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Abstract: An altered oxytocin and progesterone receptor (OXTR and PGR, respectively) expression
was postulated in canine uterine inertia (UI), which is the lack of functional myometrial contractions.
OXTR and PGR expressions were compared in uterine tissue obtained during C-section due to primary
UI (PUI; n = 12) and obstructive dystocia (OD, n = 8). In PUI, the influence of litter size was studied
(small/normal/large litter: PUI-S/N/L: n = 5/4/3). Staining intensity in immunohistochemistry was
scored for the longitudinal and circular myometrial layer and summarized per dog (IP-Myoscore).
Mean P4 did not differ significantly between PUI (n = 9) and OD (n = 7). OXTR and PGR expressions
(ratios) were significantly higher in PUI (OXTR: p = 0.0019; PGR: p = 0.0339), also for OXTR in
PUI-N versus OD (p = 0.0034). A trend for a higher PGR IP-Myoscore was identified (PUI-N vs.
OD, p = 0.0626) as well as an influence of litter size (lowest PGR-Myoscore in PUI-L, p = 0.0391). In
conclusion, PUI was not related to higher P4, but potentially increased PGR availability compared
to OD. It remains to be clarified whether OXTR is upregulated in PUI due to a counterregulatory
mechanism to overcome myometrial quiescence or downregulated in OD due to physiological slow
OXTR desensitization associated with an advanced duration of labor. Identified OXTR differences
between myometrial layers indicate the need for further research.

Keywords: dog; dystocia; uterine inertia; oxytocin receptor; progesterone receptor

1. Introduction

Uterine inertia (UI) is, with approximately 75%, the most common maternal cause
of dystocia in the pregnant bitch [1,2]. Regardless of the varying criteria applied by the
different authors [1,3,4], UI is generally divided into primary and secondary UI [2]. Primary
uterine inertia (PUI) is characterized by the absence of functional myometrial contractions
preventing natural delivery despite normal-sized fetuses and a patent birth canal. Sec-
ondary uterine inertia (SUI) is caused by myometrial exhaustion due to obstruction, usually
after one or several pups have already been expelled [1–3,5]. As uterine inertia possesses a
high risk for maternal health and fetal survival, early recognition and rapid treatment are
paramount [1,6]. However, conservative medical treatment, consisting of oxytocin, calcium,
dextrose, or denaverine alone or in combination [1,6,7], often remains unsuccessful and,
thus, an emergency Cesarean section (C-section) is required in over 60% of canine dystocia
cases [1,6,8,9]. As a result, C-sections are frequently considered as the first choice without
any prior medical treatment attempts [7,10].
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Despite its high incidence, the etiology of PUI is poorly understood so far. Never-
theless, predispositions have been described for several breeds [3,11–13] as well as risk
factors, such as maternal overweight, advanced age, very small or large litter size, and
hormonal, electrolyte, or metabolic imbalances [1–3,6,10,12,14,15]. Additionally, alterations
in the expressions of basic contractile and contractility associated proteins in the uterus,
e.g., smooth muscle γ-actin, smooth muscle myosin [16], the RhoA/Rho associated kinase
pathway, and leptin signaling [17], were found in cases of PUI.

Parturition is a delicately orchestrated endocrine event with progesterone (P4),
prostaglandins, and oxytocin playing key roles, not only in the dog [18,19]. Different
studies have looked deeper into peripheral hormone concentrations during canine par-
turition in general and specifically in UI [14,15,20–22]. The onset of labor is inseparable
from luteolysis and, thus, P4 withdrawal, as high plasma P4 levels mediate myometrial
quiescence and prevent uterine contractions [23,24]. In contrast to luteal regression in
nonpregnant bitches, the slow regression is accelerated around day 60 of pregnancy,
when reaching a lower threshold level activates the prepartum luteolytic cascade [25–27].
The following steep decline in P4 is accompanied by a large increase in PGF2α-metabolite
(PGFM) concentrations [22,26], indicating active luteolysis. Feto-maternal communi-
cation seems to play a crucial role in activating the prostaglandin system and, thus,
the prepartum PGF2α release (reviewed in [28]). Interestingly, a significantly higher
P4:PGFM ratio in dystocic bitches supporting the postulated failure of luteolysis in
PUI [20,29–31] was found in one study [20], but not in another [32], emphasizing the
complexity of UI. In addition to P4, expression of the P4 receptor (PGR) likely plays a
pivotal role in pregnancy and parturition as indicated by decreased PGR expression in
uterine tissue close to term (day 60 after the LH surge) [33]. Although the hormonal
mechanisms behind the regulation and expression of PGR in the corpus luteum and
placenta in relation to parturition have already been investigated for the dog [27,34–37],
research on (myometrial) PGR expression, especially related to dystocia and PUI, is
still lacking.

Another potent uterotonic hormone crucially required for parturition and expulsion of
the fetuses is oxytocin (OXT). OXT enhances the contractility of the myometrium through
binding to its G protein coupled receptor (OXTR), activating the protein kinase type C
(PKC) pathway [38]. During birth, OXT is released from the neurohypophysis as a response
to intracervical pressure, activating uterine contractions (Ferguson’s-reflex) [39]. As OXT
sensitivity is significantly increased around canine parturition due to upregulation of
OXTR expression [33,40,41], low OXT concentrations [10,42] or abnormal OXTR expression
could contribute to the occurrence of PUI. Furthermore, in cattle [43] and sheep [44], OXT
was shown to affect the release of prostaglandins, primarily PGF2α, and to induce the
expression of the uterine prostaglandin-endoperoxide synthase 2 (PTGS2), additionally
stimulating uterine contractility indirectly. Although OXTR might play a significant role
in canine UI, information about its expression in dystocic bitches is limited to the mRNA
level [32], not allowing for a final conclusion about its role in canine UI.

