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Abstract: G protein-coupled receptors (GPCRs) represent one of the most functionally diverse classes
of transmembrane proteins. GPCRs and their associated signaling systems have been linked to
nearly every physiological process. They also constitute nearly 40% of the current pharmacopeia
as direct targets of remedial therapies. Hence, their place as a functional nexus in the interface
between physiological and pathophysiological processes suggests that GPCRs may play a central
role in the generation of nearly all types of human disease. Perhaps one mechanism through which
GPCRs can mediate this pivotal function is through the control of the molecular aging process. It
is now appreciated that, indeed, many human disorders/diseases are induced by GPCR signaling
processes linked to pathological aging. Here we discuss one such novel member of the GPCR family,
GPR19, that may represent an important new target for novel remedial strategies for the aging
process. The molecular signaling pathways (metabolic control, circadian rhythm regulation and stress
responsiveness) associated with this recently characterized receptor suggest an important role in
aging-related disease etiology.
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1. Introduction

GPCRs constitute one of the most diverse groups of transmembrane signal transducers
that control a panoply of physiological processes in many species, ranging from C. elegans to
Homo sapiens. The GPCR transmembrane superfamily is characterized by a common seven
α-helical transmembrane domain motifs. GPCRs represent one of the most therapeutically
important molecular targets in clinical medicine [1–4]. GPCRs facilitate communication
between cells in tissues across long distances in the body, thereby enabling the capacity for
systems-level therapeutic actions [5–8]. In addition to this long-distance signal transduction
role, GPCRs also regulate intracellular signal transduction scenarios that regulate cellular
stress responses [9]. Underlining their importance to therapeutic development, medicines
have been historically developed to exploit these GPCR systems for many years, even
before the discovery of GPCRs themselves [10]. Our research, as well as others, have begun
to demonstrate that the GPCR systems can be targeted to control multiple physiological
systems across the body and thus present an ability for GPCR ligands to control complex
disorders such as pathological aging [2,5]. Implicit in this systems-wide functionality
is the connected concept that GPCR activity is both vital for long-range tissue-to-tissue
communication [5] and also the creation of stress-sensitive GPCR signaling networks at
the single cellular level [9]. In this regard, we will highlight the Class A orphan GPCR,
G protein-coupled receptor 19 (GPR19), as a potential novel regulator in the metabolic
aging process. Here we will outline how generic GPCR signaling systems, as well as those
specific to GPR19 activity, show a strong functional intersection with the aging process and
thus represent potential novel targets for aging-related disease treatment [2].
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1.1. GPCR Signaling

Given the importance of GPCR signaling in controlling physiological functions, multi-
ple investigations over several decades have sought to fully appreciate how these trans-
membrane receptors control cellular activity at the signal transduction level. From a
functional receptor pharmacological approach, controllers of these receptors were origi-
nally designed to exert either a simple positive effect (increasing the activity of downstream
signaling systems, e.g., adenylate cyclase) or by inhibiting this activity by occupying the
receptor and antagonizing the positive actions of stimulatory ligands. Therapeutic agents
were classified as simple agonists (stimulatory) or antagonists (inhibitory) based on the
concept that receptors could exist predominantly in two distinct states, i.e., inactive and
active. Over the next thirty years, intense research largely confirmed this ‘two-state’ GPCR
model [11–17]. Using specific site-directed mutagenesis of key residues in GPCRs [18], it
was demonstrated that GPCRs indeed likely exist in a spontaneous equilibrium between
two conformations, i.e., active (R*) and inactive (R). The active conformation is naturally
stabilized by agonist binding or, in these numerous experiments, by residue mutation that
serves to relax intramolecular constraints [18–23]. In this initial functional model, GPCRs
transmit signals through their capacity to act as guanine nucleotide exchange factors for
heterotrimeric guanine nucleotide-binding proteins (G proteins) in response to stimulatory
ligand binding (or via constitutively activating point mutagenesis). Ligand-mediated G
protein activation is initiated through conformational rearrangement of the heptahelical
GPCR core and juxtamembrane loop regions, eventually catalyzing the exchange of GDP
for GTP on the receptor-associated Gα subunit [24–28]. Guanine nucleotide exchange (GDP
for GTP) then initiates the dissociation of the heterotrimeric G protein from the GPCR,
followed by the dissociation of the G protein heterotrimer releasing free GTP-bound α and
βγ subcomplexes. These two signaling components can stimulate, inhibit or physically
recruit multiple downstream signal transduction effectors, e.g., adenylyl cyclase (AC),
phospholipase C (PLC), GPCR kinases (GRKs) or GRK-interacting proteins [29]. In this
manner, the heterotrimeric G protein can transmit information to the intracellular milieu
about the qualitative and quantitative nature of specific extracellular stimuli [30,31].

There are 16 Gα, 5 Gβ and 13 Gγ subunits in humans, which allows many different
aggregations and signaling outputs [32]. The responses range from activation to inhibition,
and G proteins are classified based on the downstream function of the alpha (α) subunit
into four families, Gαs, Gαi/o, Gαq/11, and Gα12/13. Gαs activates adenylyl cyclase,
which then converts ATP into the second messenger cyclic adenosine monophosphate
(cAMP) and activates the cAMP-dependent pathway. Conversely, Gαi/o decreases cAMP
levels [33]. Apart from the classical G protein signaling, multiple lines of research have vali-
dated the existence of multiple non-G protein signaling activities, such as β-arrestin [34–36],
proto-oncogene tyrosine-protein kinase Src (c-Src) [37–39] and the ADP-ribosylation factor
GTPase activating protein-2 (GIT2) [40–42]. Thus, it is now clear that GPCR signaling is
more nuanced and complex than previously thought. The dogma of simple physiological
G protein signaling specificity of downstream signaling was broken with the initial demon-
stration that alternative modes of signaling, e.g., the first being the β-arrestin paradigm,
are physiologically relevant and are therapeutically tractable [28,34–36,43–47]. β-arrestins
were first characterized as negative regulatory proteins for signaling through G proteins
and were considered responsible for GPCR internalization and separation from G protein
engagement [48–50]. β-arrestin has been subsequently shown to serve as a scaffold for a
variety of signaling complexes associated with GPCR signaling pathways [28,34,43].

