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Abstract: Diterpene alkaloids (DAs) are characteristic compounds in Aconitum, which are classified
into four skeletal types: C18, C19, C20, and bisditerpenoid alkaloids. C20-DAs are thought to be the
precursor of the other types. Their biosynthetic pathway, however, is largely unclear. Herein, we
combine metabolomics and transcriptomics to unveil the methyl jasmonate (MJ) inducible biosynthe-
sis of DAs in the sterile seedling of A. gymnandrum, the only species in the Subgenus Gymnaconitum
(Stapf) Rapaics. Target metabolomics based on root and aerial portions identified 51 C19-DAs and
15 C20-DAs, with 40 inducible compounds. The highest content of C20-DA atisine was selected for
further network analysis. PacBio Isoform sequencing integrated with RNA sequencing not only
provided the full-length transcriptome but also their response to induction, revealing 1994 genes
that exhibited up-regulated expression. Further, 38 genes involved in terpenoid biosynthesis were
identified, including 7 diterpene synthases. In addition to the expected function of the four diterpene
synthases, AgCPS5 was identified to be a new ent-8,13-CPP synthase in Aconitum and could also
combine with AgKSL1 to form the C20-DAs precursor ent-atiserene. Combined with multiple network
analyses, six CYP450 and seven 2-ODD genes predicted to be involved in the biosynthesis of atisine
were also identified. This study not only sheds light on diterpene synthase evolution in Aconitum but
also provides a rich dataset of full-length transcriptomes, systemic metabolomes, and gene expression
profiles, setting the groundwork for further investigation of the C20-DAs biosynthesis pathway.

Keywords: Aconitum gymnandrum; atisine; diterpene synthase; cytochrome P450

1. Introduction

Aconitum L. is a widespread genus in the Ranunculaceae family, which is further subdi-
vided into subgen. Aconitum, subgen. Paraconitum, subgen. Gymnaconitum. A. gymnandrum
maxim is the only species in subgen. Gymnaconitum, and is found in Tibet, western Sichuan,
Qinghai, and southern Gansu provinces of China. The entire plant of A. gymnandrum can
be used medicinally, and has essential functions as an analgesic [1], anti-inflammatory, and
tumor inhibition [2], for its active substance diterpenoid alkaloids (DAs). At the same time,
as a common species on the alpine meadows in the eastern Qinghai Tibet Plateau, it has
been widely used as a model for studying morphological changes in arid habitats [3–5],
including their pollination, ecology, and population genetics [6–9]. However, due to the
abundant DAs in A. gymnandrum, it became a significant toxic plant in the Northwest
Sichuan Plateau and severely hindered the grassland ecological balance and animal hus-
bandry growth. Therefore, understanding the biosynthesis of DAs is critical to enhance
A. gymnandrum resource utilization and sustain grassland ecological equilibrium.

DAs are the main pharmacologically active and toxic compounds in Aconitum, with
more than 1500 compounds identified [10–12]. DAs are classified into four skeletal types:
C18, C19, C20, and bis-diterpenoid alkaloids. The complexed C18-DAs and C19-DAs were
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proposed to be produced by the rearrangement of C20-DAs [11,13,14]. Therefore, an analysis
of the biosynthetic pathway of C20-DAs is the basis for studying the structural modification
of complex DAs. Like other diterpenoids, DAs were thought to be produced from the
diterpene precursor geranylgeranyl pyrophosphate (GGPP), which is synthesized through
IPP and DMAPP produced from the mevalonate (MVA) pathway in the cytoplasm and
the methylerythritol 4-phosphate (MEP) pathway in the plastid. Copalyl diphosphate
synthase (CPS) and kaurene synthase-like (KSL) enzymes then serially catalyze GGPP to
form ent-copalyl diphosphate (ent-CPP) and ent-atiserene or ent-kaurene, which establishes
the skeleton structure of atisine and napelline type C20-DAs in A. carmichaelii [15]. Atisine-
type alkaloids are considered to be the simplest group of C20-DAs [10]. Atisine was found
to be widely distributed in Aconitum species [13,16], and it was also the hotspot component
for the total synthesis of C20-DAs [17,18].