Summarizing the current state of knowledge, it is obvious that the role of P4 and OXT
and their receptors in canine parturition and canine UI require further elucidation, not only
for a deeper understanding of the physiology and pathophysiology, but also to optimize
medical treatment options and to develop possible preventive strategies. Consequently,
this study investigated the expression of PGR and OXT in bitches diagnosed with PUI and
OD, hypothesizing altered expressions in canine PUI.

2. Results
2.1. Determination of Serum P4 Concentrations

P4 concentrations ranged between 1.3 and 4.6 ng/mL independent of groups. The
unpaired t-test revealed no significant differences when comparing PUI and OD (Figure 1).
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Figure 1. Serum P4 concentrations (ng/mL) immediately before C-section in bitches with primary
uterine inertia (PUI) and obstructive dystocia (OD). Results presented as mean ± SD.

2.2. OXTR Expression

OXTR IP mRNA expression (ratio) differed significantly between PUI and OD (p = 0.0019)
with a higher expression in PUI (Figure 2a). Similarly, OXTR IP gene expression was
significantly increased in PUI-N compared to OD (p = 0.0034) (Figure 2b). In contrast,
no effect of litter size on OXTR IP mRNA expression was found within the PUI group
(Figure 2d). Likewise, a comparison of OXTR expression between PUI and OD at UP
or between IP and UP (PUI and OD summarized) revealed no significant differences
(Figure 2c,e).

Figure 2. Interplacental (IP) (a,b,d) and uteroplacental (UP) (c) OXTR mRNA expression (ratio) in
bitches diagnosed with (a,c) PUI (n = 11) or (b) PUI-N (n = 4), respectively, and OD (n = 8). (d) OXTR
mRNA expression differentiating uterine inertia subgroups according to litter size (PUI-S: n = 4;
PUI-N: n = 4; PUI-L: n = 3). (e) OXTR mRNA expression summarized for both groups (PUI + OD) for
comparison of location (IP versus UP). Results presented as mean ± SD. Bars with asterisks differ
significantly (** p < 0.01).
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Specific staining for OXTR was observed in the perinuclear area of the myocytes
in both myometrial layers and, less intensely, in endometrial stromal cells (Figure 3). In
addition, maternal decidual cells and capillary pericytes stained positively for OXTR in
the placenta.

Figure 3. OXTR protein localization as revealed by IHC staining in canine uterine interplacental
tissue. (a) myometrium, circular layer; (b) myometrium, longitudinal layer; (c) isotype control for
OXTR given as inset. Independent of groups, myocytes (Ô black bold arrow) stained significantly
stronger in the circular myometrial layer compared to the longitudinal one.

No significant differences were identified in terms of OXTR staining between dys-
tocia groups, neither individually in the longitudinal and circular myometrial layer nor
in the summarized IP-Myoscore (Supplementary Materials, Table S2). In addition, OXTR
staining was not influenced by litter size (Supplementary Materials, Table S3). However,
independent of groups (PUI, OD, and PUI + OD), OXTR staining intensity was significantly
stronger in the circular compared to the longitudinal layer in IP with the difference becom-
ing even more obvious when combining both localizations (IP + UP) (p < 0.001; Figure 4;
Supplementary Materials, Table S1). Tables S1–S3 in Supplementary Materials contain all
statistical analysis regarding differences in OXTR staining intensity between myometrial
layers and groups.

Figure 4. Comparison of OXTR IP staining intensity between myometrial layers (longitudi-
nal/circular) for (a) PUI (n = 12) and (b) OD (n = 8), respectively, and (c) regardless of the group
(PUI + OD). Results presented as mean ± SD. Bars with asterisks differ significantly (*** p < 0.001).

2.3. PGR Expression

In IP, a significantly higher PGR mRNA expression (ratio) was observed in PUI com-
pared to OD (p = 0.0339), with a similar trend identified when comparing PUI-N and OD
(p = 0.0524) (Figure 4). This effect was not observed in UP samples. In addition, litter size
did not have an impact on PGR expression, and neither were differences identified between
IP and UP (Figure 5d,e).
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Figure 5. Interplacental (IP) (a,b,d) and uteroplacental (UP) (c) PGR mRNA-expression (ratio) com-
paring (a,c) PUI (IP n = 11; UP n = 4) or (b) PUI-N (IP only, n = 4), respectively, and OD (IP n = 8;
UP n = 5). (d) PGR mRNA expression differentiating uterine inertia subgroups according to litter size
(PUI-S: n = 4; PUI-N: n = 4; PUI-L: n = 3). (e) PGR mRNA expression summarized for both groups
(PUI + OD) for comparison of location (IP versus UP). Results are shown as mean ± SD. Bars with
asterisk differ significantly (* p < 0.05); a trend (p = 0.0524) is also given.

