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Abstract: Details on the unexpected formation of two new (dimethylamino)methyl corrole iso-
mers from the reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and
paraformaldehyde are presented. Semi-empirical calculations on possible mechanism pathways seem
to indicate that the new compounds are probably formed through a Mannich-type reaction. The ex-
tension of the protocol to the free-base 5,10,15-tris(pentafluorophenyl)corrole afforded an unexpected
new seven-membered ring corrole derivative, confirming the peculiar behavior of corroles towards
known reactions when compared to the well-behaved porphyrin counterparts.

Keywords: corrole; Mannich-type reaction; metallocorrole; enthalpy; PM7 semi-empirical calculations

1. Introduction

Corroles are tetrapyrrolic macrocycles that have emerged in recent years as an effective
and independent outstanding member of the porphyrinoid family [1,2]. These contracted
macrocycles, with three hydrogens in the inner core, present remarkable and unique
properties, such as the ability to stabilize metal ions in high oxidation states, higher acidity,
as well as higher emissions and quantum yields when compared to their porphyrinic
counterparts [3–6]. These features are responsible for corroles’ unusual reactivity and,
sometimes, unpredictable behavior, making the corrole macrocycles of great interest in
various research areas, namely in the development of tumor-targeting and imaging drugs,
antitumoral and antimicrobial photodynamic therapy [7–24], sensing [25–30], design of
light-harvesting systems [31–33], and catalysis [4,34–42].

The contribution of synthetic chemistry to provide new systems based on corroles is
being recognized to have an important impact on the success of those applications. The
fine modulation of their electronic and structural features by the preparation of corrole
metal complexes [43] and/or by functionalization at the meso or β-pyrrolic positions is
well-documented in the literature [44–46]. In particular, and in sharp contrast with the
chemistry of porphyrins [47–49], there is much less information concerning the reactivity of
corroles in cycloaddition reactions, namely as dipolarophiles in the presence of azomethine
ylides [50–52]. For instance, treatment of meso-tetraarylporphyrins with paraformaldehyde
and sarcosine generates, in good yields, pyrrolidine-fused cycloadducts, such as compound
1 (Figure 1) via 1,3-dipolar cycloadditions. Similar cycloaddition reactions also occur with
other macrocycles, such as octaphyrin(1.1.1.1.1.1.1.1) [53] and meso–meso, β-β,β′-β′ triply
linked diporphyrins [54]. For the latter ones, instead of a 1,3-dipolar cycloaddition reaction,
a regioselective [3+4] cycloaddition occurs, affording cycloadducts of type 2 (Figure 1), with
a 2,3,6,7-tetrahydroazepine segment fused at the bay-area across the two porphyrin units.
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hyde were added and the reaction was prolonged for an extra period of 2 h. After 4 h of 
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Figure 1. Cycloadducts 1 and 2 reported in the literature for the reaction of meso-tetraarylporphyrins
and meso–meso, β-β,β′-β′ triply linked diporphyrins, respectively, with azomethine ylides.

In 2012, we evaluated the gas-phase behavior of two (dimethylamino)methyl-substituted
corrole derivatives [55] obtained from the reaction of 5,10,15-tris(pentafluorophenyl)corrola-
togallium(III) with paraformaldehyde and N-methylglycine. Here, we report the experi-
mental details of that reaction, the structural characterization of the new compounds, as
well as a mechanistic proposal supported by semi-empirical calculations.

In addition, we have extended the same type of reaction to the free-base 5,10,15-
tris(pentafluorophenyl)corrole. In this case, we obtained an unexpected new seven-
membered ring corrole-type product, confirming the peculiar behavior of corroles towards
known reactions.

2. Results and Discussion

In order to facilitate the reaction analysis, the results obtained from the reaction
of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) (3) and from its free-base 5,10,15-
tris(pentafluorophenyl)corrole (8) with paraformaldehyde plus sarcosine will be analyzed
separately.