While the field of non-G protein-dependent GPCR signaling has been historically
dominated by β-arrestin activity, several other modalities have been demonstrated, in-
cluding Janus kinase 2 (JAK2) [51], 14-3-3 proteins [52], RGS proteins [53], Proline-rich
tyrosine kinase 2 (PYK2) [39,54] and the ADP-ribosylation factor GTPase-activating pro-
tein 2 (GIT2) [40,55]. With regards to this last GPCR signaling adaptor, GIT2, several
strong contrasts to β-arrestin signaling have been reported, thus making this paradigm
an interesting one to compare with the pioneering β-arrestin pathway [2,9,29]. With the
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specific link to aging paradigms, it has been shown that β-arrestin activation leads to
increased DNA damage in stress conditions, degradation of p53, suppression of NF-kB
and the promotion of apoptosis [56,57]. Conversely, it appears that GIT2 may represent
a natural mechanism to prevent aging-associated molecular and cellular damage. The
GPCR-kinase interacting protein (GIT) family of proteins (GIT1 and GIT2) were originally
identified as GRK and GPCR interacting proteins [58]. Subsequently, it has been shown that
especially GIT2 exerts systemic effects upon a multitude of signaling and physiological sys-
tems, including oxidative stress resistance [59], glucose metabolism [60], circadian rhythm
regulation [61], mitochondrial activity [41,60], DNA damage repair response [40,62], im-
munosenescence [61] and gender-specific lifespan regulation [41]. Given this information,
it is unsurprising that additional interest in non-G protein-dominated GPCR signaling
pathways has been shown with respect to the proposal that signaling paradigms such as
β-arrestin and GIT2 may indeed possess specific benefits for the GPCR-mediated interdic-
tion of aging-related disease [35,40,42,63–67]. For both signaling paradigms, significant
evidence has shown that these two GPCR signaling modalities converge on the regulation
of energy metabolism and DNA damage/repair [34,42,56,57,59–62,66,68–75].

1.2. Aging and GPCR Functionality

Aging and age-related damage of cellular proteins and nucleic acids are inevitable
results of lifelong cellular metabolic activity [40,60,62,76–78]. This cellular damage occurs
most frequently because of the production of deleterious metabolites, e.g., reactive oxygen
species (ROS), as by-products of energy management processes such as mitochondrial
oxidative phosphorylation [9,79–81]. There are many other sources of aging-related damage,
but many lines of evidence have suggested that this process is one of the most potent
sources of recurring cellular damage and, ultimately, age-related disease [82–87]. This
stress-related damage essentially degrades the functionality of active signaling systems
as well as reactive cytoprotective cellular systems that exist to combat the metabolically
induced cellular damage [2,9,88–91]. In recent years it has been demonstrated that—as
with many other forms of cellular and tissue signaling [90,92,93]—stress response and
DNA damage repair processes are strongly controlled and regulated by signaling networks
composed of multiple GPCR types [5,9,29,63–66,73,94,95]. Thus, well-informed therapeutic
targeting of GPCRs holds a strong promise for the generation of a broad series of anti-
aging therapeutics.

GPCRs represent one of the most important therapeutic targets for controlling disease
generation and progression [96,97]. Underlying their importance in the broad range of
biological functions, GPCRs are the most structurally diverse family of transmembrane
proteins. The superfamily comprises more than 800 proteins, which are grouped based on
evolutionary homology and common physiological ligands. Human GPCRs are divided
into six major classes, class A (rhodopsin-like), class B1 (secretin receptor-like), class B2
(adhesion receptors), class C (metabotropic glutamate receptor-like) and class F (frizzled-
like) subfamilies, as well as the taste 2 sensory receptor subfamily [98]. GPCRs sense a
tremendous variety of stimulating entities ranging from photons, ions, and neurotransmit-
ters, to complex hormones and exogenous animal toxins. This nuanced sensory system
allows cells to react quickly to diverse endogenous and environmental perturbations [99].
GPCRs are of major interest for drug development due to their regulatory function for a
multitude of physiological processes, as well as their accessibility for exogenous ligands.
Hauser et al. evaluated in 2017 that 475 FDA-approved drugs target GPCRs, which is 34%
of all FDA-approved drugs [96].