In IHC, myometrial smooth muscle cells stained strongly positive for PGR. Addition-
ally, a specific immunopositive signal was detected in endometrial stromal cells, uterine
glandular cells, and luminal epithelial cells. In the placenta, only maternal decidual cells
stained PGR-positive (Figure 6).

Statistical analysis of PGR IHC results is given in the Supplementary Materials (Tables
S4–S6). The PGR staining score did not differ between the longitudinal and circular myome-
trial layer (Supplementary Materials, Table S4). Comparison of PGR IP-Myoscore from PUI
and OD samples did not reveal significant differences but a tendency of higher staining
intensity in PUI that was also evident for PUI-N versus OD (Figure 7, Supplementary
Materials, Table S5). Litter size influenced PGR expression (p = 0.0391), with the lowest
score in PUI-L compared to PUI-N/S. (Figure 7). This effect was also apparent when
comparing the results of the longitudinal myometrial layer (Kruskal–Wallis, p = 0.0306),
but not of the circular layer (Supplementary Materials, Table S6).
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Figure 6. Specific immunostaining for PGR revealed in canine uterine tissue. (a,b,d): IP, (c,e): UP.
(a,b,d,e): Myometrium; (a,d): Stratum circulare; (b): Stratum longitudinale; (c): Placenta. Strong
immunopositive signals for PGR are visible in myocytes (Ô, black bold arrow) of both myometrial
layers and maternal decidual cells (ê, white bold arrow) in the placenta in the PUI group (a–c).
Myometrial staining appears weaker in OD (d) (representative image from the OD group). (e) The
isotype control is devoid of signals (insert).

Figure 7. Interplacental myometrial staining score (IP-Myoscore) for PGR in PUI (n = 12), PUI-N
(n = 4), and OD (n = 8) as obtained by immunohistochemistry. Comparison of IP-Myoscore of (a) PUI
or (b) PUI-N, respectively, and OD and (c) within PUI subgroups according to litter size. Results
are presented as geometric means with dispersion factor. Asterisks show significant differences
(* p < 0.05).
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3. Discussion

Despite the frequent occurrence of PUI in dogs and its severe consequences for mater-
nal and offspring survival, the exact etiology is still unknown. Up to now, only few studies
have investigated its pathophysiology from a molecular biology approach looking directly
at the level of the uterus [16,17,32,45,46]. As both oxytocin and progesterone are crucial
hormones during parturition, we hypothesized and identified altered expression of the
respective receptors as potential causes for PUI.

The expression of the OXTR at the mRNA and protein level, in relation to pregnancy
and normal, undisturbed parturition, has already been extensively studied [32,40,41].
However, by now, only Tamminen et al. [32] investigated a possible role of OXTR mRNA
expression in the context of dystocia in dogs, using full-thickness uterine tissues obtained
from the incision site during C-sections. They identified the lowest OXTR expression
in OD bitches, with the expression being significantly lower than in bitches presented
for elective C-section because of small litter size before term or previous dystocia (ECS).
Although OXTR expression was lower in OD compared to complete uterine inertia (CUI),
the difference was not significant [32]. It remains to be clarified whether the identified OXTR
differences were related to the smaller litter size (singleton or two puppies) in some ECS
bitches or to the differences in the endocrine situation of prepartum (ECS) and intrapartum
(OD) bitches, as parturition is a sensitive orchestrated endocrine event with significant
changes occurring within the last 24 h before initiation of labor [24,47,48]. Samples from
ECS bitches likely do not represent the physiological situation (including gene and protein
expression) during canine parturition and this is a—however ethically easy to understand—
limitation of this and our own study, too, that no uterine tissue samples of eutocic bitches
were included for comparison.

Nevertheless, Tamminen et al. [32] suggested that OXTR was downregulated in OD
due to prolonged action of OXT, leading to myometrial exhaustion. In human myometrium,
a physiological slow OXTR desensitization, accompanied by OXTR mRNA downregulation,
proceeds with an advanced duration of labor [49]. Assuming a homologous event in dogs
as described before in women, decreased OXTR mRNA expression in OD, as also observed
in our study, might be caused by a prolonged labor itself or altered (accelerated in this
case) OXTR desensitization. Furthermore, prolonged intracervical pressure, resulting in
increased hypophyseal OXT release, could contribute to this desensitization. A decreased
mRNA expression of other contractile and contractility associated proteins in IP sections
of OD compared to PUI bitches has also been shown in our previous reports [16,17], cor-
roborating the current findings and the proposed role of prolonged labor contractions on
the uterus. Indeed, all OD bitches included in our study still showed strong straining as a
response to digital vaginal feathering and spontaneous abdominal and/or uterine contrac-
tions, indicating that these bitches did not reach myometrial fatigue, causing secondary
UI. Although pregnancy regulation in the dog has not been fully elucidated until now,
normal parturition is associated with a rapid progesterone decline in response to increased
luteolytic concentrations of prostaglandins, mediated by placental feto-maternal crosstalk,
allowing strong aligned uterine contractions [27,40,50]. The significantly higher OXTR
mRNA expression (ratio) in IP samples obtained from PUI (and PUI-N) dams compared to
OD might be a consequence of the absence of intracervical pressure due to the fact that no
puppy had been born and, thus, having insufficient systemic OXT release, as previously
postulated by Tamminen et al. [32]. It is worth noting that comparison of the OD and
PUI samples was shown to be suitable in previous studies to gain further insight into the
pathophysiology of canine dystocia and specifically PUI [15–17,32,45,46].

