR-203 miRNA was found. These regulators jointly sup-
pressed the expression level of the ZEB2 gene, which leads to the suppression of the
proliferation and migration of tumor cells [29].

Importantly, in breast cancer, in addition to the EMT genes, another miR-124 target
gene was identified. It is a signaling regulator and transcription activator STAT3, which
is considered a specific oncogene for breast cancer. The authors note that miR-124
directly suppresses the activity of this gene, as a result reducing the proliferation,
invasion, and migration of tumor cells [30].

Along with genomic and epigenomic rearrangements, significant changes occur
in the metabolic system of the body with a tumor. A study of pancreatic cancer by
a group of Chinese scientists has revealed that miR-124 inhibits the mechanism of
metabolic transformation in tumor cells by suppressing the expression of the MCT1
gene (monocarboxylate transporter type 1) and slows down cell growth [31].

Another target was identified in a study of liver cancer formation. The authors
found that the suppression of miR-124 expression in the tumor led to increased expres-
sion of the AKT1S1 (AKT1 Substrate 1) gene encoding the enzyme PRAS40. The reverse
process was detected on cell lines. Based on these results, the authors indicated the
diagnostic potential of this marker [32].

Recently, there has been an active study of the effect on the development of
malignant transformation of immune control points. One of these points is the PD-L1
gene (Programmed death ligand 1). This gene is a target for miR-124 and is also part
of the STAT3 signaling pathway. According to the results of a study on colon cancer,
miR-124 plays a huge role in tumors of this localization. It was shown that miR-124
was suppressed in the tumor, while the expression level of PD-L1 was high. The
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results on cell lines revealed the opposite effect. There was also a concomitant effect
of lowering the expression level of several other genes, as IL10 (interleukin 10), IL2
(interleukin 2), TNF-α (tumor necrosis factor α), TGF-β (transforming growth factor
beta), IFN-γ (interferon gamma). Additionally, an increase in the expression level of
miR-124 decreased proliferation and termination of the cell cycle and triggered both
pathways of apoptosis. The authors consider miR-124 as a therapeutic marker [33].

It should be noted that a target gene unrelated to immunity has been identified
for this type of cancer. miR-124 enhances the expression of the KiSS1 (Kisspeptin 1)
gene reducing the proliferation of tumor cells, their invasion, and migration [34].

In the study of gastric cancer, a potential oncogene was identified, which is a direct
target for miR-124. A study on cell lines showed that the SRGAP1 gene (Slit-Robo
GTPase-activating protein 1) enhances the proliferation, invasion, and migration of
tumor cells. If this gene was suppressed because of a high level of miR-124 expression,
the opposite effect was observed [35].

Recently, the studying of the influence of various factors on the properties of
malignant transformation of stem tumor cells has become quite popular. This cell type
is a precursor to the development of various types of tumors, changing its environment
and adjusting the substrate for colonization, providing all further processes inherent.
In their remarkable study, a group of Chinese scientists managed to identify interesting
patterns. Based on the results of the work, miR-124 directly interacts with the JAMA
(junctional adhesion molecule A) gene, which triggers the proliferation of tumor cells,
promotes adhesion, and allows for plastic transition. The mutual regulation of this pair
is of interest from the perspective of therapy, since a high level of miR-124 expression
suppresses the expression of the target gene and thus inhibits the properties of tumor
stem cells [36].

There should be also noted several studies in which the authors could trace entire
regulatory pathways that trigger the processes of malignant transformation in tumors
of various locations. Thus, in the study of squamous cell carcinoma of the esophagus,
a pathway regulating the processes of growth and invasion in this type of cancer was
identified. In addition to miR-124, the DNMT1 (DNA methyltransferase 1) gene and
the BCAT1 (branched-chain amino acid transaminase) long non-coding RNA gene are
involved in this pathway [37].

In another study on triple-negative breast cancer, the identified pathway was
longer. Scientists have identified several genes and their regulators that are part of the
large Wnt signaling pathway. The authors have approved miR-124 as a trigger factor
for aberrant processes by targeting Axis inhibition protein 1 (Axin1). There was also a
concomitant effect of changing the expression level of several other genes such as BAX
(B-cell lymphoma-2 associated X), BCL-2 (B-cell lymphoma-2), and β-catenin that are
involved in the Wnt signaling pathway [38]. The same miRNA was also involved in
STAT3/VEGF pathway, also detected in breast cancer. The authors claim that the direct
target of miR-124 is cyanidin-3-glucoside (C3G) involved in the angiogenesis of breast
cancer. This pair has been deemed a factor in the progression of breast cancer [39].

By analyzing the above information, we chose a group of miR-124 regulated target
genes (PDCD6, ROCK1, SLUG, STAT3, TGF-β, ZEB1), involved in the main biological
processes in several common epithelial cancers, including lung, gastric, hepatocellular,
breast and ovarian cancer, which is shown in Figure 1.
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Separately, a recent bioinformatic screening of ovarian cancer databases made it possi-
ble to compile a complete network of interacting genes involved in the development and
progression of ovarian cancer. According to the results of this study, the most significant
targets for miR-124 in ovarian cancer may be genes: CCNB1 (cyclin B1), CEP55 (centrosome
protein 55), RACGAP1 (Rac GTPase-activating protein 1), TPX2 (target protein for Xklp2),
UBE2C (ubiquitin-conjugating enzyme E2C), ZWINT (ZW10-interacting kinetochore pro-
tein), and CENPM (centromere protein M). It is assumed that these genes can also be targets
for miR-107, miR-34a-5p, miR-129-2-3p, and some others. The authors suggested that
the identified interacting miRNA-mRNA pairs can serve as factors in the progression of
ovarian cancer [47].

Bioinformatic database screening for bladder cancer followed by gene co-expression
network analysis revealed six new genes (PPARD, CST4, CSNK1E, PTPN14, ETV6, and
ADRM1) and several new miRNAs, including miR-124, as drivers in the development
and progression of bladder cancer [48]. The predicted regulatory gene cascades involving
miR-124 suggest even more multiple functions of this miRNA in epithelial cancers.

The results of all these studies confirmed miR-124 as a perspective biomarker for
different cancer types.

It is known that miR-124 itself can be inhibited by hypermethylation of MIR-124-1/-2/-3
genes, encoding miR-124 [5–7,26]. The important role of long and circular non-coding
RNAs discovered in the last decade in the dysregulation of miR-124 and its targets has
been established, which is the subject of the following sections of this review.

3. Long Non-Coding RNAs in Dysregulation of miR-124 Target Genes in Epithelial Cancers

In the last decade, the mechanism of regulation of protein genes involving not only
miRNAs, but also other regulatory ncRNAs along the ncRNA/miRNA/mRNA scheme
has received numerous confirmations. The interaction of miRNAs with target mRNAs and
with regulatory ncRNAs requires the presence of the miRNA response elements (MRE)
in sequences of both messenger RNAs and noncoding RNAs, such as long ncRNAs or
circular ones [12,49,50]. It was shown that direct bindings are formed in ncRNA-miRNA
and mRNA-miRNA pairs, and competition between ncRNA and mRNA for binding to
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miRNA is observed. This mechanism is called the competing endogenous RNAs (ceRNA)
model [12,49,50]. Vast experimental data have been accumulated, supporting the involve-
ment of lncRNA/miRNA/mRNA interactomes in the development and progression of
cancer [51,52]. According to the ceRNA mechanism with the participation of suppressor
miRNAs, such as miR-124, activation of target protein genes with oncogenic potential is
usually observed. The lncRNAs involved in the inhibition of miR-124 also demonstrated
oncogenic properties.