2.1. Reactions Involving 5,10,15-Tris(Pentafluorophenyl)Corrolatogallium(III)

The first assays involving the reaction of 3 with the ylide generated from paraformalde-
hyde and sarcosine were performed using the protocol described for meso-arylporphyrins [56].
Briefly, to a toluene solution of complex 3, two equivalents of sarcosine and five equivalents
of paraformaldehyde were added. After 5 h at reflux, the thin-layer chromatography (TLC)
analysis of the reaction mixture revealed the formation of two new compounds in very
small amounts, along with degradation products. After tedious work-up, the two new
compounds were isolated and identified by mass spectrometry. The mass spectra of both
compounds revealed a molecular ion at m/z 920 corresponding to the mass of the expected
1,3-dipolar cycloadduct [(M-py)+H]+ formed either by the 1,3-dipolar cycloaddition reac-
tion or by the [3+4] cycloaddition reaction. Aiming to favor the formation of these adducts,
we repeated the reaction but using only one equivalent of sarcosine and one equivalent of
paraformaldehyde. In this way, after 2 h at reflux, the TLC of the reaction mixture showed
the presence of the starting corrole and of the latter two new derivatives. Further amounts
of 1 equivalent of sarcosine and 1 equivalent of paraformaldehyde were added and the
reaction was prolonged for an extra period of 2 h. After 4 h of reaction, the TLC control
showed the formation of the expected compounds and a complex mixture of more polar
products. To minimize the formation of secondary products, a new reaction was carried
out, keeping the temperature at 80 ◦C. After 4 h of reaction and two extra additions of one
equivalent of paraformaldehyde and sarcosine, the TLC control showed, in addition to the
starting corrole, the presence of the new derivatives in higher yield and smaller amounts of
degradation products. Therefore, after the usual work-up and the separation of the reaction
mixture by preparative TLC, it was possible to isolate the two compounds 4 and 5 in 38%
and 35% yields, respectively, considering the starting material consumed (Scheme 1).
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Scheme 1. Reaction of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III) with sarcosine and para-
formaldehyde.

The 1H NMR spectrum of the product with a higher Rf value showed, in the aromatic
region, four doublets at δ 9.18, 8.73, 8.67, and 8.51 ppm and a singlet at δ 8.64 ppm due to the
resonances of seven β-pyrrolic protons and, in the aliphatic region, two singlets at δ 5.04 and
2.61 ppm, which were assigned to the resonances of the CH2 and CH3 protons, respectively,
from the (dimethylamino)methyl group. The coupling constant of the doublets at δ 8.73 and
8.51 ppm, J 4.5 Hz, allowed the assignment of these signals to the four β-pyrrolic protons
at positions 7, 8, 12, and 13. The doublets at δ 9.18 and 8.67 ppm, with a coupling constant
of J 4.0 Hz, confirmed that positions 17 and 18 were not substituted. The singlet at δ
8.64 ppm suggested that in position 2 or 3, there was a substituent. However, considering
that protons H-2 and H-18 are more deshielded than protons H-3 and H-17 [30,52], the
presence of the singlet at δ 8.64 ppm (versus 9.00 ppm of the other derivative) suggested
that such resonance was due to the H-3 proton and consequently, that the substitution
occurred at position 2. This compound was identified as compound 5.

The 1H NMR spectrum of the product with a lower Rf value showed the resonances
of seven β-pyrrolic protons as doublets at δ 9.07, 8.74, 8.66, 8.62, 8.52, and 8.48 ppm and
as a singlet at δ 9.00 ppm. The presence of the (dimethylamino)methyl group was also
evidenced by the two singlets at δ 4.03 and 2.09 ppm due to the CH2 and CH3 protons,
respectively. This compound was identified as isomer 4.

The position of the (dimethylamino)methyl group on compounds 4 and 5, besides
1D NMR analysis was also unambiguously established by 2D NMR spectroscopy (see all
spectra in Figures S1–S10). The NOESY spectrum of compound 5 (see Figure S8) was crucial
to confirm the position of this group. The spectrum shows space proximity between the
CH2 group at δ 5.04 ppm with the singlet at δ 8.64 due to H-3 and the doublet at δ 9.18 ppm
due to H-18.

The isolation of amines 4 and 5 prompted us, in a first analysis, to propose as plausible
formation pathways the thermal ring opening of potential cycloadducts 6 or 7 (Scheme 2,
pathways (i) and (ii), respectively). However, this type of cleavage is very unlikely. Al-
though there are some examples in the literature for pyrrolidines, this type of ring opening
was never observed in clorins nor in other types of porphyrinoids, such as porpholactones,
when reacted with ylides [57].
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Scheme 2. Possible pathway for the formation of compounds 4 (blue arrows) and 5 (black arrows),
via thermal ring opening of cycloadducts 6 or 7.