At the protein level, localization of OXTR expression was in accordance with other
authors [40,51,52]. They described a strong immunopositive signal in the uterine surface
epithelium, superficial uterine glands, vascular endothelial cells, and stroma cells of the
endometrium in early pregnancy that becomes noticeably weaker during prepartum lu-
teolysis [40]. Similar to our results, a strong signal was localized in placental decidual
cells and capillary pericytes and the myocytes of both myometrial layers [40,51]. Thus, our
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findings confirm the previously described colocalization with PGR in the placenta. This
suggests that OXTR is involved in the signaling cascade, possibly resulting in an increased
prepartum output of luteolytic PGF2α by blocking PGR function [40,50].

The significant differences in OXTR expression between groups obtained at the mRNA
level using full-thickness uterine tissues were not confirmed when considering myome-
trial staining only as identified by IHC. Various explanations for this phenomenon are
possible including limited suitability of IHC for protein quantification, subjectivity of the
investigators, and slight changes in the environmental settings [53]. As Gram et al. [40]
identified the highest OXTR expression in the myometrium compared to endometrium and
placenta when investigating uteroplacental compartmentalization, it seems appropriate
to focus on myometrial OXTR protein expression. Moreover, the observed disparity of
results might be due to a difference between the possible transcription of OXTR mRNA
and actual translation and, thus, expression of the receptor at the protein level. Likewise,
the increased OXTR mRNA expression in PUI might induce a subsequent upregulation of
the OXTR protein expression, possibly to increase responsiveness in the case of insufficient
OXT release/availability. Low OXT concentrations in the peripheral blood had been identi-
fied earlier and postulated to be involved in the etiology of PUI in a cohort of dogs [20].
Consequently, an increased OXTR availability might be a counterregulatory mechanism
to increase responsiveness to low OXT levels to successfully expel puppies. Although
determination of peripheral blood OXT concentrations would have provided valuable
information, it was not included in this study, due to well-known difficulties in analysis
because of the short half-life [54], its strong binding to other molecules, and possible tests’
cross-reactivity [31].

Interestingly, significant differences in OXTR protein expression between the two myome-
trial layers were identified in IP samples. Evidence for distinctions in function, morphology,
and innervation between myometrial layers have already been described for rats [55], rab-
bits [56], pigs [57], and cattle [58,59]. An ex vivo organ bath study, investigating the contraction
behavior of canine periparturient and parturient myometrium, performed by our working
group, supports the current findings of OXTR expression being significantly increased in the
circular layer [60]. In these experiments, the circular myometrial layer visually showed a better
response to oxytocin stimulation compared to the longitudinal layer, especially when using
higher OXT concentrations [60]. In contrast to this, Gogny et al. [61] described a greater con-
tractile response to OXT in the longitudinal compared to the circular myometrial layer of cyclic
healthy bitches in anestrus or metestrus with and without Aglepristone treatment. Recently,
our working group investigating the role of prostaglandins in PUI identified a significant dif-
ference in PTGS2 staining between myometrial layers, with PTGS2 being higher-expressed in
the longitudinal layer of the same samples [46]. Taken together, all studies suggest a complex
regulation of myometrial contractile activity during parturition with coordinated action of the
two myometrial layers in canine uterine tissues being essential for eutocia. Although some
studies have investigated functions of myometrial contractions in delivering the offspring in
pigs [62–64], mice [65], and cattle [66], little is known about the mechanisms in the dog. It
can be assumed that birth mechanisms in the dog, another polytocous species, are similar
to the porcine mechanisms with caudally (toward the cervix) and cranially (away from the
cervix) directed contractions moving the piglets forward and backward within the uterine
horn during the expulsive stage [64]. Similar alternating patterns of fetal expulsion from
collateral horns were described for both species [63,67,68]. However, the significance of
the two myometrial layers and their postulated different functions in this context urgently
requires further investigation. Differentiating the longitudinal and circular myometrial
layer individually for layer-specific analysis of OXTR gene expression by qPCR and OXTR
protein quantification by Western blotting could further support our results and hypothesis.

