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Abstract: The development of cancer is a multifactorial phenomenon, while it constitutes a major
global health problem. Viruses are an important factor that is involved in tumorigenesis and is
associated with 12.1% of all cancer cases. Major examples of oncogenic viruses which are closely
associated with the digestive system are HBV, HCV, EBV, HPV, JCV, and CMV. EBV, HPV, JCV,
and CMV directly cause oncogenesis by expressing oncogenic proteins that are encoded in their
genome. In contrast, HBV and HCV are correlated indirectly with carcinogenesis by causing chronic
inflammation in the infected organs. In addition, the tumor microenvironment contains various
immune cells, endothelial cells, and fibroblasts, as well as several growth factors, cytokines, and
other tumor-secreted molecules that play a key role in tumor growth, progression, and migration,
while they are closely interrelated with the virus. The presence of T-regulatory and B-regulatory cells
in the tumor microenvironment plays an important role in the anti-tumor immune reaction. The
tumor immune microenvironments differ in each type of cancer and depend on viral infection. The
alterations in the immune microenvironment caused by viruses are also reflected in the effectiveness
of immunotherapy. The present review aims at shedding light on the association between viruses
and digestive system malignancies, the characteristics of the tumor immune microenvironment that
develop, and the possible treatments that can be administered.

Keywords: tumor immune microenvironment; HBV; HCV; EBV; HPV; CMV; JCV; digestive system;
immunotherapy

1. Introduction

Cancer constitutes a major public health problem worldwide and it is estimated that
almost 20 million new cancer cases and nearly 10 million cancer-related deaths occurred in
2020 [1]. Infectious factors are involved in 17.8% of all cancers (viruses for 12.1%, bacteria
for 5.6%, and helminths for 0.1%) [2,3]. The distribution of viruses could be in several
organs/tissues, while in the case of virus-related cancer the tumor microenvironment (TME)
could be significantly altered, depending on the type of virus. The human digestive system
bears an enormous number of different viral particles (>1015) [4]. Many DNA viruses
(e.g., Herpesviridae family) can induce persistent infections, whilst anelloviruses have not
been linked with a specific pathology [5]. On the other hand, RNA viruses are more likely
to cause acute infections [6]. There are several viruses that have a great importance, due
to the fact that they can establish a long-term correlation with their host and can induce
an inflammatory status [7]. Indeed, chronic inflammation can stimulate a carcinogenic
background, which can lead to tumorigenesis [8]. It must be emphasized that viruses that
integrate their genetic material into the human DNA can cause dysregulation of oncogenes
and/or inactivation of tumor suppressive genes (direct carcinogenesis) [9].

Seven viruses have been significantly associated with carcinogenesis, including hep-
atitis B and C viruses (HBV and HCV), human papilloma virus (HPV, with types 16, 18,
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33, and 45 as the most dominant), Epstein-Barr virus (HHV4/EBV), human T-cell lym-
photropic virus type I (HTLV-I), human herpesvirus 8, also known as Kaposi’s sarcoma
virus (HHV8), and Merkel cell polyomavirus (MCV) [4,10]. Viruses which are associated
with the digestive system are HBV, HCV, EBV, HPV, John Cunningham virus (JCV), and
cytomegalovirus (CMV) [6,11,12]. For example, HPV and EBV directly cause oncogenesis
by expressing oncogenic proteins encoded in their genome. On the contrary, HBV and HCV
are correlated with indirect carcinogenesis by causing chronic inflammation of the infected
organs [13] (Figure 1).
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Figure 1. (A) HPV and EBV directly cause oncogenesis by expressing oncogenic proteins and
establish genome instability. (B) HBV and HCV indirectly cause carcinogenesis by establishing
chronic inflammation of the infected organs. This figure was created based on the tools provided by
Biorender.com (accessed on 9 March 2022).

TME contains various immune cells, endothelial cells, and fibroblasts, as well as
several growth factors, cytokines, and other tumor-secreted molecules. Some of the cells
that are located in the tumor surrounding stroma are myeloid-derived suppressor cells
(MDSCs), tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs),
cancer-associated fibroblasts (CAFs), as well as many molecules that are secreted from the
malignant cells [14]. Additionally, the presence of T-regulatory (Treg) and B-regulatory
(Breg) cells in the TME constitutes an impediment to the physiological anti-tumor immune
reaction phenomenon, which is mainly attributed to the deregulation or inhibition of T-
effector action by the expression of FOXP3 on Tregs, as well as to interleukin-10 (IL10)
secretion by Bregs that suppresses the cytotoxic effect of T-cells. All the aforementioned
cells present possible therapeutic targets for anti-neoplastic agents, as they promote tumor
development, migration, and angiogenesis [15]. A better understanding of the TME
components and the mechanisms that are implicated in tumor escape is considered pivotal
for the management of HCC. The interrelation of TME with immune responses has a
pertinent role in disease progression, while it contains quite a few targets for anti-cancer
therapy. The immune response is a complex process that is compounded by several
steps, including: (i) The asymptomatic step, (ii) the balance step, and (iii) the tumor
escape. In the first step, immune cells attempt to recognize and eliminate the cancer
cells, which can be achieved initially via CD8+ and CD4+ T-cells, NK cells, as well as
T-helper 1 cells, and subsequently via the formation of antibodies against the antigens on
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the surface of cancer cells. However, if the above cells cannot recognize and eliminate
the malignant cells, there is the following step of balance, whereby there is tumor growth
and progression by avoiding the immunosurveillance mechanisms. This phenomenon
is mainly attributed to the expression of immunogens on the cancer cell surface. The
next step includes tumor escape, in which cancer cells continue to grow, regardless of
the administration of immunotherapeutic agents. The evasion of immunosurveillance is
achieved via the expression of inhibitory checkpoints on the cancer cells, that recruits Tregs,
Bregs, TAMs, and MDSCs [16].

The human virome is a crucial part of the human microbiota and develops as a new and
important field of study. Herein, we provide an updated overview of the digestive system
malignancies that are related to viruses, their impact on TME that promotes carcinogenesis,
and the opportunities for immunotherapeutic management.