1.3. GPCR-Based Control of Aging-Related Mechanisms

As we have previously described, it has been proposed that non-G protein-dependent
signaling paradigms may hold specific promise for the amelioration of aging-associated
diseases [2,29,42]. Arrestin-dependent signaling is one of the most important and well-
characterized of these signaling modalities [34,94,100]. Recent translational research has
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demonstrated that the β-arrestin-based signaling modality can generate a clinically relevant
signaling paradigm [36,46,47,101]. Using a novel, in vivo-biased signaling demonstration,
it was found that β-arrestin-GPCR complexes likely possess the ability to elicit a coherently
conserved signaling cascade across multiple tissues, distinct from the G protein paradigm,
even after a month of continuous drug dosing of the biased agent [46]. Furthermore, and in
stark contrast to G protein-sourced signaling that primarily controls acute intermediary cell
metabolism events (e.g., intracellular calcium mobilization), β-arrestin-dependent signal-
ing generates a strong transcriptional and translational signaling functionality [102–105].
This aspect of β-arrestin-dependent signaling, therefore, lends itself to the concept that
β-arrestin-biased ligands could be rationally designed to therapeutically regulate com-
plex protein networks that underpin many complex aging-related diseases, e.g., Type
II Diabetes Mellitus (T2DM), neurodegeneration and cancer [29,91,106]. The expression
levels and signaling activity of β-arrestin have been shown to be involved with metabolic
aging conditions such as Alzheimer’s disease [107,108], Parkinson’s’ disease [109–111],
T2DM [112–114], osteoporosis [44,46,115] and schizophrenia [116,117]. In a similar vein,
research has also demonstrated that the GPCR adaptor GIT2 can play a pivotal role in
metabolic aging conditions and disorders, including neurodegenerative diseases [118,119],
T2DM [60] osteoporosis [120,121] and psycho-affective disorders [122,123]. In addition
to these two major forms of GPCR signaling adaptors, considerable evidence has been
generated to demonstrate the role of GRKs, PYK2 and JAK2 in aging-related conditions
associated with metabolic dysfunction [2]. This consistent finding, therefore, suggests that
perhaps the association of GPCRs with these non-G protein signal adaptors may create a
stress-sensory mechanistic network of receptors that naturally control the severity of these
conditions [9]. Hence, we contend that the molecular intersection between cellular damage
control and metabolic dysfunction systems plays a pivotal role in regulating the balance of
energy regulation and cellular stress responses. While presenting tremendous promise for
the future of pharmacotherapy via precision medicine, the multiplicity and importance of
β-arrestin and GIT2 in a plethora of physiological processes does raise the possibility of
incurring systemic side effects resulting from excessive, or even total β-arrestin or GIT2
bias, at the expense of G protein activity. Hence, an intelligently informed and subtle
approach to signaling bias exploitation should be taken. Potentially the development of
novel biased ligands targeting the β-arrestin-or GIT2-associated receptorsome currently
represents a vital new pharmacotherapeutic domain [40,44,63,124,125].

2. GPR19 and Aging-Related Activity

GPR19 was first identified by O’Dowd et al. [126]. A sequence analysis of the cloned
cDNA predicted that the 415-amino acid long protein contains seven transmembrane re-
peats that characterize the GPCR superfamily [126]. The highest expression levels of GPR19
are found in the brain, testis, and lymph nodes [127]. The GPR19 gene was assigned to the
chromosome position 12p13.2-p12.3, approximately 40kb from the CDKN1B gene [126,128].
It was further observed that the physical mapping of GPR19 on the chromosome was
frequently rearranged in cancer cells [128].

GPR19 is still officially classified as an orphan class A GPCR by IUHAR/BPS [129].
While GPR19 has been associated with the ligand adropin in multiple studies [130–132] a
direct interaction could not be confirmed in a deorphanization study by Foster et al. [133].
Using phylogenetic sequence alignment and clustering of over 300 Class A GPCRs GPR19
was demonstrated to co-cluster loosely with oxytocin, vasopressin, and gonadotropin-
releasing hormone receptors [134]. Within this cluster, GPR19 was more closely related
to GPR154 (Q6JSL8, Q6JSL4) which has subsequently been identified as a receptor for
Neuropeptide S [135].

GPR19 is likely Gαi-coupled and, therefore, potentially linked to the attenuation
of adenylyl cyclase activity [130,136]. The constitutive activity of some GPCRs allows
the screening of even orphan receptors by simply overexpressing them and detecting the
resultant alterations in prevailing cAMP or Ca2+ levels [136]. In a study by Rao et al. [130], it
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was shown that GPR19 and its activation by a proposed cognate ligand for this receptor, i.e.,
the peptide adropin, upregulate phosphorylated ERK and E-cadherin expression. This effect
was already observed in cells overexpressing GPR19, suggesting some constitutive activity
and was further enhanced when adropin was added [130]. However, when constitutive
activity was studied in GPR19 and at least 30 other orphan Class A receptors, no constitutive
activity was observed. This specific study focused on cAMP-dependent mechanisms and
defined activating G protein activity at a 200% elevation of cAMP levels and inhibiting
activity at a decline of 40% from the baseline signal [137]. These results may suggest that
Gαi and Gαs protein-induced cAMP signaling is probably not one of the most prevalent
signaling pathways induced by GPR19 in the absence of a stimulating ligand. Further
studies have subsequently observed constitutive recruitment of β-arrestin in GPR19, and
all other studied orphan GPCRs (82 in total, including GPR19) and suggested that this is a
common feature of most GPCRs [138].

GPR19 signaling has been associated with multiple activities linked to dysfunctional
aging, e.g., cell cycle control, cancer metastasis, adipocyte proliferation and lipid metabolism,
stress-associated apoptosis, mitochondrial function, and diabetes [130,132,139,140]. Moreover,
the putative ligand adropin has shown multiple links to energy metabolism, cell proliferation
and cancer. Indeed, adropin levels in the brain have been shown to decrease with advanced
age, and this diminution has been linked to increased oxidative stress in neuronal tissues [141].
In addition to this, adropin levels have more recently been demonstrated to also correlate with
aging-related neuropathology in humans [142]. In the following section, we will outline in
more detail how GPR19 and adropin were shown to be involved in the different molecular
signatures of aging.