To clarify the possible pathways, theoretical calculations on the enthalpies of formation
for compounds 4 and 5 and of the possible intermediates 6 and 7 were performed, and the
obtained results are shown in Table 1 and Figure 2. For comparison, the formation enthalpy
of the starting corrole 3 is also presented. It should be recalled that locating the transition
state is extremely hard due to the intrinsic degrees of freedom. As such, we instead took
the simpler route of directly inspecting the stabilities of the compounds, which can be
related to the activation barriers, from linear free-energy relationships. This analysis can be
subsequently coupled with mechanistic suggestions for defining the pathway.

Table 1. Calculations of the formation enthalpies for compounds 4–7 * and precursor 3.

Compounds Formation Enthalpy
(kcal mol−1) (a)

Formation Enthalpy
(kcal mol−1) (b)

3 −415.15 −420.84
4 −422.09 −423.78
5 −418.75 −424.28
6 −438.42 −446.09
7 −380.29 −388.37

(a) Without solvent. (b) In toluene. * Since the more reactive position of corrole 3 is the 2–3 (or 17–18) bond, the
calculations of the formation enthalpies were carried out only for isomer 6.
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Inspecting Table 1, it is seen that the relative ordering of compound stability is the
same in the presence or absence of the solvent. It is also seen that the enthalpy values
for compounds 4 and 5 are similar. However, a significant difference is observed in
the formation enthalpies for the potential intermediates: for compound 6, the formation
enthalpy is much lower than for compounds 4 and 5; thus, if the formation of the (dimethy-
lamino)methyl derivatives was via ring opening of the 1,3-dipolar cycloadduct obtained
from 3, compound 6 could be isolated. On the other hand, compound 7 was shown to
be the less stable of the potential intermediate cycloadducts, which suggests that a [3+4]
cycloaddition reaction is not favored. Additionally, this pathway could not justify the
formation of product 4.

Based on these pieces of information, we envisage that the (dimethylamino)methylation
of corrole 3 is probably occurring via a Mannich-type reaction, where isomers 4 and 5 result
from a nucleophilic attack by the corrole at the iminium ion formed from paraformaldehyde
and sarcosine. This is accompanied by a decarboxylation process (Scheme 3). Interest-
ingly, this is an example of the potential of azomethine ylides to engage in non-pericyclic
reactions, as mentioned by Seidel [58].
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colors are: hydrogen (white), carbon (gray), nitrogen (blue), fluorine (green), and gallium (magenta)).

2.2. Reactions Involving 5,10,15-Tris(Pentafluorophenyl)Corrole

The first assays using the free-base corrole 8 were performed by adding N-methylglycine
(1 equivalent) and paraformaldehyde (1 equivalent) to 5,10,15-tris(pentafluorophenyl)corrole
8 in dry toluene (0.5 mL). After 2 h at reflux, the TLC of the reaction mixture revealed, in
addition to a small amount of the starting corrole, a complex mixture of products. This fact
prompted us to repeat the reaction but using 2 equivalents of sarcosine and 5 equivalents of
paraformaldehyde, in the same volume of toluene, according to the conditions reported for
porphyrins [60]. After 3 h, the TLC of the reaction mixture showed the total consumption
of the starting corrole and the presence of a green and very polar product accompanied by
several minor ones. After the work-up and chromatographic purification, we were able to
isolate the green compound, which was identified by NMR and mass spectrometry (vide
infra) as being corrole derivative 9 (Scheme 4). Compound 9 was obtained in 19% yield,
while the amount of the minor products was not enough for their characterization.

Given the particular structure of compound 9, we tried to improve the reaction out-
come by varying some reaction conditions, such as the volume of the solvent and the sarco-
sine/paraformaldehyde ratio. Interestingly, we found that the yield of 9 could be greatly
improved by performing the reactions at the same ratio of sarcosine and paraformaldehyde,
but under more diluted conditions. Just by doubling the volume of toluene from 1.5 to
3 mL, the yield increased to 57% and then to 70% and 73% for volumes of 6 and 9 mL,
respectively. Under these conditions, the reactions took 5 h until the starting corrole amount
was completely consumed and compound 9 was precipitated directly from the reaction
flask with hexane, followed by filtration and subsequent purification.