Another endocrine event of utmost importance for canine parturition and func-
tional myometrial contractions due to sensitization to OXT is the prepartum progesterone
drop [41]. Failure of luteolysis and, thus, higher serum P4 concentrations have been dis-
cussed to be related to PUI [2,20]. In addition to P4 itself, an important role of PGR for
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(normal) parturition was postulated in the dog [28,50]. For this reason, P4 and PGR in
canine PUI and OD patients were analyzed, without identifying a significant difference,
however. Interestingly, and other than expected and previously postulated [20,29–31], we
identified no significant differences between P4 serum concentrations in PUI compared
to OD, clearly showing that, at least in our cohort, PUI was not due to inadequate lute-
olysis. To gain further insights into the role of PGR for canine parturition and based on
the hypothesis that PGR expression is altered in PUI, our working group was the first
investigating PGR mRNA and protein expression in relation to canine dystocia. PGR
mRNA expression was significantly higher in PUI compared to OD in IP samples, with the
same trend observed for PUI-N. These findings suggest increased sensitivity of the uterus
even in cases of low circulating P4 concentrations, possibly resulting in a higher degree of
inhibition of myometrial contractions in PUI compared to OD, contributing to the failure of
contractions. Two PGR isoforms, A and B, exist due to the use of alternative translation
initiation sites. Peavey et al. [69] identified opposing actions of the two isoforms on myome-
trial contractility in mice. Whereas PGR-B overexpression significantly increased gestation
length and hampered uterine contractility as demonstrated by a significantly lower con-
tractile response of the myometrium in an ex vivo dose–response experiment, excessive
PGR-A expression induced an intensified contractile response to uterotonic agents [69].
Thus, overexpression of PGR-B resulted in a relaxation of the myometrium and reduced
OXTR expression, hindering the myometrium to contract sufficiently when oxytocin was
administered. Assuming that in dogs, a similar effect of PGR isoforms exists, increased
PGR-B expression in PUI could contribute to the reduced ability to functionally contract.
However, as no information about PGR isoform expression is currently available for the
dog, except for the mammary gland [70], and the primers and antibody used in this study
do not discriminate between the isoforms, the PGR isoforms and their expressions deserve
further investigation in the canine uterus, especially, but not only in case of dystocia.

PGR intracellular localization was as previously described in pregnant dogs, with
endometrial stromal cells, myometrial smooth muscle cells, and maternal decidual cells
staining strongly [71,72]. Although the significant difference between PUI and OD iden-
tified in PGR mRNA expression was not confirmed on the protein level, a trend for a
higher IP-Myoscore in PUI/PUI-N compared to OD was found. Altered tissue composition
(full-thickness uterine tissue for mRNA analysis versus myometrium only for protein IHC
scoring) might justify the identification of a trend only. However, local changes in terms of
PGR expression related to PUI have to be considered. It remains to be clarified whether this
altered PGR expression is involved in the development of PUI or is a result or consequence
of inadequate or absent endocrine or mechanical stimuli due to PUI. Unlike the findings
for OXTR, PGR expression in the two myometrial layers did not differ. Considering the
function of P4 and PGR, namely maintaining pregnancy, it seems evident that inhibition
needs to be equal in both layers to successfully prevent contractions before term. Thus, the
equal PGR distribution in both layers seems to represent a physiological situation.

Litter size is known to be a potential risk factor for development of PUI in bitches [12]
with increased PUI risk described in the case of small (namely singleton) or large litters.
Analysis of PGR protein expression related to litter size revealed a significantly lower
myometrial PGR expression in the PUI-L group. Myometrial overstretching due to a large
litter was already mentioned earlier in relation to UI [3,5,11]. Overstretching could reduce
the density of PGRs per cm2, explaining the reduced PGR expression in PUI-L. However,
this observation has to be treated with caution, as the PUI-L group is very small (n = 3).
Interestingly, no effect of litter size was observed for OXTR in this study, while in the same
bitches, an effect on the expression of smooth muscle γ-actin, a basic contractile protein,
was found [16]. In conclusion, further studies are necessary to confirm if the etiology and
pathophysiology of PUI differ depending on the litter size.

The relatively small sample size might display a limitation of the current study, as
proving significance is complicated when comparing smaller groups, such as the PUI-N
group. Heterogeneity of the bitches in terms of age, breed, and body weight represents
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the canine population [46], but might have influenced the present results, too. However,
detailed examinations of bitches before surgery, complete medical history, and strict adhesion
to inclusion criteria are a large benefit of our studies. In conclusion, to gain more precise
insights into canine uterine inertia and possibly dystocia, investigations on a larger population
including IP and UP samples should be conducted, with the difficulties in obtaining UP
samples (by spaying at the time of C-section) being previously discussed in detail [46]. In
addition, breed-specific studies might be considered for comparative use, too.

4. Materials and Methods
4.1. Animals and Study Design

The samples utilized in this study were already used previously by our research
group [45,46] and our collaborators [15–17].

Full-thickness uterine tissue samples were collected from 20 bitches at term presented for
medically indicated emergency C-sections following owner’s consent. Apart from dystocia,
the bitches were clinically healthy and received no ecbolic or tocolytic medication before the
samples were taken. Detailed general, medical, and reproductive history of all dogs was
recorded. The mean age of the bitches included was 4.2 ± 2.1 years, and the mean body
weight was 20.1 ± 18.4 kg. All bitches had a thorough physical and obstetrical exam. Fetal
heart rates were monitored by abdominal sonography. Additionally, when required for a
proper diagnosis and it was feasible in terms of the dam’s and fetal health, radiographs were
taken and tocodynamometry was performed. Blood samples were collected pre-surgery to
obtain baseline hematology and chemistry including ionized calcium and glucose [15]. In
addition, blood was sampled from 16 bitches for retrospective analysis of serum progesterone
(P4) concentrations using radioimmunoassay (RIA) [22,25,73].

4.2. Grouping

The grouping of the bitches was as previously described [46]. All inclusion criteria are
given below. The bitches were retrospectively assigned to one of the subsequent groups:
1. primary uterine inertia (PUI, n = 12), or 2. obstructive dystocia (OD, n = 8).