The discovery of new lncRNA/miRNA/mRNA interactomes is performed using a set
of methods. Briefly, this is, firstly, a bioinformatics analysis that selects lncRNA/miRNA
and miRNA/mRNA pairs from transcriptome databases, such as The Cancer Genome
Atlas (TCGA), with a negative correlation of expression levels, but it is also necessary to
identify a positive correlation between the levels of lncRNA and mRNA. Then, using the
scanMiR tool (https://github.com/ETHZ-INS/scanMiR, accessed on 2 October 2022), the
presence of a binding site for a given miRNA in the 3′-UTR mRNA and lncRNA sequences
is checked [53]. Other approaches exist (e.g., [54]). Then, the bioinformatically identified
transcriptome correlations are confirmed experimentally by analyzing the levels of RNAs
of all three types in a representative set of cancer samples and evaluation of the expected
expression level relationship (e.g., [55,56]). Further, functional studies are applied on cell
lines of this type of cancer, which, in short, include transfection of synthesized RNAs
into cells, artificial suppression or overexpression of triplet components, loss and gain of
function, analysis of physiological changes in cell culture (as the level of proliferation and
apoptosis, migration and cell invasion). Direct bindings between the components of the
triplet are established using the luciferase test, RNA-binding protein immunoprecipitation
(RIP) assay, and RNA pull-down assay. In some works, the authors confirmed the functional
significance of these interactions not only in cell cultures but also with the use of model
animals, usually immunodeficient mice (e.g., [55,56]). Some studies also elucidated the
effect of lncRNA and interactome, or in other words, the lncRNA/miRNA/mRNA axis, on
the survival rate and response to chemotherapy in patients.

In published research (PubMed on 11 September 2022), we have identified more
than 40 such interactomes involving miR-124, which are summarized in Table 1. We have
presented very briefly and compendiously data on the methods used for axis validation and
on the functional role of triplets in the development or progression of the corresponding
tumor types, as well as data on their clinical significance for patients (if available in the
cited articles).

Table 1. Interactomes lncRNA/miR-124/mRNA-Target in Epithelial Cancers.

LncRNA-Axis Cancer Methods of Analysis Axis Functions Ref.

HNF1A-AS1
/miR-124
/MYO6

colorectal cancer (40 patients,
4 cancer cell lines)

qRT-PCR, luciferase, RIP assays,
Western blot, Transwell assay,

glycolysis assessment

promotes cell proliferation,
migration, invasion,
activates glycolysis

[57,58]

HOTAIR
/miR-124
/ST8SIA4

renal cell carcinoma
(30 patients, 2 cancer cell lines)

qRT-PCR, luciferase assay, Western
blot, FISH, Transwell assay, CCK-8,

EdU, cell adhesion, colony
formation, apoptosis,

mouse xenografts

promotes proliferation, migration,
invasion, decrease apoptosis
in vitro; tumor growth and

metastasis in vivo

[59]

HOTTIP
/miR-124-3p

/HMGA2

oral tongue squamous cell
carcinoma (60 patients, 4 cancer

cell lines)

qRT-PCR, luciferase assay, Western
blot, MTT, Transwell assays,

mouse xenografts

promotes proliferation, migration,
invasion, tumor growth in vivo,

Wnt/b-catenin signaling pathway
[60]

HOXA11-AS
/miR-124

/EZH2

hepatocellular carcinoma
(66 patients, 5 cancer cell lines)

qRT-PCR, cell transfection, loss-/
and gain-of-function, CHIP, RIP,
Western blot, Transwell assay,

Kaplan-Meier curve

mutual influence of triplet
components, axis promotes

migration, invasion, poor outcome
[61]

HOXA11-AS
/miR-124-3p

/ITGB3

gastric cancer (40 patients,
3 cancer cell lines)

qRT-PCR, luciferase reporter assay,
western blot, Wound-healing assay,

xenografts in nude mice,
Kaplan-Meier plotter

promotes cell proliferation,
migration, invasion in vitro,

growth in vivo, metastasis, shorter
OS, PFS

[62]

https://github.com/ETHZ-INS/scanMiR
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Table 1. Cont.

LncRNA-Axis Cancer Methods of Analysis Axis Functions Ref.

HOXA11-AS
/miR-124

/Sp1

non-small cell lung cancer
(78 patients, 4 cancer cell lines)

qRT-PCR, Western blot, luciferase
reporter, RIP assays, cell

proliferation, invasion assays

promotes invasion, proliferation,
larger tumor size, lymph

node metastasis
[63]

KCNQ1OT1
/miR-124-3p

/TRIM14

tongue squamous cell carcinoma
(60 patients, 2 cancer cell lines)

qRT-PCR, dual-luciferase, RIP,
RNA pull-down assays, Western

blot, MTT, Transwell
assays, xenografts

promotes migration, invasion,
EMT, in vitro/in vivo,

cisplatin resistance
[64]

LINC00240
/miR-124-3p
/DNMT3B

gastric cancer (48 patients,
2 cancer cell lines)

qRT-PCR, luciferase, AGO2-RIP
assays, Western blot, migration,
invasion assays, EMT-markers,

xenografts in nude mice

promotes cell proliferation,
invasion, migration, EMT in vitro,

tumor growth in vivo
[65]

LINC00240
/miR-124-3p

/STAT3

cervical cancer (167 patients,
5 cancer cell lines)

qRT-PCR, luciferase, RIP, RNA
pull-down assays, Western blot,
RNA FISH, CCK-8, Transwell,

colony formation, tumor
xenografts, cytotoxicity, T-cell

conjugate assays

promotes cancer progression, cell
proliferation, migration, invasion

in vitro, in vivo; inhibits
cytotoxicity of NKT cells via

STAT3/MICA

[66]

LINC00511
/miR-124-3p

/EZH2

gastric cancer (80 patients,
4 cancer cell lines)

qRT-PCR, dual-luciferase assay,
Western blot, CCK-8 assay,

Transwell assay, Kaplan-Meier

promotes proliferation, invasion,
migration in vitro, tumor growth,

metastasis in vivo, lower OS
[67]

LINC00511
/miR-124-3p

/PDK4
gastric cancer (5 cancer cell lines)

qRT-PCR, luciferase, RIP, RNA
pull-down assays, Western blot,
caspase-3, CCK-8 assay, colony

formation assay

promotes proliferation, inhibits
apoptosis in vitro [68]

LINC00963
/miR-124-3p

/FZD4

colorectal cancer (84 patients,
4 cancer cell lines)

qRT-PCR, dual-luciferase assay,
Western blot, CCK-8, Transwell,

radioimmunoprecipitation assays,
Kaplan-Meier survival curves

promotes cell proliferation,
migration, associated with high

TNM stage, shorter 5-year
survival time

[69]

LINC01410
/miR-124-3p

/SMAD5

cholangiocarcinoma (50 patients,
6 cancer cell lines)

qRT-PCR, luciferase, RNA
pull-down, RIP, CCK8, colony
formation, Transwell assays,

Western blot

promotes cell proliferation,
migration, invasion, colony

formation ability, EMT
[70]

lnc-1308
/miR-124

/ADAM15

non-small-cell lung cancer
(40 patients, 4 cancer cell lines)

human lncRNA microarray assay,
qRT-PCR, miRIP, luciferase

reporter assays, immunoblotting

promotes cell proliferation,
invasion, poorer patient outcome [71]

lnc-cCSC1
/miR-124-3p

/CD44

colorectal cancer (4 cancer
cell lines)

qRT-PCR, luciferase test, Western
blot, CCK-8, colony formation,
EdU staining, flow cytometry

promotes cell proliferation,
inhibits apoptosis in vitro [72]

MALAT1
/miR-124
/Capn4

nasopharyngeal carcinoma
(4 cancer cell lines)

qRT-PCR, target prediction,
luciferase assay, loss/gain of

function, western blot, MTT assay,
Transwell chamber assay,

EMT-related proteins expression

promotes proliferation, migration,
invasion, EMT in vitro [73]

MALAT1
/miR-124
/CDK4

breast cancer (40 patients,
7 cancer cell lines)

qRT-PCR, dual-luciferase assay,
Western blot, cell viability, cell

cycle analyses, mouse xenografts,
Kaplan-Meier curves

promotes proliferation, cell cycle
progression, E2F1 signaling

in vitro, tumor growth in vivo,
poorer OS

[74]

MALAT1
/miR-124-3p

/EZH2
gastric cancer (2 cancer cell lines)

qRT-PCR, predicted binding sites
for miR-124-3p,

gain-/loss-of-function, Western
blot, MTT assay, Would healing
scratch assay, mouse xenografts

promotes cells proliferation,
migration in vitro, cancer growth

in vivo; H2 downregulated
MALAT1, suppressed growth

of cancer

[75]

MALAT1
/miR-124

/foxq1

bladder transitional cell
carcinoma (56 patients, 2 cancer

cell lines)

qRT-PCR, luciferase assay, Western
blot, cell proliferation assay,
Transwell migration assay,

invasion assay, tumor xenografts,
Kaplan-Meier curves

promotes proliferation, EMT,
migration, invasion in vitro, tumor

growth, metastasis in vivo,
shorter survival

[76]

MALAT1
/miR-124

/GRB2

HR-HPV (+) cervical cancer
(22 patients, 3 cancer cell lines)

qRT-PCR, predicted binding sites,
dual luciferase assay, western blot,
Transwell analysis, flow cytometry

promotes proliferation, migration,
invasion, inhibits apoptosis

in vitro
[77]
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Table 1. Cont.