Recently it has been demonstrated that an exemplar GPCR and adaptor protein combi-
nation, i.e., the human RXFP3 receptor and GIT2, holds tremendous promise for the future
GPCR-based control of aging trajectories [40]. In this context, the stimulation of the RXFP3
has been shown to prevent or even repair existing DNA damage. Hence, GPCR-stimulating
ligands that promote GIT2-based signaling can potentially stall the accumulation of un-
repaired DNA damage that can drive the aging process [42,62]. In addition to RXFP3,
recent evidence has suggested that further GPCR signaling systems can also be effectively
targeted to control aging-associated pathological activity. In this regard, due to its close link
to aging-related mechanisms and deficiencies in energy metabolism, the orphan receptor
GPR19 [126] might be a suitable drug target for such longevity-controlling therapeutics.
Even though GPCRs have been studied for decades, their entrained signaling paradigms
and the potential for ligand-directed bias between them [47,101] is still not fully understood.
While the GPCR superfamily is the most intensively studied drug target family [3], only a
small minority (approximately 46) is exploited therapeutically. In addition to this relatively
poor exploitation of this tremendous therapeutic resource, currently, 121 GPCRs are still
considered orphan receptors and thus represent yet more underappreciated molecular
targets. Given the high potential of these undiscovered drug targets, further research
to understand the molecular function of orphan receptors is needed. It has furthermore
recently been hypothesized that GPCRs may employ multidimensional signaling path-
ways [94,101]. Understanding the preferences of receptors and ligands to induce specific
signaling pathways over others is applicable to optimize therapeutic development.

2.1. GPR19 and Energy Metabolism

Adropin is a peptide encoded by the energy homeostasis-associated gene (ENHO)
and was first described in 2008 by Kumar et al. [143]. Since then, it has been identified as a
regulator of glucose homeostasis and lipid metabolism [131,132,144,145]. In mice, adropin-
overexpression attenuated body weight gain on the high-fat diet and adropin treatment
had beneficial effects in regulating energy homeostasis. In obese mice on a high-fat diet,
adropin treatment reduced fasting blood glucose and increased glucose tolerance, indicat-
ing a potential increase in whole-body insulin sensitivity. In this model, adropin treatment
also reduced hepatic glucose production and simultaneously improved hepatic insulin
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sensitivity [144]. Additionally, human studies confirmed the role of adropin in energy
metabolism. Plasma adropin concentrations have been demonstrated to be sensitive to di-
etary macronutrients and have been shown to increase with dietary fat content [146]. It was
also shown that serum adropin levels were significantly lower in diabetic patients [147,148].
These results suggest that adropin treatment can attenuate metabolic abnormalities in obe-
sity as well as T2DM [140]. Thapa et al. [132] demonstrated how GPR19 likely plays a role
in metabolism by regulating mitochondrial respiration. Adropin induces mitochondrial
fuel substrate utilization towards using more glucose. In cardiac cells, it was shown that
adropin-induced GPR19-MAPK-PDK4 signaling regulates pyruvate dehydrogenase (PDH),
a rate-limiting enzyme in glucose oxidation. Thereby, increased adropin levels decrease
inhibitory PDH phosphorylation, which ultimately leads to increased mitochondrial respi-
ration and O2 consumption [132]. Apart from downregulating PDK4, adropin was shown
to regulate the activity of PGC-1α in muscle cells, which is a key transcriptional regulator
of oxidative metabolism. It was suggested that adropin increases PGC-1α acetylation
by inhibiting the PGC-1α deacetylase Sirtuin-1 (SIRT1). Increased acetylation of PGC-1α
usually inhibits the activity of transcriptional factors, such as PPARs, which controls the
expression of various genes, including Cpt1b and Pdk4 [145].

2.2. GPR19 and Cell Cycle Regulation

The cell cycle and proliferation regulation are important factors in aging and cancer.
Dysfunction can induce apoptosis and facilitate cancer propagation but can also cause
senescence-related inflammatory damage. GPR19 facilitates breast cancer cell metastasis by
contributing to the promotion of mesenchymal to epithelial transition [130]. Overexpression,
or ligand (adropin) activation, of GPR19, was shown to induce mesenchymal-like breast
cancer cells to adopt an epithelial-like phenotype. This activity was linked to a responsive
stimulation of the ERK/MAPK pathway and the resultant elevation of E-cadherin expres-
sion. The control of epithelial characteristics at secondary tumor sites is now understood to
be an essential step in the tumor colonization process. In this context, it was proposed that
GPR19 may be involved in metastasis by promoting the mesenchymal-epithelial transition
(MET) through the ERK/MAPK pathway and thus augment the potential colonization of
metastatic breast tumor cells. In lung cancer cells, the expression of GPR19 has a potential
supporting role in G2-M cell cycle progression [149], and in metastatic melanoma, an
increased expression of GPR19 was observed [150]. GPR19 signals through the MAPK and
ERK1/2 pathway to the DNA in the nucleus, which can induce changes, such as starting cell
division [130]. ERK1/2 activity is required for G0–G1 cell cycle transition and the passage
of cells through mitosis or meiosis [151,152]. Both overexpression of GPR19 and adropin
can induce activation of ERK and protein kinase B (AKT) signaling pathways, which are
involved in controlling pre-adipocyte proliferation and differentiation [153,154]. Under
the influence of cellular stimuli, including adropin, phosphatidylinositol 3-kinase (PI3K)
induces the phosphorylation and activation of (AKT) [155]. Phosphorylated AKT triggers
mTOR and attenuates apoptotic factors such as glycogen synthase kinase 3 β (GSK3β) [156].
The PI3K/AKT/mTOR signaling pathway regulates a wide variety of cellular functions,
including survival, proliferation, growth, metabolism, angiogenesis, and metastasis [157].
The PI3K pathway is also associated with insulinotropic activation of anabolic metabolisms,
including glycogen and lipid synthesis [158]. Defective AKT signaling is associated with
neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Moreover, dysregulation in the AKT/GSK3β signaling pathway is linked to the neuropsy-
chiatric diseases schizophrenia and bipolar disorder [156]. Moreover, serum adropin plays
a role in endothelial function and protects endothelial cells from tumor necrosis factor-α
induced apoptosis via AKT, ERK1/2 and eNOS kinases [155].