2. Hepatitis B Virus (HBV)

Hepatitis B virus infection constitutes one of the most severe and predominant in-
fectious diseases as well as one of the main etiologies of chronic hepatitis infection (CHI).
Additionally, it is widely manifested in the general population, exceeding 2 billion in-
dividuals globally, with approximately 360 million inactive HBsAg carriers, while it is
considered the second most prevalent cause of death due to malignancy, and the fifth most
commonly diagnosed cancer [17]. The majority of hepatocellular carcinoma (HCC) cases
have an etiopathogenic background of HBV, especially in the population of Africa and
China, whilst less than 10% of total cases are non-HBV-related [18]. The viral genome
is a double-stranded partially circular DNA that encodes several proteins, such as the
minimum X protein, HBeAg, and HBsAg proteins [19]. Notably, HCC can be developed in
cirrhotic and non-cirrhotic patients, in which hepatocarcinogenesis occurs directly by the
persistence of viral infection.

2.1. HBV-Associated Hepatocellular Carcinoma (HCC)

Hepatocarcinogenesis that is associated with HBV infection is mainly attributed to
the persistent inflammation of hepatic parenchyma and the subsequent fibrotic injury,
which leads to cirrhosis, in a background of deregulation of multiple signaling pathways,
modified immune cell functions, the influence of TME, as well as the long-term oxidative
stress, resulting from the persistence of the viral infection. Cirrhosis is considered the major
predictive factor for HCC development, implying a gender disparity and the age of the
patient [20,21].

Moreover, a better knowledge of the immunoregulatory checkpoints that are pre-
sented, which significantly modify the anti-neoplastic immune response, is crucial for
the management of this malignancy. In particular, PD-1, CTLA-4, as well as lympho-
cyte activation gene 3 (LAG-3), B7-H3/H4, and A2AR constitute some of the inhibitory
checkpoints, in comparison with the stimulatory that are CD137, CD27, CD122, as well as
CD28 and CD40. However, all the above can be expropriated by cancer cells that escape
immunosurveillance [22].

It has been demonstrated that chronic infection with HBV noticeably modifies the
activity of TME cells, such as TILs, while elevated levels of T-regulatory cells significantly
alter the activity of cytotoxic T-lymphocytes (CTLs), which leads to immunosuppression
that further promotes tumor growth and progression [23]. Moreover, chronic immunosup-
pression that is induced by HBV infection is illustrated by the impairment of NK cells [24].
This suppression and modification of the functional state of NK cells are attributed to
hepatic MDSCs, which interact with NKp30 on NK cells. Furthermore, MDSCs enhance
the amount of Tregs, which modify the CTLs function, while they promote the exhaustion
of CD8+ T-cells, via expressing TIM-3, CTLA-4, and PD-1, as well as suppressing CD4+
T-lymphocytes [23].

Additionally, there is a high expression of immune checkpoints, such as cytotoxic T-
lymphocyte antigen 4 (CTLA-4) on Tregs, which modify the function of antigen-presenting
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cells (APCs), via IL10 and TGF-b, which cannot stimulate CTLs. Based on a study that
compared negative with positive pre-S2 patients, the latter type of tumors had a similar
amount of CTLs to the former type; however, it presented an increased amount of forkhead
box P3 (Foxp3) and CD25+ and CD4+ cells, as well as a decreased number of cells that
were expressing granzyme B. Moreover, it was shown that the positive-pre-S2 mutant HCC
cases have a dismal prognosis, in comparison with negative-pre-S2 cases. Of note, Tregs
regulation is closely associated with transforming growth factor-β1 (TGF-β1), which further
enhances the immunosuppressive effect of Tregs in TME via promoting their recruitment
and differentiation. Immunosuppression in the TME is further aggravated via the direct
effect of TGF-β1 on cytotoxic T-lymphocytes, with TGF-β1 secretion being promoted by
pre-S2 mutant HCC [23,25]. Furthermore, it was reported that the HCC microenvironment
is considered significantly more immunosuppressive in cases where HBV coexists, in
comparison with HCC cases that are not related to viral hepatitis [26].

Noteworthy, HBV-HCC tumor analysis does not show any aberration in T-cell immune
response pathways, in comparison with HCV-HCC tumors; however, complement pathway
and B-cell activation pathways were found to be downregulated [27]. Additionally, in
HBV-HCC tumors, some genes that are associated with macrophage/monocyte activation
pathways were found to be upregulated, such as S100A11, MIF, S100A10, as well as S100A4,
while some other genes were also upregulated, including TALDO1, MIF, S100A11, NOS1,
and S100A6, that are involved in natural immunity [27,28].

The aforementioned characteristics open new therapeutic opportunities for the man-
agement of HBV-related HCC cases, such as by manipulating the expression of PD-1 on
Tregs, via immunotherapeutic agents, including immune checkpoint inhibitors, such as
anti-PD-1 inhibitors. A CTLA-4 inhibitor known as tremelimumab (phase II clinical trial,
NCT01008358) has been studied for advanced HCV-related HCC, which is a well-tolerated
agent that provides a 76.4% disease control rate (DCR), decreases the viral load, as well as
provides 8.2 months of overall survival (OS) [29,30].

Pembrolizumab (a PD-1 inhibitor) constitutes a second-line treatment for advanced
HCC, which has been studied in KEYNOTE 224 phase II study, also for HBV- and HCV-
related HCC, which provided 12.9 months of OS and did not induce reactivation of the
infections [31]. It has been shown that HBV-infected patients with HCC had an increased
OS in comparison with patients who received a placebo, an effect that was not observed
in HCV-infected patients with HCC. Another combination is IBI305 (biosimilar of be-
vacizumab) and sintilimab, and another PD-1 inhibitor in phase II/III (NCT03794440) in
comparison with sorafenib is a first-line choice for HBV-related unresectable HCC cases [32].
Additionally, another modality is cytokine-induced killer cells (CIKs) infusion (phase III
trials NCT01749865, NCT00769106), which is a cell-based therapy [33,34]. Another cell-
based therapy that was tested is the utilization of TCR-engineered cells (TCR redirected
therapy) against HBV antigens, such as HBV x protein, which show favorable results and
constitute a promising therapeutic strategy [35–37]. Finally, oncolytic therapy is another
immunotherapeutic modality that can be utilized in HBV-related or HCV-related HCC,
such as JX-594, which showed favorable effects in the infected patients and a significant
improvement in OS, especially when the dose of JX-594 was increased [38–41].