The identification of compound 9 was based on a careful analysis of its mass spectra
and NMR studies (see Figures S11–S18). The mass spectrum showed the molecular ion at
m/z 866, which does not correspond to the mass of the 1,3-dipolar cycloadduct or to the
mass of the free-base analogous to amino derivatives 4 or 5 (m/z 853). Curiously, the 1H
NMR spectrum (see Figure S11) showed only five signals: one singlet at δ 8.04 ppm and
two doublets at δ 8.65 and δ 8.49 ppm in the aromatic zone, corresponding to the resonance
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of six β-pyrrolic protons, and one broad signal at δ 5.75 ppm and one singlet at δ 1.31 ppm
in the aliphatic zone, corresponding to the resonance of ten aliphatic protons.
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Considering the NMR and mass spectra, the new derivative suggests the addition
of an azomethine ylide plus a methyl group to the corrolic unit. The HMBC spectrum
(see Figure S15) showed correlation of the singlet at δ 8.04 ppm with: (a) the signal at δ
69.9 ppm corresponding to the CH2 resonances, (b) with δ 119.4 ppm corresponding to C-2
and C-18 resonances, and (c) with δ 134.3 and 140.1 ppm, belonging to quaternary carbon
resonances. Thus, and given the long-distance correlation observed between this singlet
and carbons C-2 and C-18, the singlet δ 8.04 ppm was attributed to the resonances of the
H-3 and H-17 protons and confirmed, through an HSQC spectrum (see Figure S14), that the
broad singlet at δ 5.75 ppm refers to the resonance of four aliphatic protons of CH2 type.
Low-temperature studies were also carried out to distinguish the two protons of the same
CH2 carbon. In this case, the 1H NMR spectrum at 10 ◦C (see Figure S12) presented two
signals at δ 6.08 and 5.50 ppm, whose integrations confirmed the resonance of two CH2-
type protons. Thus, it was possible to unequivocally indicate the signals corresponding to
the protons and carbons of the CH2 groups, confirming that the C-2 and C-18 β-pyrrolic
positions are substituted.

The possibility that the cycloadduct is predominantly in the zwitterionic structural
form 9 can be justified by the high N–H acidity of free-base corroles and consequently to a
high sensitivity to basic anions [30,61]. In fact, and contrary to what happened with the
starting corrole 8, no changes were detected in the absorption spectrum of the cycloadduct
in the presence of fluoride anion, and that might be due to the absence of the third NH
(see Figure S19A). A different situation occurred with the addition of acetic acid, where an
inversion in the intensity of the Q bands was only observed in the absorption spectrum
of the adduct. The initial spectrum was recovered after the addition of triethylamine (see
Figure S19B). The theoretical calculations on the formation enthalpies of the zwitterionic
structural form of compound 9 were performed by considering the three possible tautomers,
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with the one presented in Scheme 4 being the more stable (see Table S2); for comparison
the formation enthalpy of the starting corrole 8 is presented in Table S1.

Regarding the formation of compound 9 and considering the previous formation
of amines 4 and 5 through Mannich reactions, a possible pathway can involve the quat-
ernization of the tertiary amine with paraformaldehyde, followed by an intramolecular
electrophilic aromatic substitution, as indicated in Scheme 5.
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The presence of the protonated molecular ion at m/z 866 in the mass spectrum of
compound 9 (see Figure S16) supports the proposed structure. Interestingly, this ion justifies
various product ions, namely the ion at m/z 823 that merits special attention due to its high
relative abundance. The formation of this ion can be justified by the loss of CH3N=CH2
(Scheme 6). The combined loss of this fragment and a methyl radical gives rise to the
formation of the ions with m/z 808. Other less abundant ions were also observed, probably
formed from combined losses of CH3N=CH2 plus one to six HF molecules, giving rise to
the ions at m/z 803, 783, 763, 743, 723, and 703, respectively (Figure S17). The formation
of product ions from successive losses of HF where already reported for other corrole
derivatives and for porphyrins bearing pentafluorophenyl groups [62–65].
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3. Materials and Methods
3.1. Materials

All chemicals and solvents used herein were obtained from commercial sources and
were used without further purification, except toluene which was dried using standard
procedures and pyrrole which was distilled before used.

All solvents used in mass spectrometry experiments were purchased from commercial
sources and used as received.

3.2. Techniques
1H NMR spectra were recorded at 300.13 or 500.13 MHz and 13C NMR spectra at 75.47

or 125.77 MHz. All spectra were recorded at room temperature, but for compound 9, a 1H
NMR spectrum was also recorded at 10 ◦C, as already stated. CDCl3 (with drops of C5D5N)
or CD3COCD3 were used as solvents and TMS as the internal reference. The chemical shifts
are expressed in δ (ppm) and the coupling constants (J) in hertz (Hz). Unequivocal 1H
assignments were performed with the aid of two-dimensional NOESY spectra (mixing time
of 800 ms), while 13C assignments were performed with the two-dimensional (1H/13C)
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HSQC and HMBC (delays for long-range J C/H couplings were optimized for 7 Hz)
experiments. 13C spectra of compounds 4 and 5 were improved by internal projection of
corresponding HSQC and HMBC experiments.