As a marker compound in A. heterophyllum, atisine’s complete biosynthesis was
proposed by connecting glycolysis, MVA/MEP, serine biosynthesis, and diterpene path-
ways [19]. As for the main diterpene pathway, it was predicted that ent-CPP was the
only precursor, and hence two distinct biosynthetic pathways were necessary to form
atisine. One was the formation of ent-kaurenol, ent-kaurenal, and ent-kaurenoic acid
from ent-kaurene under continuous oxidation catalyzed by kaurene oxidase, followed by
hydroxylation of ent-kaurenoic acid by kaurene hydroxylase to form steviol. The other
pathway was to form atisenol from ent-atiserene by unpredicted enzymes. Finally, ste-
viol and atisenol reacted with ethanolamine from the decarboxylation of serine to form
the end product atisine (Supplementary Figure S1). The study provided a panorama of
atisine biosynthesis, but many details remained unclear, such as how many diterpene syn-
thases were involved and what type of enzyme was responsible for the key hydroxylation
of atisine.

Besides A. heterophyllum, we found other species that also had the ability to synthesize
high levels of atisine [16]. By comparing the chemical constituents in seven Aconitum species,
we found the relative content of atisine in A. gymnandrum and A. tanguticum was more than
11-fold higher than in A. carmichaeli, A. vilmorinianum, A. stylosum, A. sinomontanum, and
A. pendulum. The level of atisine in a cell line derived from the root was 264.82 µg/g, and
the content in the root of sterile seedlings was as high as 595.79 µg/g [20]. A. gymnandrum
showed a high ability to synthesize atisine in both plants and cell lines. Thus, A. gymnan-
drum is another ideal plant to study C20-DAs biosynthesis pathways, with the exception
of A. heterophyllum [19]. In the current study, methyl jasmonate (MJ) was used to induce
the sterile seedling of A. gymnandrum. We combined transcriptome and metabolome data
to explore the essential enzymes involved in the biosynthesis pathway of atisine. More
importantly, we have functionally identified five diterpene synthases in A. gymnandrum
and found a new ent-8,13-CPP synthase gene in Aconitum. These data provide a foundation
for further analyzing the biosynthetic pathway of diterpenoid alkaloids.

2. Results
2.1. Metabonomic Analysis of Sterilized Seedlings in A. gymnandrum

Ultra-high performance liquid chromatography quadrupole time of flight mass spec-
trometry (UPLC-Q-TOF-MS) was performed to evaluate the effect of the metabolites in-
duced. After data processing, a total of 6493 MS fragments data were obtained. The peak
areas of the primary metabolites were uniformly corrected by the internal standard berber-
ine (m/z 336.1234, Rt 7.63 min), and the mass spectrometry data with relative content lower
than 0.001 in all samples were filtered out. Then, Masslynx 4.1 (Waters, Milford, MA, USA)
was used to obtain the MS/MS fragment ions, and 77 main compounds were obtained via
the merge ion fragments function for ions with the same retention time from QI (Waters,
Milford, MA, USA).

According to the MS fragmentation pattern of diterpene alkaloids, which we have
established in the seven Aconitum species [16], the compounds in seedlings were divided
into three groups, 51 C19-DAs, 15 C20-DAs, and 11 non-DAs (Supplementary Table S1), of
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which seven of them were detected in the wild plant [16]. The most common DAs, such
as aconitine, hypaconitine, mesaconitine, talatisamine, and condelphine [21,22] were not
detected in the seedlings. Thus, the lack of reference substances resulted in inaccurate
identification of most compounds. Only atisine (m/z 344.2596, Rt 3.59 min) was identified
through comparison to the reference substance (Supplementary Figure S2).

Although C19-DAs were the most abundant compounds in A. gymnandrumn, their
relative content was not high. Besides compound 45 (m/z 558.3089, Rt 10.48 min) and com-
pound 28 (m/z 506.3127, Rt 6.76 min), which were 7.5 and 5.0 before induction, respectively,
the remaining C19-DAs were all lower than 2.0. On the other hand, the relative content
of atisine was higher in both root and aerial portions, and the average relative content
before induction was 20.1 and 10.8, respectively. Two other predicted C20-DAs, compound
56 (m/z 300.2331, Rt 14.24) and compound 66 (m/z 314.2484, Rt 17.67), also had high relative
content in the root, with 24.2 and 14.1 before induction, respectively (Supplementary Table
S1). These results indicate that the seedlings possess robust activity in the biosynthesis of
C20-DAs, and are a suitable material for further analyzing their biosynthetic pathways.