2.2. HBV-Associated Cholangiocarcinoma (CCA)

Cholangiocarcinoma constitutes a group of malignancies including extrahepatic and
intrahepatic distinct entities. Intrahepatic cholangiocarcinoma (iCCA) is not the most
frequent form of cholangiocarcinoma (10–20%), while it is frequently associated with prior
HBV infection. Chronic inflammatory state is considered crucial for iCCA development
regardless of the etiopathogenic mechanism that induces it. This state favors carcinogenesis
via promoting genetic and epigenetic aberrations [42,43]. Carcinogenesis is facilitated by
the overregulation of several growth factors and cytokines that promote increased cell
multiplication, as well as angiogenesis. Some of the mediators that are recognized include
tumor necrosis factor (TNF), vascular endothelial growth factor (VEGF), interleukin-6 (IL6),
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which has a key role as a growth factor for tumor cells, hepatocyte growth factor (HGF),
and transforming growth factor beta (TGF-β) [44,45]. Of note, the expression of PD-L1
opens opportunities for anti-neoplastic management with immunotherapeutic agents [46].
It has been reported that chronic HBV infection predisposes iCCA development, especially
in young-aged males, while this HBV-related iCCA is usually characterized by a favorable
prognosis. Some major mutant genes are TP53 and KRAS, as well as MYC and IDH1 and
IDH2 genes. In general, chronic biliary inflammatory state predisposes several mutations
except the aforementioned, such as ARID1A, ROBO2, as well as MLL3, RNF34, FGFR
fusions, and CDKN2A mutation. HBV infection is closely associated with TP53 mutation,
while the cases with TP53 and KRAS mutant genes demonstrate a dismal prognosis [27,47].

Moreover, TME has a chief role in CCA, which promotes the recruitment and activation
of TAMs that influence several cells, including stromal cells and malignant cholangiocytes,
and are closely associated with neoangiogenesis and metastatic dissemination. Moreover,
TAMs influx is closely associated with worrisome prognosis, increased aggressivity, and
recurrence rates. TAMs could serve as a potential therapeutic target for the management of
disease progression [48]. Furthermore, hyperactivation of PD1/PD-L1 in iCCA tumors is
a negative prognostic biomarker. Elevated neutrophils and iDC predicted poor survival,
while the increased number of lymphocytes (CD4+ T-cells, CD8+ T-effector cells, and
B-cells) were related to good prognosis. Finally, ICC patients with HBV infection have a
more positive prognosis compared with ICC patients without HBV infection. Song et al.
identified XCL1 + CD8+ T-cells that are linked with better patient survival. From the
above, PD1/PD-L1-targeted immunotherapy is an encouraging treatment option for ICC
patients [49–52].

2.3. HBV-Associated Colorectal Cancer (CRC)

Colorectal cancer has been shown to be closely associated with viral hepatitis B, which
significantly increases the risk for colorectal carcinogenesis, especially in the Chinese pop-
ulation [53]; therefore, these patients are in need of frequent screening. A higher risk of
CRC development was also shown in studies performed in the Korean population [54,55].
Based on large cohort studies, an increased risk for developing CRC in patients with HBV
infection was reported, implying the impact of HBV virus in colorectal carcinogenesis;
however, with a background of modified risk factors, such as tobacco and alcohol con-
sumption, age, gender, as well as body mass index (BMI). In particular, CRC risk was not
significantly associated with female gender, young-aged or elderly, non-consumers of to-
bacco, alcohol consumption, and increased BMI (25–29.9 and 30–34.9). In HBV seropositive
patients in Taiwan, it was shown that they had a higher risk (36% higher) of developing
CRC, in comparison with seronegative (HBsAg negative) patients [53]. Moreover, the risk
of synchronous colorectal liver metastasis (CRLM) was enhanced in cases with chronic
HBV infection, demonstrating a dismal prognosis, in comparison with patients with occult
hepatitis B infection (OBI) that exhibited a lower risk of metachronous CRLM and a longer
free of disease post-surgical survival. These reports imply that active HBV replication
enhances the risk of developing synchronous CRLM, due to the fact that during the mi-
gration of colorectal malignant cells into the circulation, the hepatic immune responses are
intensified due to HBV infection, resulting in an increased risk in developing secondary
liver cancer, and in other circumstances, primary liver cancer [56]. Another pathogenetic
mechanism that promotes CRC metastatic dissemination is the overregulation of immune
checkpoint PD-L1 and PD-1, resulting in the tumor immune escape phenomenon [56]. A
study by Cheng et al. revealed that efficacy and OS were similar between patients with HBV
infection and non-HBV patients receiving anti-PD-1 therapy. Therefore, CRC-HBV-positive
patients can benefit from immunotherapy. Nevertheless, further research is needed on the
correlation between HBV infection, immune microenvironment, and CRC [57].
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2.4. HBV-Associated Pancreatic Adenocarcinoma (PAC)

Pancreatic adenocarcinoma (PAC) constitutes a quite lethal malignancy, the third most
frequent causal agent for malignancy-related deaths in the United States in recent years,
demonstrating a worrisome prognosis and a low 5-year survival rate of less than 10% [58].
Despite the most frequent risk factors for pancreatic carcinogeneses, such as chronic alcohol
consumption, diabetes mellitus, as well as aging and obesity, HBV constitutes another
risk factor for PAC development. The interplay between HBV infection and PAC was
considered controversial for many decades; however, based on meta-analytic studies, it
has been proved that the risk of PAC is increased in patients with HBV infection [59–61].
The pathogenetic mechanism between HBV infection and PAC is not yet specified. The
transport of the virus from hepatic parenchyma to the pancreatic anatomical region is
mainly attributed to the commonly shared ductal and vasculature system, with HBV being
transferred to pancreatic parenchyma, which leads to a chronic inflammatory state that
promotes pancreatic carcinogenesis. Another hypothesis is the common embryonic origin
of hepatocytes and pancreatic cells, as well as the molecular background of HBV infection,
which induces various genetic and epigenetic aberrations [60,62,63]. Unfortunately, there
are no studies focusing on HBV-associated PAC and the immune microenvironment.