2.3. GPR19 and Oxidative Stress

Adropin was demonstrated to be an independent predictor of coronary atherosclerosis
in diabetic and non-diabetic patients [148]. Similar trends showing lower adropin serum
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levels than controls were observed in patients with hypertension, atrial fibrillation, and
many other cardiovascular diseases [159,160]. Linked to the several associations of adropin
to cardiovascular diseases, it was shown that GPR19 is increased after myocardial infarction
and leads to increased ischemia-reperfusion injury, oxidative stress, and apoptosis [139].
This suggests that GPR19 might be an important regulating factor of oxidative stress. In
line with these results, our lab and Williams et al. [161] both demonstrated that GPR19 was
upregulated in a different model of oxidative stress. Our lab used the GIT2 KO murine
model of aging. GIT2 has been demonstrated to be a key regulator of aging mechanisms,
many of which are linked to oxidative stress [42]. Williams et al. [161] showed that GPR19
was upregulated in a nuclear factor erythroid 2 (Nfe2) KO Danio Rerio model. Nfe2 is
a cap’n’collar basic leucine zipper transcription factor involved in the oxidative stress
response. Nfe2 regulates transcription by binding cis-antioxidant response elements (cis-
AREs). Several of these cis-AREs were found on the GPR19 gene and other upregulated
proteins in the Nfe2 KO zebrafish model. Therefore, Nfe2 could act as a suppressor of
GPR19 [161]. A further link to aging is the upregulation of GPR19 when testing adapto-
gens [162]. Adaptogens are natural compounds or plant extracts that can augment cellular
stress adaptability and thus enhance organism survival in times of stress. Given that molec-
ular aging is driven by stress-induced (e.g., oxidative stress) protein/lipid/nucleotide
damage, it is clear that adaptogen employment may be able to reduce this stress-induced
pathology and thus reduce the rate of age-associated damage accumulation. Using human
glioblastoma neuronal cells, an adaptogen-induced potentiation of GPR19 expression was
found using unbiased RNA sequencing analyses. This work suggests that human cells
can be induced to demonstrate a better stress-response capacity that potentially includes
elevated GPR19 signaling activity [162].

2.4. Circadian Rhythms

Recently it was shown that GPR19 plays a crucial role in the modulation of the cir-
cadian clock in the suprachiasmatic nucleus (SNC) [163]. GPR19 KO murine models
presented a delayed onset of circadian locomotor activity. The circadian period was pro-
longed in GPR19 KO murine models, compared to the WT, when the animals were kept
in constant darkness. This study further demonstrated that GPR19 possesses a cAMP-
responsive element (CRE) motif in the promoter region, which makes GPR19 expression
dependent on cAMP levels. Deletion of this region disrupts the cycle-dependent expression
of GPR19 in the suprachiasmatic nucleus, which is highest during the daytime and lowest
during the nighttime. The deficiency of GPR19 mainly downregulated rhythmic genes that
peaked during the nighttime. GPR19 was also shown to aid an effective phase shift after a
light pulse.

3. Functional GPR19 Molecular Signatures

Using publicly available data, e.g., the Gene Expression Omnibus (GEO: [164]), a
considerable degree of inference can be made with respect to the functional activity of
a specific protein [91,106]. In this respect, we have performed a co-expression response
analysis to identify a functional family of proteins associated with GPR19 signaling activity.
Using GEO, a query for “GPR19” resulted in 4336 dataset results mentioning GPR19.
For datasets where a different gene expression of GPR19 was apparent in the different
conditions, a GEO2R analysis was performed and differentially expressed (DE) genes were
extracted when GPR19 was also among the significantly differentially expressed proteins
(p-value = 0.05). Identifying GEO profile results in which a profound and consistent
alteration in the expression of GPR19 was observed, we then prioritized 7 datasets where
GPR19 expression was increased (GSE8157, GSE31102, GSE49506, GSE10309, GSE12881,
GSE31812, GSE9754) and 9 datasets where GPR19 expression was decreased (GSE14428,
GSE16048, GSE37894, GSE47363, GSE28598, GSE14773, GSE49185, GSE5668, GSE23031).
The normalized GEO datasets were further filtered using R. To filter out DE genes linked
to altered GPR19 expression, all genes significantly altered were compared between the
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different datasets with the BioConducter package vendetail (https://bioconductor.org/,
accessed on 1 October 2022). The data was visualized, and lists of 1000 genes were extracted
in a ranked order with genes present and common to the highest number of GSE datasets
at the top of the matrix (Table S1—Upregulated; Table S2—Downregulated). For the
upregulated GPR19 data cohort, one factor (GPR19 itself) was upregulated across all GSE
datasets, and 12 factors were common across these seven GSE datasets (FASN, FLCN,
H6PD, TMTC4, FKBP11, ACLY, NAMPT, TES, CAB39L, STRBP, DIXDC1, DDX21), 113
factors were common to 5 different GSE datasets, 595 factors were common to 4 different
GSE datasets with 279 factors common to 3 different GSE datasets (Figure 1A). With respect
to the 9 datasets in which GPR19 was consistently downregulated, we found only GPR19
itself was consistent across all nice datasets. However, 11 factors were commonly regulated
across eight GSE datasets (AURKB, CTSB, FSCN1, GART, GSG2, PLPP3, TMPO, SMIM19,
FAM102A, LAMP2, ITGB3BP), 127 factors were common to seven GSE datasets, 641 factors
were common to six GSE datasets, and 220 factors were common to five GSE datasets
(Figure 1B).
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Figure 1. Distribution of common proteins across GEO datasets demonstrating diverse polarity
of GPR19 expression alteration. (A) Seven divergent GEO GSE datasets (possessing a consistent
upregulation of GPR19) were used to assemble a data cohort of GPR19-associated proteins. The
number of datasets in which the same protein was observed is indicated by the associated color code
system. (B) Nine divergent GEO GSE datasets (possessing a consistent downregulation of GPR19)
were used to assemble a data cohort of GPR19-associated proteins. The number of datasets in which
the same protein was observed is indicated by the associated color code system.