LncRNA-Axis Cancer Methods of Analysis Axis Functions Ref.

MALAT1
/miR-124

/HBx

hepatocellular carcinoma
(20 patients, 1 cancer cell line)

qRT-PCR, dual-luciferase assay,
Western blot, cell colony formation

assay, mouse xenografts

promotes proliferation, migration,
invasion in vitro, stemness,

progression in vivo,
PI3K/Akt signaling

[78]

MALAT1
/miR-124-3p

/SLUG

hepatocellular carcinoma
(30 patients, 2 cancer cell lines)

qRT-PCR, cDNA array, luciferase,
RIP assays, Western blotting,

scratch wound healing, Transwell
chamber assays, mouse xenografts,

Kaplan-Meier curves

promotes migration, invasion
in vitro, tumor growth in vivo,
poor differentiation, lower DFS

[79]

MALAT1
/miR-124
/STAT3

non-small cell lung cancer
(5 cancer cell lines)

qRT-PCR, RIP, RNA pull-down,
dual-luciferase, Western blot,

CCK8, colony formation,
apoptosis assays

promotes proliferation, colony
formation, inhibits apoptosis

in vitro
[40]

MALAT1
/miR-124
/TGF-β1

nasopharyngeal carcinoma
(6-10B cell lines)

qRT-PCR, cell transfection,
luciferase reporter assay, loss and
gain of function, Western blot, cell
counting Kit-8, cell wound healing
assay, cell Matrigel invasion assay

promotes proliferation, migration,
invasion, TGF-β signaling, SMAD
pathway, ERK/MAPK pathway

[80]

NEAT1
/miR-124-3p

/ATGL

hepatocellular carcinoma
(40 patients, 4 cancer cell lines)

qRT-PCR, Western blot,
immunohistochemistry, luciferase

reporter assay, orthotopic
mouse xenografts

promotes proliferation
in vitro/in vivo, disrupt lipolysis,

DAG+FFA/PPARα signaling
[81]

NEAT1
/miR-124

/p65 (NF-κB)

nasopharyngeal carcinoma
(20 patients, 5 cancer cell lines)

qRT-PCR, luciferase, RIP, RNA
pull-down assays, Western blot,

CCK-8, Colony formation assays,
Flow cytometry, xenograft mice

promotes proliferation, inhibits
apoptosis in vitro, tumor growth
in vivo, NF-κB signaling pathway

[82]

NEAT1
/miR-124
/PDCD6

malignant and benign thyroid
nodules (98 patients, 2 cancer

cell lines)

qRT-PCR, luciferase assay, Western
blot, immunohistochemistry,

shRNA, ROC analysis

differs malignant from benign
thyroid nodules; promotes EMT,
cell migration, invasion in vitro

[83]

NEAT1
/miR-124
/STAT3

breast cancer (31 patients,
3 cancer cell lines)

qRT-PCR, luciferase assay, western
blot, MTT, colony formation
assays, flow cytometry, cell

cycle analysis

promotes proliferation, migration,
cell cycle progression,

inhibit apoptosis
[84]

OGFRP1
/miR-124-3p

/LYPD3

non-small cell lung cancer
(120 patients, 5 cancer cell lines)

qRT-PCR, RIP, luciferase assays,
colony formation, apoptosis

assays, Western blot, migration
and invasion assays,
Kaplan-Meier curves

facilitates cell proliferation,
migration, invasion, inhibits

apoptosis in vitro; patient poor
OS, DFS

[85]

OGFRP1
/miR-124-3p

/SARM1, SAMD2

prostate cancer (57 patients,
4 cancer cell lines)

qRT-PCR, luciferase, RIP assays,
FISH, clone formation assay,

Wound healing, Matrigel invasion,
apoptosis analysis

promotes tumor growth,
metastasis, inhibits apoptosis,
associated with TNM stages,

perineural invasion

[86]

OIP5-AS1
/miR-124-5p

/IDH2

cervical cancer (89 patients,
6 cancer cell lines)

qRT-PCR, luciferase assay, RIP
assay, FISH, immunofluorescence,

Western blot, cell proliferation
assay, cell clone test,
mouse xenografts

promotes cell proliferation,
in vitro/in vivo, Warburg effect,

HIF-1α-pathway, poor 5-years OS
[87]

hMTR4
/PDIA3P1

/miR-124-3p
/TRAF6

hepatocellular carcinoma
(174 patients, 2 cell lines)

qRT-PCR, luciferase, RIP, RNA
pull-down assays,

gain-/loss-of-function, in vitro,
mouse xenografts,

Kaplan-Meier curves

promotes cell proliferation,
chemoresistance in vitro/in vivo,

NF-κB pathway, reduces RFS;
hMTR4 degrades
lncRNA PDIA3P1

[88]

PTPRG-AS1
/miR-124-3p

/CCND1

lung adenocarcinoma
(cell cultures)

qRT-PCR, RNA pulldown,
luciferase, RIP assays, flow

cytometry, FISH, mouse xenografts

promotes cell proliferation, cell
cycle in vitro/in vivo [56]

PTPRG-AS1
/miR-124-3

/LHX2

nasopharyngeal carcinoma
(61 patients, 5 cancer cell lines)

qRT-PCR, RNA pull-down,
luciferase assays, Western blot;

microarray, CCK-8, flow cytometry
assays, site-directed mutagenesis

promotes NPC cell proliferation,
reduces apoptosis, radiosensitivity;

activates Notch pathway
[89]



Int. J. Mol. Sci. 2022, 23, 13620 10 of 25

Table 1. Cont.

LncRNA-Axis Cancer Methods of Analysis Axis Functions Ref.

SND1-IT1
/miR-124
/COL4A1

gastric cancer (52 patients,
4 cancer cell lines)

qRT-PCR, luciferase assay, CCK-8,
Transwell assays, immunoblotting,

EMT-markers

promotes migration, invasion,
TGF-β1-induced EMT, metastasis,

poor outcomes
[90]

SNHG16
/miR-124-3p

/MCP-1

colorectal cancer (120 patients,
4 cancer cell lines)

qRT-PCR, luciferase, RIP, RNA pull
down assays, Western blot, MTT,

Wound healing, Transwell invasion
assays, EMT-markers, mouse

xenografts, Kaplan-Meier curves

promotes cell proliferation,
migration, invasion, EMT in vitro,
tumor growth, metastasis in vivo,

reduces survival

[91,92]

SP1-GCMA
/miR-124

/SLUG, SNAIL

gastric cancer
(72 patients, 2 cancer cell lines)

qRT-PCR, ChIP-assay, luciferase,
RIP assays, western-blot, RNA

FISH, EMT-markers, xenografts in
nude mice, Kaplan-Meier curves

SP1 activates GCMA via promoter;
facilitates migration, invasion,

EMT, metastasis in vitro/in vivo,
worse OS, DFS

[43]

UCA1
/miR-124

/JAG1

tongue cancer (67 patients,
2 cancer cell lines)

qRT-PCR, luciferase, RIP assays,
immunoblotting, Transwell

invasion assay,
immunofluorescence staining,

Kaplan-Meier curves

promotes TGFβ1-induced EMT,
metastasis, Notch signaling,

poorer OS
[93]

XIST
/miR-124

/AR

bladder cancer (67 patients,
4 cancer cell lines)

bioinformatic analysis, qRT-PCR,
luciferase assays, loss-of-function,

MTT assay, Transwell assay,
MMP9, MMP13 activity,

Western blot

promotes proliferation, invasion,
migration, tumor growth,

metastasis; increases factors c-myc,
MMP9, MMP13

[94]