3. Hepatitis C Virus (HCV)

Hepatitis C virus, a member of the genus Hepacivirus within the Flaviviridae family,
constitutes a single-stranded RNA virus, which is significantly hepatotropic, with a variety
of six genotypes, which are closely associated with the duration of the HCV-induced HCC
development. Specifically, an increased risk for hepatic carcinogenesis is closely associated
with genotypes 1 and 3, with an 80% increase in the risk, as well as genotype 6 which is
mostly reported in developing countries [64,65]. Approximately 80% of patients infected
with HCV develop a chronic infection, while 15% develop acute infection [66]. Of these
patients who develop chronic infection, 5–20% will develop cirrhosis in the next 5 to
20 years, and 1–2% will develop HCC per year [67].

3.1. HCV-Related HCC

HCV is considered another major factor that leads to liver cirrhosis and eventually
HCC, with increased morbidity and mortality rates. An increased risk of HCC development
is closely associated with occult HBV infection on a background of chronic HCV infection,
as well as coinfection with human immunodeficiency virus (HIV), while patients with
only HCV infection have a 17-fold higher risk for HCC, in comparison with seronegative
patients [27,68,69]. Moreover, HCV patients with an active state of HBV replication, have
a 2-fold increased risk for HCC and an increased mortality rate, compared with patients
with no active HBV replication. Whereas, HIV coinfected HCV patients have a more rapid
evolution to HCC, which is directly proportional to CD4 count [70–72]. Similarly, patients
with a history of alcohol abuse had an increased risk of HCV-related hepatocarcinogenesis,
especially for HCV patients with DB and obesity with adiponectin resistance, the risk for
HCC is two or three times higher or up to four times higher, respectively [73,74].

On a molecular basis, the HCV oncogenic effect on liver parenchyma is attributed
to HCV-related proteins, such as the non-structural proteins and the core protein, which
modify the host genome and alter various signaling, immune, and cell-cycle pathways,
while HCV via secreting pro-inflammatory cytokines, such as interferon and TGF-β pro-
motes disease progression and hepatic carcinogenesis. Specifically, the former proteins are
associated with the activation of hepatic stellate cells (HSCs), via TGF-β, which induces
fibrinogenesis and enhancement of the inflammatory state [75–77]. Moreover, the latter
protein induces the suppression of the TP53 tumor suppressor gene, as well as Retinoblas-
toma gene mutation significantly induces hepatic cancer cell development and growth,
which is also attributed to the modified cell cycle that promotes the accumulation of several
mutations. The expression of cancer checkpoints, several mutations, such as in β-catenin,
Retinoblastoma, and TP53 genes, as well as the mutation of the telomerase gene constitute
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some of the promoters of HCC [78–80]. Table 1 presents an overview of HCV proteins that
induce several deregulations that lead to hepatic carcinogenesis.

Table 1. Overview of HCV components that induce hepatic carcinogenesis.

HCV Non-Structural and Structural Proteins Effect

Core protein, NS2, NS3, NS5A Inhibition of apoptosis

Core, NS5A Reactive oxygen species→ TGF-β→ HSCs
activated→ fibrogenesis

E1, E2, NS5A Chronic inflammation via cytokine secretion

E2, core, NS2, NS3, NS5A Cell proliferation

Core EMT
Mutagenesis and genome instability
Angiogenesis via VEGF
Lipid metabolism modification→ steatosis

Furthermore, based on the analysis of HCV tumors, the expression of 2481 genes was
altered, while various signaling pathways (up to 14) which are closely associated with
adaptive and innate immunity were found to be modified, with 95% of the genes exhibit-
ing downregulation. Some of these altered immune pathways include Th1/2 activation
pathways, the maturation pathway of dendritic cells, as well as the signaling pathway
of primary immunodeficiency. LXR/RXR pathway, as it was previously referred to, is
modified in both types of viral hepatitis-related tumors, which is crucial for the metabolism
of lipids, as well as the pathway of acute phase response, the signaling pathway of pri-
mary immunodeficiency, as well as the activation pathway of HSCs [27,81]. Additionally,
CD86, CD274, as well as CD3E are some of the genes that are found to be downregulated
in HCV-HCC tumors, which have a key role in the T-cell activation pathway. Similarly,
HAVCR2, CD53, GATA3, CD96, as well as TAGAP, CD7, VSIG4, CD8B, and VTCN1, were
found to be downregulated in these tumors, which also have a significant role in T-cell
function [27,82,83]. Some other genes that are associated with T-cell differentiation and
cytokine and chemokine secretions are IL18R1, TGFβ3, IL20RA, CCL14, IL2RA/B, CXCL14,
TGFA, as well as IL7R, IL15RA, IL21RA, and IL17RE. Similarly, IL1RAP, IL4R, IL18RAP, as
well as IL1RL1, IL27, and IL21EA, were also identified [27,75,84,85].

Nonetheless, in HCV-related HCC there is a noteworthy deregulation of T-cell response
and activation pathways, resulting in the suppression of T-cell-associated genes, compared
with HBV-related tumors, which did not present any of these aberrations [86]. Similarly,
with HBV, HCV also alters the HCC TME via T-cell impairment, with CD8 and CD4+
T-lymphocytes presenting dysfunction. HCV infection induces TGF-β and PD-L1/PD-1
overregulation and lessens T-cell responses that promote immunosuppression in HCC. The
secretion of TGF-β has a negative impact on T-effector cells, while the PD-1/PD-L1 axis
is closely related to cancer immune escape and is also associated with the severity of the
malignancy and the poor outcome [87,88].