Inspecting the correlation of protein expression, either with GPR19 up- or downregula-
tion, at the highest level, a strong functional intersection between GPR19 activity and aging
was apparent. Hence many of the most closely-correlated factors associated with GPR19 up-
regulation are tightly linked with metabolic aging (FASN: [165]; ACLY [166]; NAMPT [167];
CAB39L [168]), mitochondrial and antioxidant activities (H6PD [169]; DIXDC1 [170]),
damage-related cell cycle alterations/cancer (FLCN [171]; TES [172]), alterations in un-
folded protein management linked to metabolic imbalances (FKBP11 [173]) and oncogenesis
(TMTC4 [174]), DNA damage (DDX21 [175], and body weight (STRBP [176]. Performing
a similar investigation of the most closely associated factors in GPR19 downregulation
paradigms associations with DNA damage/cell cycle control (AURKB [177]; TMPO [178];
ITGB3BP [179]), metabolic aging (CTSB [180]; GART [181]; PLPP3 [182]; FAM102A [183]),
inflammation (FSCN1 [184]), mitochondrially associated autophagic activity (LAMP2 [185]),
cell growth and oncogenesis (GSG2 [186]), and aging-related dementia (SMIM19 [187])
were observed.

To evaluate the functional signaling activities of these GPR19 signatures, we next
performed a hypergeometric overexpression analysis (ORA) WikiPathways enrichment

https://bioconductor.org/
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investigation (ensuring at least n = 2 for specific protein involvement in a pathway and an
enrichment probability of <0.05) on the different levels of GSE factor dataset commonality
of upregulated or downregulated GPR19-associated factors (Up—analysis of factors com-
mon to at least 6 datasets, to at least 5 datasets, to at least 4 datasets and at least 3 datasets:
Down—analysis of factors common to at least 8 datasets, to at least 7 datasets, to at least
6 datasets and at least 5 datasets). Collating these pathway analyses, we were able to
identify pathways that were consistently and significantly represented at different levels of
numerical dataset size investigation (Figure 2). We next assembled clusters of significantly
enriched WikiPathways that were found using at least three out of the four levels of dataset
size investigation (Figure 3). These were then directly compared between the Up or Down-
regulated GPR19 input data with respect to the quantitative and qualitative nature of the
pathways (i.e., type of pathway activity and the number of closely associated pathways).
Here it was evident that the upregulated GPR19 data cohorts were more strongly associated
with ‘DNA damage response’, ‘Cholesterol management’, ‘Stem Cell management’ and
the ‘Unfolded Protein Response (UPR)’. Conversely, the downregulated GPR19 data co-
horts were more strongly associated with ‘Interleukin signaling’, ‘mTOR signaling’, ‘IGF-1
signaling’ and ‘Nuclear Laminopathies’. All of these diverse functions strongly converge
with respect to the pathomechanisms linked to pathological aging (DNA damage—[73];
Cholesterol regulation [188–190]; stem cell management [191,192]; UPR [193,194]; mTOR
signaling [195,196]; IGF-1 signaling [197,198]; laminopathies [199,200]).
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Figure 2. WikiPathway signaling analysis of GPR19-associated proteins. Using protein lists assembled
from the GEO GPR19 upregulated cohort (proteins used were from the common to >3, >4, >5 and >6
sub-lists derived from the primary data list) or the GPR19 downregulated cohort (proteins used were
from the common to >5, >6, >7 and >8 sub-lists derived from the primary data list) were subjected to
WikiPathways signaling pathway enrichment analysis. For a pathway to be significantly enriched,
an enrichment probability of <0.05 was required using at least two independent proteins. Venn
diagrams of the enriched pathways derived from the differing GPR19 upregulated (A) or GPR19
downregulated (B) proteins were created. Pathways found in at least three out of the four (indicated
by an asterisk, *) different initial datasets were then used for further analyses of their quantitative
and qualitative enrichment profiles.