2.2. Induction Effect of MJ on Metabolites in A. gymnandrum

The correlation analysis of all samples showed that the R2 values of root and aerial
repeated samples at each induction time were almost greater than 0.8 (Supplementary
Figure S3). PCA analysis indicated that the root and aerial portions could be clearly
separated before induction, and the induction effect of the root at different times was more
obvious (Figure 1a). Five metabolites made the most significant contribution to the first
major component in root. Four metabolites were C20-DAs, including atisine, compound
56 (m/z 300.2331, Rt 14.24 min), compound 63 (m/z 314.2483, Rt17.4 min), and compound
66 (m/z 314.2484, Rt 17.67 min) (Figure 1b). The only C19-DA observed was compound
45 (m/z 558.3089, Rt 10.48 min). All four C20-DAs increased more than 2-fold after induction,
while the C19-DA compound 45 was not obviously accumulated after MJ induction.

MJ significantly increased the relative content of 12 C20-DAs, accounting for 80% of
total C20-DAs. The initial concentration of all C20-DAs was higher than 0.1, two days
after induction, the relative content of 12 C20-DAs increased 2-fold, and compound 70 (m/z
318.0977, Rt 18.18 min) had the highest inducible effect (14.4-fold at day 2) in C20-DAs.
Additionally, a total of 28 C19-DAs were also induced at different times in the root (Fig-
ure 2c), accounting for 54.9% of the total C19-DAs. Compound 28 (m/z 506.3127, Rt 6.76 min)
and compound 45 (m/z 558.3089, Rt 10.48 min) were the main representative compounds.
The initial content of these two compounds in the roots was very high, 7.54 and 5.00,
respectively, but induction only increased this content by less than 1.5-fold. Compound
35 (m/z 532.2929, Rt 8.27 min) and compound 62 (m/z 614.3697, Rt 17.14 min) had the
highest inducible effect, which reached 0.67 and 0.12, respectively, by day 9 from a very
low content (lower than 0.01). The heat map (Figure 1c) showed that atisine with the
other three C20-DAs gather into one branch and began to accumulate on day 2. These
results indicated that C20-DAs, especially atisine accumulated earlier than most C19-DAs
compounds. Atisine also had the highest relative content among all metabolites, especially
on day 6 after induction (Figure 1d).
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Figure 1. The production of Das is a major metabolic response of A. gymnandrum sterile seedlings
to induction. MJ and MJL refer to the sample of root and aerial portions. (a) Principal component
analysis of A. gymnandrum of different plant portions shows compounds with peak accumulation
occurring at the indicated time, demonstrating that MJ has a greater impact on the root than aerial
portions. (b) Principal component analysis of 77 metabolites in the root; the five compounds most
representative of the first principal component are atisine, compound 45, compound 56, compound 63,
and compound 66. (c) Cluster analysis of 40 metabolites in the root from A. gymnandrum at different
induction times. The value of each compound was taken from relative content Log2 standardization.
(d) Plots to demonstrate the increasing accumulation of the atisine in the root (error bars represent the
standard error). Untreated and treated refer to the control group and experimental group, respectively.

Figure 2. Venn diagram of up-regulated DEGs by different induction groups in the A. gymnandrum
root.

2.3. Transcriptomic Analysis of MJ-Induced A. gymnandrum

To explore the molecular mechanism leading to the rapid accumulation of C20-DAs,
single-molecule real-time (SMRT) sequencing PacBio Sequel and Illumina sequencing were
performed to analyze the effect of induction on the transcriptome. The root and aerial
portions (non-induced, 6 h, 12 h, 24 h, and 48 h post-induction) were used to perform
cDNA library construction. After quality control of the original sequencing data, a total
of 83,543,966 subreads were produced with an N50 of 1509 bp and GC content of 41.77%
after filtering. Then, 1,307,754 circular consensus sequencings (CCS) were obtained after
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the SMRT Link v8.0 pipeline processed raw sequencing data. Isoseq3 software was used to
obtain full-length non-chimeric consistent transcripts, and a total of 1,274,498 full-length
consensus transcripts, including 111,975 polished high-quality (HQ) and 530 low-quality
(LQ) transcripts, were generated. Furthermore, 24,537 transcripts could be annotated using
public databases (NR, NT, GO, COG, Swiss Prot, and KEGG) (Supplementary Figure S4).