Finally, camrelizumab is a PD-1 inhibitor that is currently assessed in a phase II trial
(NCT02989922) [89,90], as well as tislelizumab (NCT02412773) in a phase III trial [90].
The former HCV patients with HCC exhibited a good response, with a median OS of
14.4 months [91]. Another modality is the utilization of vaccine-based treatment for the
enhancement of T-cell response, which is impaired in cases of infected HCC patients, such
as AFP-based HCC vaccine, which was tested on HBV- and HCV-related HCC patients, as
well as a dendritic cell-based vaccine (DC vaccine) as an adjuvant, which is studied in a
phase II trial for patients with resected HCC [92]. Glypican-3 (GPC3) is another vaccine
that is assessed in phase 1 trial in patients with a history of HCV and HBV, which induces
T-cell response against the glypican-3 on cancer cells [93,94].
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3.2. HCV-Related Cholangiocarcinoma (CCA)

There are several studies that demonstrate the interplay between HCV and CCA,
including the intra- and extra-hepatic types [95,96]. The oncogenic properties of HCV pro-
teins significantly modify the functions of cholangiocytes, promoting their transformation
into malignant cells. There is a hypothesis that the cholangiocytes are more vulnerable to
HCV infection, which is possibly attributed to specific receptors on cholangiocytes that
permit the adhesion and the invasion of the virions. Another hypothesis includes the
direct effect of HCV proteins on cholangiocytes, leading to a chronic inflammatory state, as
well as fibrotic injury, which promotes cholangiocarcinogenesis. Epithelial-mesenchymal
transition (EMT) constitutes a key mechanism that promotes CCA development, in which
there are phenotypic and functional alterations and transformation of epithelial cells into
mesenchymal. It was demonstrated in QBC939 CCA lines that HCV core protein is closely
associated with the phenomenon, while there is an aberrant expression of fibronectin,
E-cadherin, as well as vimentin, which are related to cancer cell migratory behavior [97–99].
Regarding HCV-related cholangiocarcinoma and immune microenvironment, there are
no specific studies. As mentioned above, immunotherapy helps in HCV-related HCC
and there are similarities between HBV and HCV. Consequently, there is the possibility of
similarities in the immune microenvironment caused by HCV in CCA [50,52].

3.3. HCV-Related Pancreatic and CRC Cancers

It has been shown that HCV infection, as well as HCV and HIV coinfection, are
considered risk factors for developing several digestive system cancers including CRC and
PAC. Based on several cohorts and case-control studies, it has been reported that HCV
patients have a significantly increased risk of developing rectal cancer and an elevated risk
of endoscopic diagnosis of CRC. However, this issue is controversial as other studies do not
demonstrate the above phenomena. Similarly, the risk of developing PAC is also increased
for HCV patients, especially if they have a history of tobacco consumption [61]. In both
of the above digestive system cancers, even after seroclearance, the risk of carcinogenesis
remains high. From a molecular point of view, the suppression of the Tp53 gene is identified,
which is mainly attributed to the HCV core protein, which subsequently leads to genetic
aberrations and carcinogenesis [100,101]. As in the cases of HBV-related pancreatic cancer
and HBV-related CRC, there are no studies on the immune microenvironment.

4. John Cunningham Virus (JCV) and Human Cytomegalovirus (CMV)-Associated CRC

The John Cunningham virus or human polyomavirus 2 has been mainly identified in
the gastrointestinal tract, where it can remain latent. It encodes three capsid VP1–3 and two
T-antigen proteins, as well as agnoprotein. It has been shown that JCV is closely related
to many malignancies, including CRC, via encoding the T-antigen (Ag) gene [102]. The
expression of T-Ag is implicated in chromosomal instability, which leads to carcinogenesis
and the downregulation or silencing of tumor suppressor genes, such as p53 and APC,
as well as the pRb family [103]. The encoding proteins of the T-Ag gene have a crucial
regulatory role in cell multiplication, as well as in viral dissemination. It is hypothesized
that JCV is reactivated in patients with latent digestive system infection, which subsequently
leads to CRC [103,104]. There is a prominent immune response against T-Ag proteins,
including the stimulation of T-cytotoxic and helper cells. However, in patients with no
malignancy, the stimulation of Th1 cells is higher [105]. Finally, based on a meta-analysis
of case-control studies of JCV infection and CRC risk, this viral infection, presenting T-Ag
protein expression elevates 10-fold the risk of CRC development, implying the necessity of
further studies for the development of novel therapeutic strategies and the limitation of
this phenomenon [106].

Additionally, human cytomegalovirus constitutes a herpesvirus, which is character-
ized by persistent latent infection and is implicated in the aggregation of antigen-related
T-cell pools, the so-called T-cell memory inflation. The emerging role of CMV in var-
ious cancers including CRC is in the spotlight, while CMV is presented in 40% of the
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total CRC bioptic specimens [107,108]. CMV proteins have been demonstrated in biop-
tic specimens of brain secondary lesions in CRC patients, in which the virus might be
reactivated during the administration of chemotherapeutic agents, which might require
treatment [109]. It has been reported that cancer patients with various types of malignancies
had an aberrant amount of CMV-related CD8+ T-cells, especially in cases with more end-
stage disease [108,110]. CMV reactivation might occur later in adult life with a concomitant
increase in memory CD8+ T-cells, the so-called memory inflation against the persistent
CMV-DNA load in the host. The initial viral dose is closely related to the T-cell memory
inflation, with lower levels of viral load being proportionally associated with latent viral
reservoirs, as well as with T-cell multiplication [111]. Furthermore, the presence of CMV in
malignant tissue is closely related to worrisome prognosis, while the genetic material of this
virus is profoundly found in the malignant epithelium in comparison with non-neoplastic.
Disease-free survival period is considered higher in patients under 65 years old compared
with older patients [112,113]. A more aberrant inflammatory response within the tumor
was demonstrated in CMV-positive cases with upregulated IL1 levels, enhancing tumor pro-
liferation, neoangiogenesis, and metastatic dissemination. Particularly, CMV-infected cells
can escape the immunosurveillance via encoding various proteins, such as US11, US2, US6,
and US3, which are implicated in the downregulation of MHC I molecules on cells, which
are infected, while except for IL1, they also upregulate the expression of IL17 and modify
the anti-neoplastic immune response in the TME. Meanwhile, T-cell-mediated immunity is
altered via the viral immunomodulatory effect, which is also implied by the fact that the
expression of MMPs that promotes invasion and metastatic dissemination is modified, as
well as encoding several other proteins that inhibit apoptosis, such as UL37-UL38, while
a higher MMP-1 level is found in CMV-positive specimens. A better understanding of
the CMV immunomodulatory role in CRC opens new therapeutic strategies via targeting
this potentially oncogenic virus [113]. Nevertheless, further research is needed for the
aforementioned viruses and their implication in TME.