XIST
/miR-124

/EZH2

laryngeal squamous cell
carcinoma (34 patients, 2 cancer

cell lines)

qRT-PCR, luciferase assay, Western
blot, lentiviral transfection,

shRNA, cell and colonies counting,
Transwell assay, tumor xenografts

in nude mice

promotes proliferation, migration,
invasion in vitro, tumor growth

in vivo
[95]

XIST
/miR-124

/JAG1

tongue squamous cell carcinoma
(cancer cell cultures)

qRT-PCR, luciferase assay, Western
blot, Chip-seq analysis, CCK-8,

scratch test

facilitates cell migration,
proliferation in vitro [96]

ZFAS1
/miR-124
/STAT3

esophageal squamous
cell carcinoma

(136 patients, 5 cancer cell lines)

qRT-PCR, luciferase, RIP, RNA
pull-down assays, Western blot,

cell co-culture model,
fluorescence-labeled exosomes,

FISH, colony formation, Transwell
assays, flow cytometry, scratch test,

xenografts in nude mice

promotes proliferation, migration,
invasion, inhibit apoptosis in vitro,

ZFAS1-exo promotes tumor
growth in nude mice

[55]

Notes: ADAM15—a disintegrin and metalloproteinase domain 15; ATGL—adipose triglyceride lipase; AR—
Androgen receptor; Capn4—Calpain 4, calcium-activated neutral protease small subunit; CDK4—cyclin-
dependent kinase 4; DNMT—DNA methyltransferase; EZH2—enhancer of zeste homolog 2 of polycomb group
protein; foxq1—forkhead box q1; FZD4—frizzled 4, a transmembrane protein; GCMA—Gastric Cancer metastasis-
associated lncRNA; GRB2—Growth factor receptor-bound protein 2 (also known as an adaptor protein involved
in signal transduction/cell communication); HBx—hepatitis B virus X protein; HMGA2—high-mobility group
AT-hook 2; HNF1A-AS1—hepatocyte nuclear factor 1 homeobox A antisense RNA 1; HOTAIR—Hox transcript
antisense intergenic RNA; HOTTIP—HOXA transcript at the distal tip; HOXA11-AS—HOXA11 (Homeobox A11)
Antisense RNA; ITGB3—integrin β3; JAG1—jagged 1; KCNQ1OT1—potassium channel subfamily Q member
1(KCNQ1) overlapping transcript 1; LHX2—LIM Homeobox 2, a member of the LIM family that consists of
2 finger domains of zinc; MALAT1—Metastasis-associated lung adenocarcinoma transcript 1; MCP-1—Monocyte
chemoattractant protein 1; MICA—MHC class I-related chain A; MMP9/MMP13—matrix metalloproteinases 9/13;
MYO6—Myosins of class VI; NEAT1—nuclear-enriched abundant transcript 1; PDCD6—programmed cell death
6; PDIA3P1—protein disulfide isomerase family A member 3 pseudogene 1; PPARα—peroxisome proliferator
activated receptor alpha; PTPRG-AS1—protein tyrosine phosphatase, receptor type, G (PTPRG) Antisense RNA
1; SND1-IT1—Staphylococcal nuclease and Tudor domain-containing 1 intronic transcript 1; SNHG16—small
nucleolar RNA host gene 16; STAT3—Signal transducer and activator of transcription 3; ST8SIA4—alpha-2,
8-sialyltransferase 4; TRAF6—tumor necrosis factor receptor-associated factor 6; TRIM14—tripartite motif con-
taining 14; UCA1—urothelial cancer associated 1; XIST—X-inactive specific transcript; ZFAS1—ZNFX1 (Zinc
Finger NFX1-Type Containing 1) Antisense RNA 1. ChIP—chromatin immunoprecipitation; CCK-8 assay—
cell counting kit-8; EdU assay—5-Ethynyl-2′-deoxyuridine assay; FISH—Fluorescence in situ hybridization;
miRIP—microRNA in vivo precipitation method; RIP—RNA-binding protein immunoprecipitation assay. DAG—
diacylglycerol; EMT—epithelial-to-mesenchymal transition; FFA—free fatty acids; H2—molecular hydrogen;
HR-HPV (+) cervical cancer—high-risk human papillomavirus-positive cervical cancer; NKT cell—natural killer
T cell; shRNA—short hairpin RNA; DFS—disease-free survival; OS—overall survival; PFS—progression-free
survival; RFS—recurrence-free survival.
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As shown in Table 1, typical suppressor miR-124 is regulated, more precisely, inhibited
in epithelial cancers exclusively by oncogenic lncRNAs, while miR-124 itself also targets
mRNA of oncogenic proteins. The role of the most studied lncRNA MALAT1 (Metastasis-
associated lung adenocarcinoma transcript 1) in the regulation of miR-124 is shown in
nine studies conducted using primary tumors and cell lines or only cell lines of seven
types of epithelial cancer: bladder transitional cell carcinoma, breast cancer, cervical cancer,
gastric cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, non-small cell lung
cancer [40,73–80,97]. In these studies, mRNAs of the proteins Capn4, CDK4, EZH2, foxq1,
GRB2, HBx, SLUG, STAT3, and TGF-β1 were identified as direct targets of miR-124, which
is also shown in Figure 2a. Additionally, using a set of methods, the promoting effect of
interactomes formed by MALAT1 on the progression of various types of cancer, including
increased proliferation, migration, invasion, EMT, and, in contrast, suppression of apoptosis,
was established. Experiments on mouse xenografts have shown that interactomes based on
MALAT1, miR-124, and oncogenic proteins (as CDK4, EZH2, foxq1, HBx, and SLUG) also
stimulate the growth and metastasis of tumors in vivo [74–76,78,79,97]. A decrease in the
survival rate of patients under the influence of the MALAT1/mir-124 axes, which increase
the level of expression of oncogenic proteins CDK4, foxq1, and SLUG [74,76,79,97], has been
established. Depending on the target protein, the activation of several signaling pathways
was revealed, such as E2F1 signaling (through activation of CDK4 protein expression),
PI3K/Akt signaling, and stemness (through HBx activation), as well as TGF-β, SMAD, and
ERK/MAPK signaling pathways (through activation of TGF-β1) [74,78,80].
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Another highly represented in tumors and actively studied lncRNA NEAT1 (nuclear-
enriched abundant transcript 1) was regulated in four types of cancer: breast cancer, hepa-
tocellular carcinoma, nasopharyngeal carcinoma, and malignant thyroid nodules [81–84].
All these studies were conducted both on cell lines and on clinical samples from patients;
xenografts of mice were used in two studies [81,82]. Four interactomes were identified:
NEAT1/miR-124-3p/ATGL (adipose triglyceride lipase), NEAT1/miR-124-3p/p65 (NF-κB),
NEAT1/miR-124/PDCD6 (programmed cell death 6), NEAT1/miR-124-3p/STAT3 (signal
transducer and activator of transcription 3) [81–84], which is also shown in Figure 2b. These
interactomes increased cell proliferation, migration, invasion, EMT and inhibit apoptosis
in vitro and initiate tumor growth in immune-deficient mice in vivo. NEAT1/miR-124-
3p/p65 (NF-κB) axis induces NF-κB signaling pathway in nasopharyngeal carcinoma [82].
NEAT1-mediated abnormal lipolysis promotes the growth of hepatocellular carcinoma
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cells [81]. Moreover, the activation of ATGL disrupts lipolysis in hepatocellular carcinoma
cells, which is accompanied by the activation of DAG (diacylglycerol) + FFA (free fatty
acids)/PPARα (peroxisome proliferator-activated receptor alpha) signaling [81].