While the pathophysiology of aging can be described via a convergence of multiple
signaling mechanisms, an orthogonal mechanism of defining aging can be achieved using
latent semantic analyses of millions of peer-reviewed documents available at PMC/NCBI
to create a user-defined molecular signature of aging [201–203]. Using multiple latent
semantic analyzer applications (GLAD4U [204], PubPular [205], Geneshot [206]), a user-
defined descriptive list of proteins was defined. This final ‘aging-specific’ dataset (227 pro-
teins) was formed using proteins common to at least 2/3 of the different analyzer re-
sult streams. To functionally benchmark this aging dataset, an enrichment analysis, i.e.,
MSigDB MSigDB_V7_C5_GO_Biological_Processes was performed using GeneTrail v3.2
(https://genetrail.bioinf.uni-sb.de/, accessed on 1 October 2022). The results of this enrich-
ment analysis are indicated in Table S3 and Figure 4A. In this analysis, the GO group Aging

https://genetrail.bioinf.uni-sb.de/
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(GO:0007568) demonstrated the highest degree of enrichment probability (p = 1.05 × 10−35)
compared to the other enriched categories. This benchmarking therefore demonstrates
that this dataset, created in an unbiased manner, is indeed a valid representative of the
Aging process. Using this dataset, we next interrogated which were the most aging-specific
components of the combined GPR19 Up and Downregulated factors (Figure 4B) through
the identification of the intersection between these two sets. Here we found 28 factors that
may represent perhaps the most important proteins that could mediate the age-controlling
aspects of GPR19 biology. These proteins included multiple factors shown to exert a
strong regulatory role in the aging process, e.g., DNA damage repair factors BLM [207],
XRCC5 [208], RECQL4 [209], FAAP100 [210], FOXM1 [211], NUCKS1 [212], FEN1 [213];
energy metabolism factors UCP2 [214], PARP1 [215], HMOX1 [216], ARG2 [217], IDE [218];
cell cycle/fate control factors CDKN1A [219], CDK5 [220], WWC1 [221], CENPW [222];
transport and proteostasis regulation factors ZMPSTE24 [223], HSPA9, also known as
Mortalin [224], SQSTM1 [225], PPM1L [226], PICALM [227]. To assess the degree of
specificity of this cohort of GPR19-Aging-associated factors, we tested multiple (n = 10)
random datasets the same numerical size as the unbiased aging dataset to assess the
potential for random intersections between the GPR19-associated dataset with one the
same size as the aging-specific dataset. Using multiple assessments of the degree of
random overlap, a significantly lower level of random data overlap was obtained from
the results of ten random assessments using randomly generated protein datasets (https:
//molbiotools.com/randomgenesetgenerator.php, accessed on 1 October 2022). Thus,
the overlap we observed is both functionally relevant to the aging process and is also
significantly different from the level of GPR19-Aging data overlap that occurs at random
(Figure 4C). We next subjected this GPR19-Aging subset (28 proteins) to both functional in-
teraction and cluster analysis (k-means clustering) using STRING (https://string-db.org/,
accessed on 1 October 2022). With the use of similar k-means clustering algorithms we
have used previously [228], we demonstrated that the 28-protein GPR19-Aging cluster
could be rationally separated into four main functional clusters (Figure 5). This algorithmic
clustering resulted in the creation of rational protein groups (based on molecular and
text-based interaction analysis) associated with (i) mitochondrial function and energy
management, (ii) proteostatic protein stability management, (iii) DNA damage regulation
and (iv) cell death/fate processes. Taken together, these clusters represent a clear view
of the potential roles of GPR19 in the aging process. Rather than limiting ourselves to
one form of algorithmic clustering, we next used a further protein-protein-interaction
(PPI) methodology to potentially screen for further molecular interactions associated with
the GPR19-Aging paradigm. We deployed the PPI enrichment suite of NetworkAnalyst
(https://www.networkanalyst.ca/, accessed on 1 October 2022) using the specific IMEx
Consortium (https://www.imexconsortium.org/, accessed on 1 October 2022) database
as a standard platform. Using the input of 28 proteins, a Minimum Order network was
created based on this network (Figure 6A). This expanded network thus included proteins
that may bridge multiple factors within the original 28 protein input set and therefore
provide a richer appreciation of the functionality at a global level of the GPR19-Aging set.
One of the hallmark activities of GPCRs in the aging process appears to be their ability
to sense and regulate alterations in cellular status to prepare for detrimental periods of
reduced energy or protection from oxygen radicals [2,9,29]. It is interesting to note that
within the expanded network, the most significantly populated GO biological process term
was ‘Cellular Response to Stress—GO:0033554′ with an enrichment p-value of 2.1 × 10−36

(Figure 6B). The protein factors that constituted this response (SQSTM1, CDKN1A, BLM,
PARP1, PSEN1, XRCC5, FOXM1, HMOX1, FEN1, FAAP100) were interestingly drawn from
across many of the functional k-means clusters demonstrated previously, suggesting that
this activity is a gestalt function of the GPR19-Aging nexus. This posit is reinforced by
the fact that these key stress-response factors are distributed broadly across the whole PPI
network, demonstrating a multifunctional and widespread role in this process.

https://molbiotools.com/randomgenesetgenerator.php
https://molbiotools.com/randomgenesetgenerator.php
https://string-db.org/
https://www.networkanalyst.ca/
https://www.imexconsortium.org/
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Figure 3. Distribution of WikiPathway significant population profile between either GPR19 upregu-
lated or GPR19 downregulated profiles. The WikiPathways significantly enriched by at least three
out of the four initial data inputs (Figure 2) were then clustered according to their divergent number
of functionally similar pathways. WikiPathway groups more populated by the GPR19 upregulated
datasets are left-most in the histogram, and the WikiPathway groups more populated by the GPR19
downregulated datasets are right-most in the histogram. Thus, GPR19 upregulation profiles are most
strongly associated with DNA damage response, cholesterol metabolism, and the unfolded protein
response, while GPR19 downregulation profiles are more strongly linked to interleukin signaling,
plasma membrane regulation and mTOR signaling.
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Figure 4. Aging-specific functionalities of GPR19-associated datasets. (A) Informatic benchmark
analysis of an unbiased aging-specific dataset created using natural language processing. This specific
resultant dataset (227 proteins) was then subject to MSigDB Gene Ontology (GO)—biological process
enrichment analysis. GO annotations were only considered significant if populated by at least two
independent proteins at an enrichment probability of <0.05. The most significantly populated GO
term generated using this aging-specific dataset was GO: AGING (GO:0007568). (B) When comparing
the protein contents of the specific aging dataset with the total GPR19 up plus down associated protein
cohorts (Figure 1), 28 common proteins were found between these two data corpi. (C) This numerical
level of association was highly significant as the numerical commonality between a random data
set the same size as the aging dataset, and the total GPR19-associated dataset was only 15.7 + 0.81
(mean + SEM). ** indicates p < 0.01.
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Figure 5. STRING network analysis of GPR19-Aging specific intersection data cohort. The STRING
protein association database was used, along with k-means clustering, to assemble the 28 input
proteins of the GPR19 total dataset with the aging-specific dataset (Figure 4), to create a functional
classification of these 28 proteins as a coherent group. The k means clusters were color-coded by the
STRING protein-protein-interaction (PPI) algorithms. The reported PPI enrichment probability of
this 28-protein cohort was p = 5.52 × 10−13.