5. Epstein-Barr Virus (EBV)

The Epstein-Barr virus (EBV, human gammaherpesvirus 4) is one of the nine known
human herpesvirus types of the Herpes family [114]. EBV is a double-stranded DNA
virus affecting more than 90% of adults and is responsible for 1.5% of total cancers. Latent
EBV infection is recognized to be related to epithelial cancers and multiple lymphoid
malignancies. Common EBV-associated epithelial cancers include EBV-associated gastric
cancers (EBVaGC), nasopharyngeal carcinoma (NPC), and lymphoepithelioma-like carci-
noma (LELC). Rarely, EBV can cause breast cancer, salivary gland cancers, thyroid cancer,
and hepatobiliary cancers [115]. Tumors have been classified based on the presence of
TILs and PD-L1 expression into four different tumor immune microenvironments (TIMEs).
They are type I (adaptive immune resistance), type II (immunological ignorance), type III
(intrinsic induction), and type IV (tolerance) [116].

5.1. EBV-Associated Gastric Cancer (GC)

EBV is detected in approximately 10% of gastric cancer (GC) worldwide. The EBV
genome exists in all cancer cells. Incidence of EBVaGC ranges depending on the region,
(16–18% in the USA and Germany, and 4.3% in China). EBVaGC has discrete clinico-
pathological features; it appears in a higher percentage of men (71%) and has a generally
diffuse histological type. A current study demonstrates a link between gastric cancer and
EBV infection, while EBV-positive and EBV-negative tumors are closely related to tobacco
abuse [117,118].

EBVaGC has a certain histological association with gastric carcinomas with lymphoid
stroma (GCLS) [119,120]. GCLS has an intense and diffuse lymphocyte infiltration and
is a poorly differentiated adenocarcinoma analogous to EBV-associated nasopharyngeal
lymphoepithelioma. In a recent study, 124 tumors were tested by EBER1-ISH and from
the 124 tumors, 12 (9.7%) were identified as EBVaGC [121]. Moreover, Zhao et al. have
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repeatedly identified the presence of EBV and H. pylori. in the mucosa of patients with
moderate chronic atrophic gastritis [122].

EBVaGC is regularly removed by surgical resection since it is an undifferentiated-type
cancer. Early EBVaGC has a low risk of lymph node metastasis [123]. A study presented
that EBV-associated GC has a significantly low incidence of lymph node metastasis and a
better prognosis compared with EBV-negative GC. An unadjusted Cox regression analysis
shows that the median survival duration of EBV-positive GC patients is 8.5 years and for
EBV-negative patients is 5.3 years [124].

Statistical analysis shows that EBVaGC with a small mutation burden is a subset of
MSS GC and has good results to immune checkpoint therapy. Gene expression profile
analysis of EBVaGC patients shows significant alterations in immune response genes, which
probably are responsible for improved survival outcomes in patients [125]. Thirty-two
(5.3%) EBVaGCs were identified, which have more CD8+ (p < 0.001) and Foxp3+ (p = 0.020)
cell infiltration than EBV-negative GCs and have a higher 5-year overall survival (p = 0.003).
Moreover, PD-L1 expression is linked with a poor 5-year OS (p = 0.002) [126]. EBVaGC
is found to express high levels of PD-L1 in cancer and infiltrating immune cells. Tumor
cells are producing PD-L1, which interacts with PD-1 on the surface of T-cells to escape
from the immune system, while the high expression of PD-L1 on EBVaGC is correlated to
tumor progression [127]. Moreover, the density of CD3+ T-lymphocytes (23.84 versus 12.76,
p < 0.001) and CD68+ macrophages (9.73 ± 5.25 versus 5.44 ± 4.18, p < 0.001) are identified
as significantly higher in EBVaGC compared with EBV-negative GC patients, while CD3+
T-cell density is associated with a higher 5-year OS of EBVaGC patients (p = 0.022) [128].

Furthermore, to detect the prognostic value of CD8+ cell infiltration and PD-L1 expres-
sion, Ma et al. classified 571 GC into four different TIMEs. The distribution of the four TIME
types was 12.96% (type I, CD8+PD-L1+), 42.73% (type II, CD8−PD-L1−), 28.02% (type III,
CD8−PD-L1+), and 16.28% (type IV, CD8+PD-L1−) in the complete cohort. Specifically, the
proportion was 25.81% and 12.22% (type I), 19.35% and 44.07% (type II), 16.13% and 28.70%
(type III), and 38.71% and 15.00% (type IV) in EBVaGC and EBV-negative GC, respectively,
displaying a significant difference among them (p < 0.001), while the log-rank test revealed
that type IV had the best 5-year OS (p < 0.001) [126].

In addition, Liu et al. showed the efficacy of immunotherapy in the treatment of
EBVaGC, since 2000. This study included 300 GC patients (Asian) and the evaluation
showed that 59.3% had PD-L1Cps ≥ 1 and 40.7% had PD-L1Cps < 1. PD-L1Cps ≥ 1 cases
were significantly linked with high microsatellite instability (MSI-H) (p < 0.001), with
stage I tumor (p = 0.022), positive EBV status (p = 0.008), and positive H. pylori status
(p = 0.001) [129]. The above data implied that patients with EBV-positive GC could benefit
from immunotherapy administration.