Bitches included in the PUI group had failed to deliver any puppy at term, and showed
a lack of the Ferguson’s reflex at vaginal stimulation and only weak or no abdominal
contractions. Obstruction was ruled out by vaginal examination and X-rays. In addition, the
bitches had to show one of the following signs: The prepartum temperature drop was more
than 20 h ago or/and signs of first stage labor were shown for≥20 h or the temperature had
already normalized without progression to second-stage labor; no signs of second-stage
labor, but green vulvar discharge for >2 h; unproductive, weak, infrequent abdominal
contractions for >4 h without progression; or no abdominal contractions, although fetal
fluids passed more than 3 h ago. As the litter size was quite variable, the PUI group was
subdivided into small/normal/large litter size (PUI-S, PUI-N, PUI-L) in relation to the
average litter size of the respective breed [74]. Litter size within the breed average ± 1
standard deviation (SD) was considered as normal (PUI-N), whereas less or more than ± 1
SD was assigned to PUI-S or PUI-L, respectively [15–17,45,46].

Bitches diagnosed with OD were used for comparison with PUI. These bitches were in
second-stage labor but failed to deliver due to obstruction of the birth canal, as confirmed
by digital vaginal palpation and/or abdominal X-ray. However, they were still showing
strong abdominal contractions, either spontaneously or in response to feathering (digital
vaginal stimulation). These obviously functional contractions provided the basis for our
assumption that OD is suitable for comparison with PUI. The litter size of all OD bitches
was normal compared to the described average litter size of the breed [74].

Bitches with signs of a systemic illness or other risk factors for UI were excluded from
the study.
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4.3. Tissue Sample Collection and Processing

During medically indicated C-section, uterine tissue samples were obtained after all
puppies had been delivered. A full-thickness tissue biopsy, approximately 0.5–1 cm wide,
was taken from the interplacental (IP) tissue (between two placentation sites) along the
uterine incision line. If a concomitant ovariohysterectomy (Sectio Porro) was medically
indicated or requested by the owner, IP samples were collected after extraction of the uterus
and additional tissue stripes from utero-placental sites (UP) and the placenta were taken.

Collected tissue was divided into different parts for subsequent mRNA and pro-
tein analysis, as well as for histology and immunohistochemistry (IHC) as previously
described [45,46]. For mRNA analysis, samples were covered with RNAlater® (Ambion
Biotechnologie GmbH, Wiesbaden, Germany) immediately post-surgery, temporarily stored
at 4 ◦C, before being kept at −80 ◦C until extraction. For histology and IHC, tissue samples
were fixed in 10% neutral phosphate-buffered formalin for 24 h at 4 ◦C, washed regularly
with phosphate-buffered saline for several weeks, and subsequently embedded in paraffin.

4.4. RNA Isolation and Reverse Transcription

RNA isolation using a Trizol (SIGMA-ALDRICH CHEMIE GmbH, Steinheim, Germany)-
based protocol was performed as previously described [45,46]. To evaluate and measure
the extracted mRNA concentrations, an IMPLEN NanoPhotometer® (IMPLEN GmbH,
Munich, Germany) was used.

Reverse transcription for full-length first-strand cDNA was performed with DNase-
pretreated RNA (200 ng/µL) and the RevertAidFirst Strand cDNA synthesis Kit (#K1622,
Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s instructions and as
previously described [45,46]. cDNA was stored at −20 ◦C until further use. Specific primer
sets for both OXTR and PGR for quantitative real-time polymerase chain reaction (RT-qPCR)
were purchased from TAG Copenhagen (TAG Copenhagen A/S, Copenhagen, Denmark)
and primers for the reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), protein
tyrosine kinase 2 (PTK2), eukaryotic translation initiation factor 4H (EIF4H), and lysine-specific
demethylase 4A (KDM4A) [75] from Microsynth (Microsynth AG; Balgach, Switzerland) (Ta-
ble 1). The specificity of the primers was checked with BLAST (http://blast.ncbi.nlm.nih.gov,
accessed on 3 August 2021).

Table 1. Sequence of primers for RT-PCR and RT-qPCR, amplicon length, efficiency, and accession number.

Primer Accession Nr.
Forward

Sequence
(5′→3′)

Reverse
Sequence

(5′→3′)

Amplicon
Length

(bp)
Efficiency

OXTR NM_001198659.1 GGATCACGCTCTCCGTCTACA CGTCTTGAGTCGCAGGTTCTG 98 2.08

PGR NM_001003074.1 CGAGTCATTACCTCAGAAGATTTGTTT CTTCCATTGCCCTTTTAAAGAAGA 113 2.07

PTK2 XM_038685127.1 AGATGCTGACCGCTGCTCAT TCAGTGTGGCCTCGTTGGTC 104 1.98

GAPDH NM_001003142 GGCCAAGAGGGTCATCATCTC GGGGCCGTCCACGGTCTTC 229 1.93

EIF4H XM_038667880.1 GGAGTGTGCGGCTAGTCAGA ACCCAACAGTGCACCATCGTA 199 1.97

KDM4A XM_038687969.1 CCCGGCGGTGGATTGAGTAT AACTCGGCTGCTTCTGGTGT 181 2.04

For RT-qPCR, a LightCycler® 96 real-time PCR system (Software version 1.1.0.1320,
Roche Diagnostics GmbH, Mannheim, Germany) was used, running all samples in trip-
licates according to our previously published protocol [76]. Cycling conditions of the
RT-qPCR were as previously established [45,46,76]. RNase-free water served as the non-
template control. The standard curves for target and reference genes were prepared by
using pooled twofold-diluted series of cDNA (1:2-1:128) run as triplets to calculate PCR
efficiencies (respective efficiencies given in Table 1). Analysis of the RT-qPCR results was

http://blast.ncbi.nlm.nih.gov
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performed using a modified model of the efficiency-corrected relative quantification ac-
cording to Pfaffl [77], taking into account the expression of multiple reference genes for
improved normalization [78]. As the model assumes stable expression of genes in the
tissue, only GAPDH and PTK2 (stable expression), but not KDM4A and EIF4H (unstable
expression), were taken into consideration for normalization. Specific primer binding was
confirmed by sequencing the PCR products (Microsynth AG).