Int. J. Mol. Sci. 2022, 23, 13598 13 of 22 
 

 

 

Figure 6. Protein-Protein-Interaction network enrichment. Using the GPR19-Aging specific intersec-

tion cohort of 28 proteins, a Basal Minimum interaction network of these 28 proteins, with bridging 

factors introduced using the IMEx Consortium database, was created using NetworkAnalyst (A). 

Applying Gene Ontology biological process term enrichment to this network, a strong enrichment 

(p = 2.1 × 10−36) was found for the GO term group, GO:0033554 ‘Cellular Response to Stress’. The 

proteins determining this GO term enrichment (along with their IMEX-associated proteins) in the 

original network are highlighted in blue and indicated to the right of the annotated network (B). 

4. Conclusions 

Here we have demonstrated that the orphan rhodopsin-like GPCR, GPR19, has the 

potential, from a molecular signaling point of view, to exert a profound role in the aging 

process. Aging represents perhaps one of the most complex molecular programs in phys-

iology. This pathological process encompasses the subtle interaction of a variety of phys-

iological systems, including the insulinotropic system, immune system, management of 

body weight and adiposity, circadian rhythm control and stress response networks. In-

vestigating the current state of both curated and non-curated data pertaining to GPR19, 

we have uncovered multiple instances in which the regulation of this receptor may facili-

tate a network-based trophic action over the somatic aging process. The future therapeutic 

investigation of this receptor, therefore, may yield important new remedial agents to treat 

not only specific aspects of aging (e.g., increased adiposity) but also specific forms of mo-

lecular damage (e.g., DNA damage). The therapeutic-based control of these signaling sys-

tems may therefore be able to attenuate the degree of disease progression of a wide range 

of disorders that are commonly linked by the fundamental pathologies found across mul-

tiple aging paradigms. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/ijms232113598/s1, Table S1—Gene Expression Omnibus 

(GEO) GPR19 associated datasets demonstrating upregulation; Table S2—Gene Expression Omni-

bus (GEO) GPR19 associated datasets demonstrating downregulation; Table S3—Gene Ontology 

Term Enrichment Analysis. 

Author Contributions: Conceptualization, S.M., P.M. and D.W.; writing—original draft prepara-

tion, S.M., D.W. and P.M.; writing—review and editing, S.M., D.W., C.S., N.V.L., İ.H., J.L. and P.M.; 

supervision, S.M.; project administration, S.M.; funding acquisition, S.M. and D.W. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This research was funded by the FWO-OP/Odysseus Program (42/FA010100/32/6484), 

FWO Ph.D. Fundamental Research grant (1198020N) and the University of Antwerp Seal of Excel-

lence Award. 

Figure 6. Protein-Protein-Interaction network enrichment. Using the GPR19-Aging specific intersec-
tion cohort of 28 proteins, a Basal Minimum interaction network of these 28 proteins, with bridging
factors introduced using the IMEx Consortium database, was created using NetworkAnalyst (A).
Applying Gene Ontology biological process term enrichment to this network, a strong enrichment
(p = 2.1 × 10−36) was found for the GO term group, GO:0033554 ‘Cellular Response to Stress’. The
proteins determining this GO term enrichment (along with their IMEX-associated proteins) in the
original network are highlighted in blue and indicated to the right of the annotated network (B).



Int. J. Mol. Sci. 2022, 23, 13598 13 of 22

4. Conclusions

Here we have demonstrated that the orphan rhodopsin-like GPCR, GPR19, has the
potential, from a molecular signaling point of view, to exert a profound role in the aging pro-
cess. Aging represents perhaps one of the most complex molecular programs in physiology.
This pathological process encompasses the subtle interaction of a variety of physiological
systems, including the insulinotropic system, immune system, management of body weight
and adiposity, circadian rhythm control and stress response networks. Investigating the
current state of both curated and non-curated data pertaining to GPR19, we have uncovered
multiple instances in which the regulation of this receptor may facilitate a network-based
trophic action over the somatic aging process. The future therapeutic investigation of this
receptor, therefore, may yield important new remedial agents to treat not only specific
aspects of aging (e.g., increased adiposity) but also specific forms of molecular damage (e.g.,
DNA damage). The therapeutic-based control of these signaling systems may therefore be
able to attenuate the degree of disease progression of a wide range of disorders that are
commonly linked by the fundamental pathologies found across multiple aging paradigms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113598/s1, Table S1—Gene Expression Omnibus (GEO)
GPR19 associated datasets demonstrating upregulation; Table S2—Gene Expression Omnibus (GEO)
GPR19 associated datasets demonstrating downregulation; Table S3—Gene Ontology Term Enrich-
ment Analysis.
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