5.2. EBV-Associated Intrahepatic Cholangiocarcinoma (iCCA)

Intrahepatic cholangiocarcinoma (iCCA) is the second most frequent malignancy of
the liver, while it presents a poor resectability, limited current therapeutic options, and
low survival rates. The total data of EBV-associated ICC (EBVaICC) study are limited
since it concerns a small portion of the total iCCA cases. Moreover, the study of Huang
et al. revealed that this subtype was detected only in 6.6% (20/303) of the patients. Of
note, EBV was not associated with perihilar cholangiocarcinoma (pCCA), combined mixed
hepatocellular, cholangiocarcinoma (cHCC-CCA), distal cholangiocarcinoma (dCCA), as
well as HCC. As in EBVaGC, EBVaICC has a prevalent histological appearance of the
lymphoepithelioma-like subtype (LEL subtype) in a percentage of 45%, while the percent-
age of this histological type is only 0.7% in non-EBVaICC. EBVaICC (LEL subtype) was
related to a significantly higher 2-year OS rate (89%) in comparison with conventional
EBVaICC (36%) and non-EBVaICC (38%) (p = 0.028) [130]. Additionally, Chan et al. showed
comparable results, with EBVaICC (LEL subtype) having a significantly better 2- and 5-year
overall survival than various subtypes of ICC (100% versus 52.8%, and 100% versus 13.2%,
respectively, p = 0.003) [131].



Int. J. Mol. Sci. 2022, 23, 13612 11 of 20

The CD3+ T-cells contained in EBVaICC were the most prevalent category of TILs
(84.4%), while CD20+ B-cells and CD68+ TAMs had a percentage of 9.4% and 6.1%, re-
spectively. CD8+ T-cells constituted the 71.4%, while FoxP3+ T-cells and CTLA-4+ T-cells
accounted for the 15.0% and 13.6%, respectively. The proportion of CD20+ B-cell and CD8+
T-cell populations were significantly greater in EBVaICC versus non-EBVaICC cases, while
the densities of TILs, (CD20+ B-cells, CD3+ T-cells, CD8+ T-cells, FoxP3+ T-cells, CTLA-4+
T-cells, CD68+ TAMs, HLA-DR+ M1 TAMs, and CD163+ M2 TAMs were also significantly
higher in EBVaICC compared with non-EBVaICC [130].

PD-L1 expression in tumor cells, as well as PD-1 and PD-L1 expression in TILs were
overexpressed in EBVaICC. A total of 95.0% (19/20) of EBVaICCs expressed PD-L1 in tumor
cells (IRS score ≥ 3), but only the 22.3% (63/283) of non-EBVaICCs case expressed PD-L1
(p < 0.0001). Moreover, 100% (20/20) of EBVaICCs were positive for PD-L1 in TILs (IRS
score ≥ 1), but only 56.5% (160/283) for non-EBVaICCs cases (p < 0.0001). In addition, a
total of 95.0% (19/20) of EBVaICCs expressed PD-1 in TILs (IRS score ≥ 1) and only 64.0%
(181/283) of non-EBVaICCs (p = 0.005). Furthermore, the sample of ICCs was categorized
into a TMIT (type I, II, III, and IV) based on IHC results as follows: Type I, 53 samples
(17.5%); Type II, 123 (40.6%); Type III, 29 (9.6%); and Type IV, 98 (32.3%). TMIT was
significantly associated with overall survival in ICC (p = 0.014). The TMIT I subgroup had
the best survival advantage, whereas the TMIT III subgroup had the poorest survival value.
EBVaICC was significantly related to TMIT I since 90% (18/20) of EBVaICCs belonged to
TMIT I, while the value was only 12.4% (35/283) for non-EBVaICCs (p < 0.0001) [130]. The
aforementioned data of this study implied that patients with EBVaICC could be possible
candidates for immunotherapy, with a better survival for those presenting the LEL subtype.

6. Human Papilloma Virus (HPV)

Human papilloma virus is a small DNA virus with a specific tropism for squamous
epithelia, while they have been detected in 202 different HPV types. The HPV types
that induce infection of the mucosa are additionally categorized into high- and low-risk
groups, based on the possibility of developing malignancy in the tissue. More specifically,
low-risk HPVs (HPV6 and HPV11) cause benign warts, but high-risk HPVs (HPV16 and
HPV18) cause premalignant squamous intraepithelial neoplasia that can be subsequently
developed into cancer [132]. In addition, HPV is related to numerous types of cancer,
including cervical, vaginal, vulvar, anal, penile, and head-and-neck cancer. HPV-associated
head-and-neck cancers, such as oropharyngeal squamous cell carcinoma (OPSCC) and oral
squamous cell carcinomas (OSCC) are dramatically increased in recent years, mainly in
men under 50 years old [133].

6.1. HPV-Associated Oral Squamous Cell Carcinomas (OSCC)

OSCC is the eighth most frequent cancer in males and the 14th in females in the US.
Even with the current therapeutic modalities, OSCC causes approximately 700,000 new
cases and around 380,000 deaths worldwide, while the 5-year survival remains only 64.4%.
The prognosis of this type of cancer is poor since around 50% of patients have cervical
lymphatic metastasis at the time of diagnosis. The incidence of high-risk HPV types in oral
SCC is very low (<4%), with almost all HPV-positive cases being attributed to HPV16. The
possibility of identifying HPV in normal oral mucosa is significantly smaller (10%) than in
OSCC oral mucosa (46.5%) [134,135].

A recent report analyzed 160 HPV-negative OSCC lesions based on the expression of
HLA-I antigens and the components of the antigen processing machinery (APM). Tumoral
HLA-I APM component expression was further classified into the three main phenotypes,
namely HLA-Ihigh/APMhigh, HLA-Ilow/APMlow, and HLA-I discordanthigh/low/APMhigh.
In addition, the HLA-Ihigh/APMhigh group presented the highest incidence of intra-tumoral
CD8+ T-cells and the lowest number of CD8+ T-cells, with the presence of FoxP3+ cells,
while the patients of this group had the shortest survival despite a high intra-tumoral CD8+
rate [136].
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In another study, patients with high FoxP3 expression presented a worse prognosis
than patients with low expression. In the same study, the 5-year survival in HPV-positive
and HPV-negative OSCC patients demonstrated a slight difference in the prognosis; how-
ever, there was no statistical importance, with a better prognosis identified in HPV-positive
patients [137].