4.5. Immunohistochemistry for OXTR and PGR and Evaluation of the Staining

For immunohistochemistry (IHC), sections of formalin-fixed, paraffin-embedded uter-
ine tissue (3 µm) mounted on SuperFrost-Plus slides (Menzel Glaeser, Braunschweig,
Germany) were treated following our previously published protocol [45,76]. After de-
paraffinization, rehydration, and antigen retrieval, blocking of unspecific binding sites
was performed using 10% horse serum with 5% bovine serum albumin in ICC buffer for
OXTR and 10% goat serum in PBS (ROTI® Fair PBS 7.4, Carl Roth GmbH + Co. KG, Karl-
sruhe, Germany) for PGR, before samples were incubated with the respective first antibody
(OXTR/PGR) overnight. All details about antibodies and dilutions are given in Table 2.
Negative (buffer only) and isotype controls (Table 2) at the same protein concentration were
included in each run. On the second day, the protocol differed considerably for detection
of OXTR and PGR: for OXTR, a two-step horseradish peroxidase conjugated polymer
system with DAB as a chromogen (SuperVision 2 HRP KIT PD000KIT; DCS Innovative
Diagnostik-Systeme, Hamburg, Germany) was used according to the manufacturer’s in-
structions. For PGR, slides were incubated with the secondary antibody in 10% horse serum.
Visualization of the immunopositive signal was performed with an immunoperoxidase
system (VECTASTAIN PK-6100 ABC-Elite Standard: HRP and Vector Nova-RED Substrate
Kit SK-4800; Vector Laboratories, Burlingame, CA, USA) according to the manufacturer’s
instructions as previously described [76]. Then, all slides (OXTR/PGR) were counterstained
with hematoxylin and dehydrated in increasing alcohol concentrations (70%, 96%, and 99%)
and xylene before embedding with HistoKit (Assistant, Osterode, Germany). To avoid any
bias due to differences between runs and to allow for better comparison, all samples were
included in one run for OXTR and PGR each.

Table 2. Overview of primary and secondary antibodies used for IHC. Stock Keeping Unit (SKU)
and producer given (* Abcam, Cambridge, UK; ** Thermo Fisher Scientific, Waltham, MA, USA; ***
Vector Laboratories Burlingame, CA, USA).

Antibody Source Clone Dilution
(µg/µL) SKU Secondary Antibody Isotype Control

OXTR Rabbit Monoclonal 0.02 ab217212 * n.a. 1
Rabbit IgG ***

(I-1000
Control Antibody)

PGR Mouse Monoclonal 0.02 PRAT 4.14 ** Horse anti-mouse ***
(BA-2000)

Mouse IgG ***
(I-2000

Control Antibody)

n.a. 1: not applicable as the SuperVision 2 HRP KIT PD000KIT was used.

For evaluation of the staining, slides were visually examined under a light microscope
(Olympus Bx 45, Olympus Europa SE & Co. KG, Hamburg, Germany) by two independent,
blinded investigators. The localization of the immunopositive signals was evaluated
descriptively. In addition, the staining intensity of the longitudinal and circular myometrial
layer was scored independently and graded semi-quantitatively by both investigators,
using an ordinal score system (1: weak, 2: moderate, and 3: strong staining). Results of the
myometrial staining (mean of both investigators) were subjected to statistical comparisons
(see below). In addition, the longitudinal and circular myometrial staining results of each
dog were summarized as IP-Myoscore.
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4.6. Statistical Analysis

Statistics was performed using Microsoft Excel 2016 (Microsoft Corporation, Redmond,
WA, USA) and Graph Pad Prism9 software (GraphPad Software, Inc., La Jolla, CA, USA).
The Shapiro–Wilk test was used to test for normal distribution. Data were presented as
the arithmetic mean and standard deviation [x ± SD] when normally distributed. If not
passing the test for normality, data were presented as the geometric mean and dispersion
factor [xg (DF)]. Statistical differences were considered significant at a level of p ≤ 0.05.

The aim of the current research was to contribute to a better understanding of uterine
inertia, by comparing PUI to OD data. Due to variable litter size in PUI, PUI-N was
compared to OD, with litter size in OD being considered as normal according to earlier
literature [45,74]. Datasets were separately evaluated for IP and UP. In addition, the impact
of litter size was studied by comparison of PUI-S, PUI-N, and PUI-L in the IP samples.

To detect differences between P4 concentrations in PUI (n = 9) and OD (n = 7), an
unpaired t-test was used as data were normally distributed.