LncRNA XIST (X-inactive specific transcript) inhibits miR-124 in three types of cancer:
bladder cancer, laryngeal squamous cell carcinoma, and tongue squamous cell carcinoma,
which activates AR (androgen receptor), EZH2 and JAG1 (jagged 1) proteins [94–96]. All
three interactomes XIST/miR-124/AR, XIST/miR-124/EZH2, and XIST/miR-124/JAG1
are also shown in Figure 2c. These axes initiated by XIST are involved in promoting cell
proliferation, migration, and invasion of three different cancer types as shown in vitro.
Using tumor xenografts in nude mice, it was shown that the XIST/miR-124/EZH2 axis
increased tumor growth in vivo in laryngeal squamous cell carcinoma [95]. Additionally,
the XIST/miR-124/AR axis in bladder cancer has been shown to upregulate the expression
of proliferation-associated factors, c-myc and p27, and metastasis-associated factors, MMP9
and MMP13 [94].

LncRNA HOXA11-AS (HOXA11 (Homeobox A11) Antisense RNA) also belongs to
the most studied in the regulation of miR-124 and its protein-coding targets. Interac-
tomes with HOXA11-AS have been identified in three types of cancer: hepatocellular
carcinoma, gastric cancer, and non-small cell lung cancer, both on clinical samples and on
cell lines [61–63]. The promoting effect of axes HOXA11-AS/miR-124/EZH2 (enhancer of
zeste homolog 2 of polycomb group protein), HOXA11-AS/miR-124-3p/ITGB3 (integrin
β3), and HOXA11-AS/miR-124/Sp1 (Sp1 transcriptional factor) on cancer cell proliferation,
migration, invasion was shown in vitro. The most recent study [62] showed the effect of
the HOXA11-AS/miR-124-3p/ITGB3 axis on growth and metastasis in vivo using mouse
xenografts. Additionally, two studies have shown a decrease in patient survival under the
action of axes that activate the expression of EZH2 and integrin β3 proteins [61,62].

Axes were also identified involving newer, recently discovered lncRNAs and targets,
such as PTPRG-AS1 (protein tyrosine phosphatase, receptor type, G (PTPRG) Antisense
RNA 1). This lncRNA is involved in two axes: PTPRG-AS1/miR-124-3p/CCND1 in lung
adenocarcinoma and PTPRG-AS1/miR-124-3/LHX2 in nasopharyngeal carcinoma, which
promote cell proliferation, cell cycle in vitro/in vivo, moreover, activation of LHX2 (LIM
Homeobox 2) induces Notch pathway and reduces radiosensitivity [56,89].

The work that examined the role of suppressor lncRNA LINC01488 in the regulation
of suppressor miR-124 and its target, mRNA of vimentin, in hepatocellular carcinoma [98]
is somewhat aloof. Long intergenic non-coding RNA LINC01488 has been revealed as
a key negative regulator of this cancer. The LINC01488/cyclin E/miR-124-3p/vimentin
interactome does not directly bind the two suppressors, lncRNA LINC01488 and miR-124-
3p. LINC01488 activates miR-124-3p through ubiquitination of cyclin E mediator, which
can inhibit miR-124-3p. In cell cycle analysis, overexpression of LINC01488 inhibited G1
progression and suppressed S phase entry through effects on cyclin E function. Interestingly,
the cyclin E mRNA level was not altered by LINC01488 regulation, indicating specific effects
of LINC01488 on cyclin E at the translation level. Results from the RIP assay suggested
that LINC01488 binds to cyclin E and decreases the expression of the protein via the
ubiquitin-proteasome pathway. This is the only example of an interactome capable of
following the function of miR-124-3p itself—to suppress proliferation, migration, invasion,
and EMT of hepatocellular carcinoma cells in vitro, tumor growth, and metastasis in vivo.
Additionally, this interactome decreases the overall and recurrence-free survival (OS, RFS)
of patients. The LINC01488/cyclin E/miR-124-3p/vimentin interactome involves the
ubiquitin-proteasome pathway.

Of interest are also works including recently published ones, in which the direct
binding of lncRNA to miR-124, that can inhibit the expression of miR-124, and the effect
of these interactions on cancer progression is clearly demonstrated, although target genes
in these interactomes have not yet been identified. For example, increased expression of
the oncogenic lncRNA NEAT1, which can bind and reduce the level of the suppressor
miR-124-3p, has also been shown in ovarian cancer [99]. Elevated NEAT1 and decreased
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miR-124-3p levels are associated with advanced-stage and lymph node metastasis. NEAT1
can be stabilized by the RNA-binding protein HuR. Conversely, an increase in the miR-
124-3p suppressor level can reduce the NEAT1 level and can be proposed for antitumor
therapy [99].

In the tissues of the tongue squamous cell carcinoma (TSCC), an increase in the
expression of the long intergenic non-coding RNA CASC15 (Cancer Susceptibility 15)
and, conversely, a decrease in the level of miR-124 was revealed [100]. These changes
are associated with poor overall patient survival. Additionally, it has been shown that
overexpression of CASC15 can increase, whereas overexpression of miR-124 can reduce the
ability of TSCC cells in cultures to migrate and invade [100].

A report on the oncogenic role of lncRNA SNHG16 (small nucleolar RNA host
16) in various cancer types and its involvement in many signaling pathways, such as
TGF-β1/SMAD5, mTOR, NF-kB, Wnt, RAS/RAF/MEK/ERK, and PI3K/AKT, was pub-
lished [92]. Moreover, this lncRNA serves as a sponge for several different miRNAs, among
which the involvement of miR-124-3p was also revealed [92].

The effect of SNHG17, another member of the lncRNA family of small nucleolar RNA
host genes (SNHGs), on breast cancer through direct binding of SNHG17 to miR-124-3p has
been revealed. This study was conducted using rather reliable methods, such as luciferase
reporter activity and RIP assays on cell cultures, as well as analysis of the expression in
tissues of breast cancer patients and tumor growth in a xenograft model [101].

In non-small cell lung cancer, an inhibitory effect of MALAT1 on the miR-124 level
and its association with EMT induction and cancer progression have been shown [102].
Inhibitory direct binding of MALAT1 and miR-124 has also been shown for cervical cancer
in experiments on cell cultures and in vivo [103].

The interaction between lncRNA ZNF281 (zinc finger protein 281) and miR-124
predicted via IntaRNA 2.0 (http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp,
accessed on 2 October 2022) was confirmed using samples from gastric patients and cell
cultures with the application of several standard approaches, such as transient cell trans-
fections, qRT-PCR, loss- and gain-of-function, etc. The inhibition of miR-124, mediated by
the oncogenic lncRNA ZNF281, promoted the migration and invasiveness of gastric cancer
cells [104].

In a 2022 article, the interaction of lncRNA NEAT1 with miR-124-3p in ectopic en-
dometrial cells was found to induce cell proliferation, migration, and invasion, which
stimulates the malignant transformation of endometriosis and the development of endome-
trial cancer [105]. Another 2022 work showed direct inhibitory binding of long non-coding
RNA DSCAM-AS1 (DSCAM antisense RNA 1) to miR-124 in hepatocellular carcinoma
(HCC), inducing HCC cell proliferation [106].

Of interest, a purely bioinformatics analysis revealed another lncRNA, EMX2OS
(EMX2 opposite strand antisense RNA), potentially involved in the regulation of miR-124,
and two miR-124 target genes: CALCA (calcitonin-related polypeptide α) and GABRG2
(γ-aminobutyric acid, subunit of γ2 type A receptor) [107]. Recurrent and non-recurrent
laryngeal cancer sample datasets were downloaded from the Cancer Genome Atlas (TCGA)
and the Gene Expression Omnibus database (GSE27020 and GSE25727). The new inter-
actome EMX2OS/miR-124/CALCA, GABRG2 is presumably associated with molecular
mechanisms of regulation of laryngeal cancer recurrent [107].

Thus, further studies must refine the targets in the presented data on incomplete
lncRNA/mir-124 axes, and new detailed experimental work must validate the data of a
purely bioinformatics analysis [107].