Furthermore, another study revealed a non-statistically significant correlation in sur-
vival between HPV-positive and HPV-negative OSCC, while no difference was found in
the expression of PD-L1. From the above, it is concluded that immunotherapy possibly
would not offer special OS of patients with OSCC, whether they are HPV-positive or
HPV-negative [138].

6.2. HPV-Associated Anal Squamous Cell Carcinomas (ASCC)

Anal squamous cell carcinomas (ASCC) constitute a frequent malignancy located in
the anal canal, which is lined by a mucosa-associated lymphoid tissue system (MALT)
that is composed of several immune cells, including CD8+ and CD4+ T-cells, as well as
Langerhans cells. It has been shown that 90% of the ASCC cases are induced by human
papillomaviruses (HPV), which exhibit oncogenic properties [139].

HPV has a circular double-stranded DNA, which expresses several protein molecules,
such as E7 and E6, which suppress the action of Retinoblastoma and TP53 proteins, which
constitute pivotal tumor suppressor proteins. This phenomenon leads to the misappropri-
ation of the cell cycle of the host. A high prevalence of HPV-related ASCC is reported in
human immunodeficiency virus (HIV)-infected or iatrogenically immunosuppressed pa-
tients, as well as in men who have sex with men (MSM), while precursors of this malignancy
are considered high-grade squamous intraepithelial lesions (HSILs), which can progress to
ASCC, due to impaired immune responses in the anal mucosa even after treatment with
electrocautery ablation [140–142].

A better understanding of the characteristics and the microenvironment of this malig-
nancy is considered crucial for the discovery of further druggable targets. ASCC microen-
vironment is also composed of several cells, including TAMs, Tregs, as well as MDSCs,
which can promote disease progression. First, CD8+ cytotoxic T-cells can be excluded from
the ASCC microenvironment, which is mainly induced via MDSCs, that also promotes
their apoptosis. Confirmed HPV-associated ASCCs are considered more immunogenic,
expressing an enhanced peritumoral amount of TILs in the microenvironment, which is
associated with a better prognosis, in comparison with non-HPV-related ASCCs, while the
increased amount of TILs is related to a favorable response to chemoradiation [142,143].

Currently, immunotherapeutic strategies are promising for the management of this
malignancy, combined with chemoradiation treatment (CRT). Radiation therapy induces the
activation of dendritic cells, which leads to successful tumor recognition and elimination
via CD8+ T-cells, whereas it also enhances the expression of PD-L1 on the surface of
cancer cells, which increases the favorable effect of immune checkpoint blockades. Several
clinical studies access the utilization of immune checkpoint blockade in ASCC, especially
PD-1 and PD-L1 inhibitors for localized ASCC cases with or without micrometastases,
which have been proved to be beneficial, especially in combination with radiotherapy. In
malignancies that are characterized by an overexpression of PD-1/PD-L1 and CD8+ T-cells,
such as ASCC, it has been demonstrated that the immune checkpoint blockade provides
favorable effects [144]. Nivolumab (PD-1) has been assessed for advanced metastasis,
which was previously unsuccessfully treated with ASCCs. Combinational treatment with
nivolumab and ipilimumab (CTLA-4 inhibitor) is also accessed in NCT02408861, a phase I
trial for HIV-related ASCCs that were also previously unsuccessfully treated with other
agents [145–147]. Another therapeutic modality for HPV-related tumors is the ADXS11-001
vaccine that targets E7 on HPV cells (a phase I/II clinical study) [148,149]. Figure 2 presents
the viruses associated with digestive system cancers.
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Figure 2. EBV is associated with gastric cancer and intrahepatic cholangiocarcinoma, HPV with oral
squamous cell carcinoma, and anal cancer. Both HBV and HCV are associated with hepatocellular
carcinoma, intrahepatic cholangiocarcinoma, pancreatic cancer, and colorectal cancer. Moreover,
CMV and JCV are associated with colorectal cancer. This figure was created based on the tools
provided by Biorender.com (accessed on 3 September 2022).

7. Conclusions

Conclusively, viruses play an important role in carcinogenesis, both in the histological
characteristics of each tumor and in TIME. TME components and characteristics have
a key role in malignancy immunosurveillance, as well as can significantly modify the
response to immunotherapeutic agents. At the level of post-operation prognosis, the
ratio between CD8+ T-cells and Tregs is considered pivotal for the effective anti-cancer
immune response. A good prognosis is demonstrated in the cases that present a high
immune cell infiltration. However, overexpression of PD-1/PD-L1 immune checkpoints
and interferon-related genes are closely associated with a worrisome prognosis. Infection
with viruses creates higher immune cell infiltration and this is established when comparing
tumors associated with a virus to tumors not associated with an infection (Figure 3). The
application of immunotherapy could prove beneficial for optimal management. Multiple
immunotherapeutic modalities can be used, such as vaccines against immunogens, the
so-called tumor-associated antigens (TAAs), immune checkpoint blockade, as well as
adoptive cell therapy. Some of the potential immunotherapeutic strategies are considered
for the inhibition of the PD-1/PD-L1 axis, which is implied by the fact that PD-1/PD-L1
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significantly modifies the T-cell response. Moreover, the utilization of CTLA-4 blockade is
considered beneficial, due to the fact that it activates T-cells, by inhibiting the interaction
between CD86, CD80, and CTLA-4. Consequently, the testing of the above modalities in
clinical trials (both individually and in combination) may yield new therapeutic approaches
for the benefit of specific patients. Finally, further research is required to investigate the
correlation between virus infection and the immune microenvironment toward the optimal
therapeutic management of the aforementioned malignancies.
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