Preparative thin-layer chromatography was carried out on 20 × 20 cm glass plates
coated with silica gel (1 mm-thick).

ESI mass spectra were acquired with a Micromass Q-Tof 2 (Micromass, Manchester,
UK), operating in the positive ion mode, equipped with a Z-spray source, an electrospray
probe, and a syringe pump. Source and desolvation temperatures were 80 and 150 ◦C, re-
spectively. Capillary voltage was 3000 V. The spectra were acquired at a nominal resolution
of 9000 and at a cone voltage of 30 V. Nebulization and collision gases were N2 and Ar,
respectively. The flow rate used was 10 µL min−1. Solutions of the corroles in methanol
(approximately 10−6 M) were used.

Product-ion spectra were acquired by selecting the precursor ions with the quadrupole
and using the hexapole as a collision cell, with energies from 20 to 80 eV.

Accurate mass measurements were performed at a resolution of 9600 FWHM (full-
width at half maximum) using the protonated molecule of 5-pentafluorophenyl-10,15,20-
triphenylporphyrin (monoisotopic mass 900.1245) as a reference ion.

3.3. Theoretical Calculations for Model Structures

The calculations were carried out on Intel-based computers, running Linux, using
MOPAC2016 [59]. The geometry of the various structures was optimized with MOPAC2016.
All the calculations in MOPAC2016 used the PM7 [66–68] Hamiltonian, with COSMO
(Conductor-like Screening Model) [68] for the implicit solvent model using toluene. For this
simulation, we used 2.38 as the dielectric constant for toluene and the effective radius of the
solvent molecule used was 1.3 Å, as suggested by Klamt [69]. Each structure was drawn
from the corresponding 2D structure, and then minimized. All geometry optimizations
were performed such that the gradient was less than 0.01 kcal/Å. Afterwards, the nature of
the critical point was determined from the observation of the eigenvalues of the Hessian
matrix (matrix containing the second derivative of the energy in relation to the nuclear
coordinates): for a minimum, all eigenvalues should be real, and that was the case for
each obtained geometry. On all images, atom colors are: hydrogen (white), carbon (gray),
nitrogen (blue), fluorine (green), and gallium (magenta).

3.4. Experimental Procedure

The synthetic details for the preparation of 5,10,15-tris(pentafluorophenyl)corrole 8
and 5,10,15-tris(pentafluorophenyl)corrolatogallium(III)(pyridine) 3 are provided in the
literature [70,71].

3.4.1. General Procedure for the Synthesis of Compounds 4 and 5

A toluene (0.5 mL) solution of 5,10,15-tris(pentafluorophenyl)corrolatogallium(III)
(pyridine) (21.3 mg, 22.6 µmol), sarcosine (1.1 equiv., 2.3 mg, 25.8 µmol), and paraformalde-
hyde (1.0 equiv., 0.8 mg, 22.6 µmol) was heated at 80 ◦C for 2 h under a nitrogen atmosphere.
Additional portions of 1 equivalent sarcosine and 1 equivalent paraformaldehyde were
added, and the reaction mixture was heated for another 2 h. After being cooled to room
temperature, the separation and purification of the new compounds were carried out on
preparative TLC using ethyl acetate/petroleum ether/pyridine (50:65:1) as an eluent to
afford, by decreasing order of Rf, the starting corrole 3 (13.6 mg), compound 5 (2.9 mg, 13%
(35% based on the consumed starting material)), and compound 4 (3.1 mg, 14% (38% based
on the consumed starting material)).

3-(Dimethylamino)methyl-5,10,15-tris(pentafluorophenyl)corrolategallium(III)(pyridine)
(4): 1H NMR (300 MHz, CDCl3, and few drops of C5D5N): δ 9.07 (d, 1H, J 4.0 Hz, H-18),
9.00 (s, 1H, H-2), 8.74 (d, 1H, J 4.5 Hz, H-β), 8.66 (d, 1H, J 4.0 Hz, H-17), 8.62 (d, 1H, J
4.6 Hz, H-β), 8.52 (d, 1H, J 4.5 Hz, H-β), 8.48 (d, 1H, J 4.6 Hz, H-β), 4.03 (s, 2H, CH2),
2.09 (s, 6H, 2xCH3). 13C NMR (based on HSQC and HMBC projections): δ 142.6, 140.7,
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139.4, 134.7, 133.7, 127.1 (2xC-β), 124.7 (C-17), 123.3 (2xC-β), 120.2 (C-2), 118.0 (C-18), 58.5
(CH2), 45.3 (2xCH3). HRMS (ESI) calculated for C40H16N5F15Ga [(M-py)+H]+ 920.0422,
found 920.0413.