Summarizing the presented data, it can be argued that all complete interactomes that
suppress the expression of miR-124 are involved in the mechanisms of activation of tumor
cell proliferation, and most of these axes are involved in increased cell motility and invasion
of epithelial cancer (Table 1). For 14 complete interactomes (HOTAIR/miR-124/ST8SIA4;
HOXA11-AS/miR-124-3p/ITGB3; HOXA11-AS/miR-124/Sp1; KCNQ1OT1/miR-124-3p/
TRIM14; LINC00240/miR-124-3p/DNMT3B; LINC00511/miR-124-3p/EZH2; LINC01410/

http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp


Int. J. Mol. Sci. 2022, 23, 13620 14 of 25

miR-124-3p/SMAD5; MALAT1/miR-124/Capn4; MALAT1/miR-124/foxq1; SND1-IT1/
miR-124/COL4A1; SNHG16/miR-124-3p/MCP-1; SP1- GCMA/miR-124/SLUG,
SNAIL; UCA1/miR-124/JAG1; and XIST/miR-124/AR), involvement in EMT
and/or development of metastasis in cancers of the corresponding localizations was
revealed [43,59,62–65,67,70,73,76,90,91,93,94]. Moreover, the involvement of several inter-
actomes (HOTTIP/miR-124-3p/HMGA2; NEAT1/miR-124/p65; MALAT1/miR-124/CDK4;
MALAT1/miR-124/TGF-β1; MALAT1/miR-124/HBx; UCA1/miR-124/JAG1; PTPRG-
AS1/miR-124-3/LHX2; OIP5-AS1/miR-124-5p/IDH2) into several signaling pathways, such
as Wnt/b-catenin pathway, E2F1 signaling, TGF-β signaling, SMAD pathway, ERK/MAPK
pathway, HIF-1α-pathway, Notch signaling, PI3K/Akt signaling, and cancer cell stemness
has been established [60,74,78,80,82,87,89,93].

Additionally, several lncRNAs and their axes through the inhibition of miR-124 and
activation of the expression of oncogenic proteins have shown clinical significance for
cancer patients. Thus, 15 axes (HOXA11-AS/miR-124/EZH2; HOXA11-AS/miR-124-
3p/ITGB3; LINC00511/miR-124-3p/EZH2; LINC00963/miR-124-3p/FZD4; lnc-1308/miR-
124/ADAM15; MALAT1/miR-124/CDK4; MALAT1/miR-124/foxq1; MALAT1/miR-124-
3p/SLUG; OGFRP1/miR-124-3p/LYPD3; OIP5-AS1/miR-124-5p/IDH2; PDIA3P1/miR-
124-3p/TRAF6; SND1-IT1/miR-124/COL4A1; SNHG16/miR-124-3p/MCP-1; SP1-GCMA/
miR-124/SLUG, SNAIL; UCA1/miR-124/JAG1) revealed poorer outcomes or shorter survival
times for patients with various epithelial cancers [43,61,62,67,69,71,74,76,79,85,87,88,90,91,93].

Besides, the KCNQ1OT1/miR-124-3p/TRIM14 and PDIA3P1/miR-124-3p/TRAF6
axes increase chemoresistance, PTPRG-AS1/miR-124-3/LHX2 reduces radiosensitivity, and
LINC00240/miR-124-3p/STAT3 inhibits natural killer T (NKT) cell cytotoxicity, which is
critical for successful anticancer therapy [64,66,88,89].

4. The Circular Long Non-Coding RNAs in Dysregulation of miR-124 Target Genes in
Epithelial Cancers

The decisive influence in the formation of the circRNA pool is made by a process
called backsplicing. This is the excision by the spliceosome of the looping sections of the
transcript. During splicing, introns are removed from the maturing transcript not as a
linear fragment, but as a lasso. When cutting off the “tail” of the lasso, usually formed
by inverted repeats of neighboring introns, circular RNA will be obtained. These are
circular intronic long non-coding RNAs (ciRNAs). Additionally, in the maturing transcript,
individual exons, one or more, can also loop out, and such loops can be excised by the
spliceosome and covalently closed into a ring, forming exonic circRNAs (ecircRNAs). A
region containing several introns and exons can also loop out (sometimes with subsequent
continuation of splicing). This process produces exon-intron circRNAs (EIciRNAs). The
exonic ecircRNAs accumulate predominantly in the cytoplasm, whereas the other two
groups (intronic ciRNAs and exon-intron EIcircRNAs) accumulate predominantly in the
nucleus. Relatively few circRNAs are believed to act as miRNA sponges, but there are
those for which such interactions have been well demonstrated. First, they are, of course,
exonic ecircRNAs. Because of the lack of a free 3′ or 5′ end, circRNAs have a long half-life
and are more stable than linear RNAs. For this reason, circRNAs are considered highly
effective biomarkers for various cancer types [108]. Table 2 summarizes the interactomes
formed by circRNAs, miR-124, and messenger RNAs of target genes; the methods of their
investigation and their functions in the carcinogenesis of epithelial tumors are given.
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Table 2. Interactomes circRNA/miR-124/mRNA-Target in Epithelial Cancers.

CircRNA-Axis Cancer Methods of Analysis Axis Functions Ref.

circDOCK1
/miR-124
/CCND1

thyroid cancer, 25 patients,
2 cell lines

qRT-PCR, Transwell assays, overexpression of
circDOCK1, miR-124 mimic, Western blots

cell migration, invasion,
JAK/STAT/AMPK

pathway
[109]

circHIPK3
/miR-124

/AKT3

Esophageal squamous cell
carcinoma, 32 patients,

4 cancer cell lines, 1
normal

qRT-PCR, knockdown of circHIPK3, miR-124
mimic, AKT silencing, colony formation assays,

Transwell assay, bioinformatics tools and
dual-luciferase reporter gene assay for all

interactions, Western blot, circHIPK3 knockdown in
xenografts

cancer cell proliferation,
migration, EMT; tumor
growth in xenografts

[110]

circHIPK3
/miR-124

/AQP3

hepatocellular carcinoma,
50 patients, 5 tumor cell

lines, 2 hepatocyte
cell lines

qRT-PCR, CCK-8, Transwell assays, silencing
circHIPK3, overexpression and knockdown of

miR-124, overexpression and knockdown of AQP3,
Sanger sequencing of circHIPK3, bioinformatics

tools and luciferase reporter assay for circRNA-miR
and miR-mRNA interaction, Western blots and

immunohistochemistry, knockdown of circHIPK3
in xenografts

cell proliferation,
migration, xenograft

tumor growth
[111]

circHIPK3
/miR-124,

miR-4524-5p
/MRP4

hepatocellular carcinoma,
19 patients, 4 tumor cell

lines, primary
hepatocyte cells

qRT-PCR, knockdown of circHIPK3, miR-124 and
miR-4524-5p inhibitor and mimic, bioinformatics
tools and dual-luciferase reporter gene assay for

pairs circRNA-miRNA, circRIP, Western blots

multidrug resistance [112]

circHIPK3
/miR-124
/MTDH

peripheral human
endothelial cells (ECs)
mediated by the breast

cancer (BC) cells-derived
exosomal circRNAs

cell viability and tube formation, bioinformatics
tools and dual luciferase reporter assay, western

blot, qPCR assays, knockdown and overexpression
of CircHIPK3, rescue experiment in mice

xenograft model

cell viability, angiogenesis,
impact on the

microenvironment
[113]

circHIPK3
/miR-124

/PDK2

hepatocellular carcinoma,
30 patients, 4 tumor cell
lines, 1 human hepatic

cell line

qRT-PCR, CCK-8, EdU kit, Transwell assay,
knockdown and overexpression of circHIPK3,

miR-124 mimics, PDK2 overexpression plasmid,
bioinformatics tools and dual-luciferase reporter

gene assay for all interactions, Western blots,
knockdown of circHIPK3 in xenografts

cell proliferation, invasion,
xenograft tumor formation [114]

circHIPK3
/miR-124

/ROCK1, CDK6

gall bladder cancer,
3 tumor lines, primary

cultures of tumor,
normal cells

QRT-PCR, CCK-8 viability assay, BrdU ELISA assay,
Clonogenicity assay, TUNEL apoptosis assay,
knockdown and overexpression of circHIPK3,

overexpression of miR-124, Western blots

cancer cell survival,
proliferation, inhibition

of apoptosis
[115]

circ MTHFD2
/miR-124

/FZD5,
MDR-1

gastric cancer, MGC-803
and MGC-803/MTA
resistant cell model

qRT-PCR, screening of differentially expressed
circRNAs, CCK-8, bioinformatics tool, microarray

analysis, knockdown or overexpression of circ
MTHFD2, miR-124 mimics transfection, luciferase

reporter assay for circRNA-miRNA,
Western blotting

resistance to
pemetrexed (MTA) [116]

circPVT1
/miR-124

/ZEB1

gastric cancer,
30 PTX-sensitive and

30 PTX-resistant patients,
4 tumor cell lines,

1 normal gastric cell line

qRT-PCR, MTT assay, flow cytometry, Transwell
assay, knockdown and overexpression of