For analysis of gene expression, most raw data were normally distributed. For the
remaining (OXTR: PUI versus OD (UP); PGR: PUI-S versus PUI-N versus PUI-L), log
transformation of data was performed revealing a normal distribution of log-transformed
data according to the Shapiro–Wilk test. Subsequently, an unpaired t-test was used for
comparison of PUI versus OD (IP/UP separately), PUI-N versus OD (IP only due to
group size), and IP versus UP (summarizing PUI and OD) using the respective (raw/log-
transformed) datasets. The influence of litter size (PUI-S versus PUI-N versus PUI-L) was
studied using an ANOVA followed by Tukey’s multiple comparisons test if the ANOVA
revealed p < 0.05. For a homogeneous data presentation and to ensure comparability, all
gene expression results were presented as mean ± SD.

As a key role of OXTR and PGR in the myometrial layers was postulated in PUI,
the immunohistochemical staining intensity was scored individually by two independent,
blinded investigators for the longitudinal and circular myometrial layer. Calculation of
Cohen’s kappa value [79] was used to assess inter-evaluator agreement for scoring of
staining results. As the weighted K coefficient (κ = 0.89) revealed high inter-evaluator
agreement, suggesting high comparability of the results of both investigators, the means of
the semi-ordinal scores of both investigators were used for comparison of the individual
myometrial layers (longitudinal/circular) between groups and for the different uterine
localizations (i.e., PUI/OD IP/UP longitudinal versus PUI/OD IP/UP circular; PUI IP
longitudinal/circular versus OD IP longitudinal/circular). Furthermore, all longitudinal
myometrial staining results (PUI and OD summarized) were compared to all circular
myometrial staining results (PUI and OD summarized) from IP and UP samples separately
(PUI + OD IP longitudinal versus PUI + OD IP circular) and combining all layer-specific
staining results from both localizations (all longitudinal IP + UP versus all circular IP + UP).
In addition, the overall IP-Myoscore was calculated for each group and used for group-wise
comparison (IP-Myoscore PUI versus IP-Myoscore OD). As none of the datasets were
normally distributed following the Shapiro–Wilk test, either a Wilcoxon matched-pairs
signed rank test for paired data or a Mann–Whitney test for unpaired data was carried out.
Finally, the influence of litter size was studied as described above, comparing the separate
layers and the IP-Myoscore using a Kruskal–Wallis test, followed by Dunn’s multiple
comparisons test if p < 0.05.

5. Conclusions

As hypothesized, OXTR and PGR expression were altered in PUI. However, other than
expected, both receptors were upregulated in PUI compared to OD. Whereas increased
PGR expression might possibly potentiate the effect of the remaining circulating P4 by
more effective binding, thereby inhibiting effective contractions, it remains to be clarified
if upregulation of OXTR is a counterregulatory mechanism. In addition, the identified
heterogeneity in OXTR protein expression between both myometrial layers, with a stronger
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staining in the circular myometrial layer, indicates functional differences that require further
research for a better understanding of canine uterine contractility.

In conclusion, the numerous results of this and our other recent studies [15–17,45,46]
give promising new clues to potential causes of PUI, but also indicate novel approaches
for further research and contribute to a better understanding of myometrial contractility.
Clarifying PUI is important not only to understand its underlying etiology but also to
identify other treatment options in addition to surgery.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms232113601/s1, Table S1: Statistical analysis of OXTR-immunopositive
staining. Comparison of layers: longitudinal versus circular myometrial layer differentiated in
interplacental (IP) and uteroplacental (UP) tissue. Groups (primary uterine inertia, PUI; obstructive
dystocia, OD) are presented individually and summarized. Table S2. Statistical analysis of OXTR-
immunopositive staining in interplacental (IP) tissue. Comparison of groups (primary uterine inertia,
PUI, versus obstructive dystocia, OD) for each specific myometrial layer (longitudinal/circular)
and the combined IP-Myoscore. Table S3. Effect of litter size in the primary uterine inertia (PUI)
group on OXTR-immunopositive staining in IP tissue differentiating the myometrial layer (longi-
tudinal/circular). PUI bitches with normal litter size (PUI-N, average litter size of the respective
breed ±1 standard deviation) were compared with litters smaller (PUI-S, <−1 SD) or larger (PUI-L,
>+1 SD) than the breed average. Table S4. Statistical analysis of PGR-immunopositive staining.
Comparison of layers: longitudinal versus circular myometrial layer differentiating interplacental
(IP) and uteroplacental (UP) tissue. Groups (primary uterine inertia, PUI; obstructive dystocia, OD)
were presented individually and summarized. Table S5. Statistical analysis of PGR-immunopositive
staining in interplacental (IP) samples. Comparison of groups (primary uterine inertia, PUI, versus
obstructive dystocia, OD) depending on localization (interplacental, IP; uteroplacenta, UP) and
specific myometrial layer (longitudinal/circular) or combined IP-Myoscore. Table S6. Effect of litter
size on PGR-immunopositive staining in interplacental (IP) samples of the primary uterine inertia
(PUI) group differentiating the myometrial layers (longitudi-nal/circular). PUI bitches with normal
litter size (PUI-N, average litter size of the respective breed ±1 standard deviation) were compared
with litters smaller (PUI-S, <−1 SD) or larger (PUI-L, >+1 SD) than the breed average.
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