2-(Dimethylamino)methyl-5,10,15-tris(pentafluorophenyl)corrolategallium(III)(pyridine)
(5): 1H NMR (300 MHz, CDCl3, and a few drops of C5D5N): δ 9.18 (d, 1H, J 3.9 Hz, H-18),
8.73 (d, 2H, J 4.5 Hz, H-β), 8.67 (d, 1H, J 3.9 Hz, H-17), 8.64 (s, 1H, H-3), 8.51 (d, 2H, J
4.5 Hz, H-β), 5.04 (s, 2H, CH2), 2.61 (s, 6H, 2xCH3). 13C NMR (based on HSQC and HMBC
projections): δ 149.4, 143.2, 140.6, 127.4, 125.0 (C-5,6,9,10,11,14,15), 135.2 (C-1,19), 128.9
(C-4), 127.4 (2xC-β), 125.0 (C-17, C-3), 123.4 (2xC-β), 118.4 (C-18), 56.7 (CH2), 45.0 (2xCH3).
HRMS (ESI) calculated for C40H16N5F15Ga [(M-py)+H]+ 920.0422, found 920.0425.

3.4.2. General Experimental Procedure for Compound 9

To a solution of sarcosine (2 equiv.) and paraformaldehyde (5 equiv.) in dry toluene
(9 mL), 5,10,15-tris(pentafluorophenyl)corrole (20 mg, 25.1 µmol) was added. The reaction
mixture was heated at 80 ◦C for 5 h under a nitrogen atmosphere. After being cooled to
room temperature, hexane was added, and the resulting precipitate was filtered. The solid
was then purified by preparative TLC using ethyl acetate/chloroform (9:1) as an eluent.
Compound 9 was obtained in 73% yield (15.5 mg).

Compound 9: 1H NMR (300.13 MHz, CD3COCD3): δ 8.65 (d, 2H, H-7,13, or H-8,12, J
4.6 Hz), 8.49 (d, 2H, H-7,13, or H-8,12, J 4.6 Hz), 8.04 (s, 2H, H-3,17), 5.75 (broad signal, 4H,
CH2), 1.31 (s, 6H, CH3). 1H NMR (500.13 MHz, at 10 ◦C, CD3COCD3): δ 8.65 (d, 2H, H-7,13,
or H-8,12, J 4.4 Hz), 8.49 (d, 2H, H-7,13, or H-8,12, J 4.4 Hz), 8.05 (s, 2H, H-3,17), 6.08 (broad
signal, 2H, CH2), 5.50 (broad signal, 2H, CH2), 1.29 (s, 6H, CH3). 13C NMR (CD3COCD3,
125.77 MHz): 143.3 (C-9,11 or C-6,14), 142.8 (C-9,11 or C-6,14), 140.1 (C-4,16 or C-1,19), 134.3
(C-4,16 or C-1,19), 126.6 (C-7,13 or C-8,12), 125.6 (C-7,13 or C-8,12), 120.1 (C-3,17), 119.4
(C-2,18), 69.9 (2xCH2), 29.0 (2xCH3). UV-Vis CH3COCH3 nm (log ε): 426 (4.83) 594 (3.98)
623 (4.42). MS (ESI) m/z 866 [M+H]+. HRMS (ESI) calculated for C41H19N5F15 [M+H]+

866.13955, found 866.13631.

4. Conclusions

Contrary to what occurs for porphyrins, 5,10,15-tris(pentafluorophenyl)corrolatogall-
ium(III) reacts with paraformaldehyde and sarcosine to afford, as major products, two
isomeric corroles, with one (dimethylamino)methyl group at the 2- or 3-position of the
corrole core. We propose that the new corrole isomers are formed through a Mannich-
type reaction, never described before in corrole chemistry. Surprisingly, under similar
experimental conditions, the free-base 5,10,15-tris(pentafluorophenyl)corrole affords the
unprecedented seven-membered ring derivative 9.
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