CircHIPK3 and ZEB1, mimic and anti-miR for
miR-124, bioinformatics tools and dual-luciferase
reporter gene assay for all interactions, Western

blot, circPVT1 knockdown in xenografts

PTX resistance [117]

circ-TRPS1
/miR-124

/EZH2

prostate cancer, specimens
from 80 patients, 3 tumor

cell lines, xenografts

high-throughput sequencing, RT-qPCR, FISH,
immunohistochemistry, tumor sphere formation

assays, cell proliferation assays, colony formation
assays, Transwell assays, knockdown of circ-TRPS1,

miR-124 inhibition, EZH2 overexpression,
bioinformatics tools, luciferase reporter assays for

all interactions, Western blots, circ-TRPS1
knockdown in xenografts

cell proliferation and
migration, metastasis [118]

circ-VIM
/miR-124
/PD-L1

esophageal cancer, 20
patients, 4 EC cell lines,
embryonic kidney 293T

cell line, normal
esophageal HET-1A

cell line

RT-qPCR, CCK-8, wound healing, Transwell assays,
LDH assay, CFSE staining, Annexin V/PI staining,

histological analyses, knockdown of circ-VIM,
mimic and anti-miR for miR-124, bioinformatic

tools, luciferase reporter assays for all interactions,
RNA immunoprecipitation, Western

blots, xenografts

circ-VIM silence
synergizes with

sevoflurane reduces
immune escape and
multiple oncogenic

activities

[119]
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Table 2. Cont.

CircRNA-Axis Cancer Methods of Analysis Axis Functions Ref.

circRNA_100782
/miR-124

/IL6R, STAT3

pancreatic ductal
adeno-carcinoma, 2 tumor

cell lines, 1 embryonic
kidney cell line

qRT-PCR, colony formation assay, knockdown of
circRNA_100782, mimic and anti-miR for miR-124,

knockdown of STAT3, luciferase assay for
circRNA-miR interaction, circRNA_100782

knockdown in xenografts

cell proliferation and
colony formation [120]

circ_0026123
/miR124
/EZH2

ovarian cancer, 20 patients,
4 OC cell lines, 1 normal

ovarian cell line

RT-qPCR, FISH, CCK-8 assay, Transwell assays,
knockdown, bioinformatic tools, luciferase reporter

assay, Western blots, xenografts

cell proliferation,
migration, stemness [121]

circ_0000502
/miR-124

hepatocellular carcinoma,
40 patients, 6 HCC + 1

normal cell lines

qRT-PCR, CCK-8, Transwell assays, circ_0000502
knockdown, miR-124 overexpression, luciferase

reporter gene assay for circRNA-miRNA pair

proliferation, invasion,
migration, decrease in

apoptosis
[122]

Notes: AKT3—AKT Serine/Threonine Kinase 3; AQP3—Aquaporin 3; CCND1—cyclin D1; CDK6—Cyclin
Dependent Kinase 6; EZH2—Enhancer Of Zeste 2 Polycomb Repressive Complex 2 Subunit; FZD5—WNT Seven-
Transmembrane Receptor Frizzled-5; IL6R—Interleukin 6 Receptor; MDR-1—Multidrug Resistance Protein 1;
MRP4—Multidrug resistance-associated protein 4; MTDH—Metadherin; PD-L1—Programmed Cell Death 1
Ligand 1; PDK2—Pyruvate Dehydrogenase Kinase 2; PTX—paclitaxel; ROCK1—Rho Associated Coiled-Coil
Containing Protein Kinase 1; STAT3—Signal Transducer And Activator Of Transcription 3; ZEB1—Zinc Finger
E-Box Binding Homeobox 1. circDOCK1—circular transcript of protein coding gene Dedicator Of Cytokinesis 1;
circHIPK3—circular transcript of protein coding gene Homeodomain Interacting Protein Kinase 3; circ MTHFD2—
circular transcript of protein coding gene Methylenetetrahydrofolate Dehydrogenase (NADP + Dependent) 2;
circPVT1—plasmacytoma variant translocation 1, circular transcript; circ-TRPS1—circular transcript of protein
coding gene of Tricho-Rhino-Phalangeal Syndrome Type 1 (Transcriptional Repressor GATA Binding 1); circ-
VIM—circular RNA of vimentin gene.

It can be seen from Table 2 that almost half, six out of 14, articles are devoted to
the effect of circHIPK3 on miR-124 expression in various oncological diseases, although
this phenomenon has been mostly studied in hepatocellular carcinoma. This ecircRNA
is expressed at a high level in the cytoplasm of cells of various tissues (including lungs,
heart, stomach, colon, brain). It is formed due to the circularization of the second exon
of the HIPK3 gene, flanked by introns containing complementary Alu repeats. circHIPK3
makes a significant contribution to the development of oncological diseases, the study of
which can give a lot for their diagnosis and therapy. It can stimulate cell proliferation,
autophagy, angiogenesis, EMT transition, inhibit pyroptosis, and cause the development
of chemoresistance. Apparently, a significant part of these effects is associated with the
influence on the expression of miR-124 and its targets, although the review [123] also
mentions its interactions with other miRNAs.

When comparing Tables 1 and 2, it can be noted that the effect of circRNAs on the devel-
opment of epithelial cancers through the regulation of miR-124 is observed less frequently
than the effect of lncRNAs, however, in most of the cited works, it has been convincingly
proven by a wide range of methods. In the overwhelming majority of studies, this influence
concerns the characteristics important for developing the disease and metastasis, such as
the survival of cancer cells, their proliferative activity, and the ability to migrate and invade.
It can be noted that in all studies, both circRNA and lncRNA directly interacting with
miR-124 exhibit an oncogenic effect, which agrees well with the oncosuppressive effect of
miR-124 itself.

In several studies, the influence of many circRNAs, such as circ MTHFD2, circHIPK3,
and circPVT1, has been associated with a decrease in sensitivity to chemotherapy, which
was studied both by determining resistance to specific drugs [116,117] and by measur-
ing in vitro increase in the expression of the gene that causes multidrug resistance, as
MRP4 [112].

For ovarian cancer cells, the expression of cancer stem cell differentiation-related
markers in vivo and in vitro was also studied, and it was concluded that circRNA, in
particular circ_0026123, plays a significant role in maintaining cancer stemness [121]. In
other words, the regulation of miR-124 by circRNA and lncRNA affects the same set of
cancer cell characteristics, which indirectly indicates that miR-124 is correctly identified as
the most significant miRNA in the interactomes described above.
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The work [113] should be noted separately, where the effect of exosomes with miR-
124 secreted by breast cancer cells was studied not on the cancer cells themselves, but
on their environment (peripheral human endothelial cells). It was shown that miR-124
suppresses angiogenesis, whereas the effect of circHIPK3 on miR-124, in contrast, stimulates
angiogenesis.

It should be noted that the role of lncRNA and circRNA in terms of modifying the
effect of miR-124 on the microenvironment of cancer cells is not sufficiently disclosed
in existing works. Thus, miR-124 significantly affects the immune response, including
suppressing the development of various types of malignant tumors [124]. Additionally,
exosomal miR-124 has been shown to suppress the transition of normal fibroblasts to
cancer-associated fibroblasts in ovarian cancer [125]. The effect of lncRNA and circRNA on
miR-124 activity in the tumor microenvironment may be the subject of further research.

We see that the set of those types of cancer, whose pathogenesis is significantly affected
by the interaction of miR-124 with ncRNA, is generally very similar for lncRNA and
circRNA. This indirectly confirms the thesis about the weakening of miR-124 expression
as an important aspect of the pathogenesis of diseases, such as hepatocellular carcinoma,
breast cancer, pancreatic cancer, gastric cancer, colorectal cancer, cervical cancer, and
prostate cancer [3], and as an effective prognostic factor for these epithelial tumors [126].
Recall that miR-124 and the molecules interacting with it are considered promising targets
for therapy in these diseases [3].

More problematic is the question of the targets of the influence of miR-124. Naturally,
it should be borne in mind that not only for different types of cancer but also at its different
stages, as well as for primary cancer/metastasis, these can be different targets. However,
one can expect at least some agreement between the results of different authors. Thus,
from the data of Tables 1 and 2, it can be noted that for gastric cancer and hepatocellular
carcinoma, on which the largest number of studies have been performed, ncRNA-miR-124
interactions and miR-124-mRNA interactions have been confirmed, and the significance of
both of them for carcinogenesis has been proven (Figures 3 and 4).
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However, in different studies, very different mRNA targets are indicated as significant,
there is very little coincidence in them both within the same type of cancer and when com-
paring different types. The only exception is EZH2, which is characterized by numerous
functions. An increase in the expression of EZH2 is associated with increased proliferation,
migration, and invasion of cancer cells in various types of cancer: hepatocellular carci-
noma, ovarian carcinoma, gastric cancer, laryngeal squamous cell carcinoma, and prostate
cancer (Figure 5). Additionally, the EZH2 gene has been identified in many different axes,
both involving regulatory lncRNAs (HOXA11-AS, LINC00511, MALAT1, and XIST) and
circRNAs (circ-TRPS1, hsa_circ_0026123), as can be seen by comparing Tables 1 and 2.
At present, ideas about the functions of EZH2 are being revised and supplemented. The
canonical role of EZH2 is gene silencing by catalyzing trimethylation of lysine 27 histone
H3 (H3K27me3) in a PRC2-dependent manner. However, evidence is accumulating that it
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can act as a transcriptional coactivator of genes involved in the development of various
types of cancer, such as c-Myc, cyclin D1, CXCR4, IL6, TNF, IGF1R, MMPs, and AR.
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Several studies have shown that biochemical modification of EZH2 induces disso-
ciation from the PRC2 complex and converts EZH2 from a transcriptional repressor to a
transcriptional activator. Its participation in interactions at a level other than transcription
(binding of various RNAs, suppression of ubiquitination) is also assumed. For this reason,
EZH2 is currently considered a novel and promising target for cancer therapy [127].

5. Conclusions

The typical suppressor miR-124 has a significant anti-oncogenic effect and it can
inhibit the translation of at least fifty protein-coding targets. Among the targets regulated
by miR-124, we could isolate at least six genes (PDCD6, ROCK1, SLUG, STAT3, TGF-β,
ZEB1) common to several epithelial cancers, including lung, stomach, hepatocellular, breast,
and ovarian cancers. Through the inhibition of oncoprotein translation, miR-124 induces
apoptosis and cell cycle arrest, inhibits proliferation, invasion, EMT, metastasis, cancer cell
stemming, chemoresistance, and improves the prognosis of patient survival, which has
been shown in various types of cancer. Thus, miR-124 and its targets play a critical role in
key biological processes in the development and progression of epithelial cancers.

Usually, the methylation of genes encoding miR-124 is considered first as a factor
influencing the decrease in its expression. Without denying the significance of methy-
lation of MIR-124-1/-2/-3 genes, encoding miR-124, and the possibility of influencing its
expression through the level of methylation, we consider it important to pay attention to
alternative mechanisms.
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Indeed, as has been clarified in the last decade, oncogenic lncRNAs and some circular
RNAs form interactomes by the mechanism of competing endogenous RNAs (ceRNAs)
according to the ncRNA/mir-124/mRNA scheme. These competitive interactions of mRNA
and ncRNA (both lncRNA and circRNA) with miR-124 are possible if there are MRE sites
for binding this miRNA in mRNA and regulatory ncRNA sequences. Moreover, oncogenic
lncRNA and circRNA inhibit the suppressor miR-124, which, as a result, cannot effectively
suppress the translation of its oncogenic protein targets.

More than 40 interactomes involving lncRNAs and miR-124 have been identified
in epithelial cancers. LncRNAs MALAT1, NEAT1, HOXA11-AS, and XIST are the most
represented in these axes. The largest number, nine interactomes, was formed with the
participation of the widely studied lncRNA MALAT1 in epithelial cancer of seven types:
bladder transitional cell carcinoma, breast cancer, cervical cancer, gastric cancer, hepato-
cellular carcinoma, nasopharyngeal carcinoma, and non-small cell lung cancer. mRNAs
of the proteins Capn4, CDK4, EZH2, foxq1, GRB2, HBx, SLUG, STAT3, and TGF-β1 were
identified as direct targets of miR-124 in these axes. LncRNA NEAT is involved in four
interactomes, lncRNA HOXA11-AS is involved in three axes, and XIST is also involved
in three axes. Interestingly, feedback loops are noted for many interactomes, such as for
NEAT1/miR-124/STAT3. Axes involving new, relatively recently discovered lncRNAs,
such as PTPRG-AS1/miR-124-3p/CCND1 and PTPRG-AS1/miR-124-3/LHX2, have also
been identified. LncRNA PTPRG-AS1 through these axes promotes cell proliferation and
cell cycle in vitro and in vivo, and activation of LHX2 induces the Notch pathway and
reduces radiosensitivity.

Virtually all lncRNA interactomes inhibiting miR-124 and activating oncogenic pro-
teins stimulate proliferation, inhibit apoptosis, and activate cell motility and cancer invasion,
regardless of cancer type. A total of 14 axes, including lncRNAs and miR-124, are involved
in EMT and/or metastasis in cancers. Moreover, eight axes are involved in key pathways:
Wnt/b-catenin, E2F1, TGF-β, SMAD, ERK/MAPK, HIF-1α, Notch, PI3K/Akt signaling,
and cancer cell stemness. Additionally, 15 axes showed a poor outcome or shorter survival
time, and three axes decreased the chemo- or radiosensitivity of cancer patients.

To date, 14 interactomes involving circRNAs in the regulation of miR-124 and its
targets have been identified. Nearly half of these include circHIPK3, which belongs to the
exonic ecircRNAs found predominantly in the cytoplasm. This abundant circHIPK3 can
stimulate cell proliferation, autophagy, angiogenesis, EMT, and chemoresistance, which has
been shown in various cancers, although most of the work has been done on hepatocellular
carcinoma. The influence of circ MTHFD2 and circPVT1 is also associated with a decrease
in sensitivity to chemotherapy shown in gastric cancer.

It is important to emphasize that the luciferase reporter assay, RNA pull-down, and
RIP assays were used as the most reliable methods for verifying the direct binding of
miR-124 to ncRNAs (both, lncRNA and circRNA) and miR-124 to mRNAs in interactomes.

It should also be noted that exosomal miR-124 affects not only tumor cells, but also the
microenvironment and significantly affects the immune response of cancer cells. However,
there are few data on the analysis of the effect of lncRNAs and circRNAs on miR-124
activity in the tumor microenvironment, which requires further research.

As we have mentioned above, for gastric cancer and hepatocellular carcinoma, on
which the largest number of studies have been performed, very different mRNA targets
are indicated as significant in different studies. The only exception is EZH2, for which
involvement in interactomes with both, lncRNA and circRNA, was shown in five epithelial
cancers—hepatocellular carcinoma, ovarian carcinoma, gastric cancer, laryngeal squamous
cell carcinoma, and prostate cancer. The EZH2 gene has been identified in many miR-
124 axes with four lncRNAs (HOXA11-AS, LINC00511, MALAT1, and XIST), and with
two circRNAs (circ-TRPS1, circ_0026123). The multifaceted biological functions of this
oncogenic protein and its involvement in all the most important processes of oncogenesis,
such as proliferation, migration, invasion, metastasis, and increased stemming of cancer
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cells, have been noted. For this reason, EZH2 is currently considered a promising target for
cancer therapy.

To summarize, the identification of protein target genes of miR-124 and regulatory
interactomes involving long and circular ncRNAs reveals the multiple roles of miR-124
in the development and progression of epithelial cancers, which is realized through the
ceRNA mechanism. Additionally, miR-124 and molecules interacting with it, demonstrate
clinical significance as predictive markers, promising targets, and potential drugs for
cancer therapy.
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