The gene expression levels of each gene were obtained by calculating the Fragments
Per Kilobase of transcript sequence per Millions base pairs sequenced (FPKM) values and
the genes with |log2Ratio| ≥ 1 and q < 0.05 were selected as significant differentially
expressed genes (DEGs). Before induction, there were 1254 genes were identified as up-
regulated genes in root compared with aerial portions. After induction, a total of 601,
496, 258, and 231 genes at the 6 h, 12 h, 24 h, and 48 h time points were identified as up-
regulated genes in root compared to their level in the uninduced control (0 h), respectively
(Figure 2). In contrast, the number of up-regulated genes in aerial portions at each time
point was significantly less (Supplementary Table S2). This was consistent with the non-
obvious induction of compounds in aerial portions. After deleting the duplicated genes, a
total of 1994 up-regulated DEGs were obtained and 22 common genes were up-regulated
in all of the above groups (Figure 2). A total of 79 DEGs were annotated as CYP450s
(cytochrome P450), 34 as methyltransferases, 29 as glycosyltransferases, 21 as BAHD-type
acyltransferases, 8 as ent-copalyl diphosphate synthases, 2 as KOs (ent-kaurene oxidase), 2
as BEBTs (benzyl alcohol benzoyl transferase), and one as 2-OGD (2-oxoglutarate (2OG)
and Fe (II)-dependent oxygenase superfamily protein) (Supplementary Table S3). These
genes are potentially involved in the formation of structural modification of the parent
nucleus of DAs.

2.4. Identification of Full-Length Transcripts Putatively Involved in Das Biosynthesis

Structurally, the parent nuclei of atisine are derived from ent-atiserene. Therefore,
the genes involved in the ent-atiserene biosynthetic pathway were analyzed, including
those involved in the upstream MVA and MEP pathways to form the diterpene precursor
GGPP and the diterpene synthases to form ent-atiserene. A total of 38 candidate genes were
identified to be involved in this process, including 9 genes encoding 6 enzymes in the MVA
pathway,10 genes encoding 6 enzymes in the MEP pathway, one IDI, 3 FPPs, 5 GGPPs, 6 CPS,
and 1 KSL (Figure 3). Besides these potentially involved in ent-atiserene biosynthesis, we
also identified three monoterpenes or sesquiterpene synthase genes. It was found that both
MVA and MEP pathway genes in the root were induced, but their expression patterns were
different. MVA pathway genes were mostly expressed at 6 h and then decreased rapidly,
while MEP pathway genes began to respond after 12 h. The expression levels of five class
II diterpene synthase genes, including AgCPS1, AgCPS2, AgCPS3, AgCPS5, and AgCPS6,
increased significantly after MJ treatment (Figure 4). However, the expression of AgCPS4
increased only in the aerial portions after induction (Supplementary Figure S5). Moreover,
the expression of AgKSL1 increased significantly in the root. After induction, MEP pathway
genes in aerial portions showed a clear increasing trend compared with MVA pathway
genes. When compared to the root, the expression level of aerial portions was substantially
lower, with just 14 genes being highly expressed after treatment (Supplementary Figure S6),
consistent with the minimal change of chemical content in the aerial portion.
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Figure 3. The expression profile for the genes involved in terpenoid biosynthesis in the root of
A. gymnandrum. The transcriptome expression of each identified gene is Log2 normalization of
fpkm values. Abbreviations: AACT, aceto-acetyl-CoA thiolase; CMK, 4-(cytidine 50-diphospho)-
2-C-methyl-D-erythritol kinase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; DXR, 1-deoxy-D-
xylulose-5-phosphate reductoisomerase; FPS, farnesyl pyrophosphate synthase; HDR, (E)-4-hydroxy-
3-methylbut-2-enyl diphosphate reductase; HDS, (E)-4-hydroxy-3-methylbut-2-enyl diphosphate
synthase; HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase; HMGR, 3-hydroxy-3-methylglutaryl-
CoA reductase; GGPPS, geranylgeranyl pyrophosphate synthase; MCT, 2-C-methyl-D-erythritol
4-phosphate cytidylyltransferase; IDI, isopentenyl diphosphate isomerase; MDS, 2-C-methyl-D-
erythritol 2,4-cyclodiphosphate synthase; MDD, mevalonate diphosphate decarboxylase; MDS,
2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; MVK, mevalonate kinase; PMK, phospho-
mevalonate kinase; TPS, terpene synthases (including monoterpene synthases and sesquiterpene
synthases); CPS, copalyl diphosphate synthase; KSL, kaurene synthase.
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Figure 4. GC-MS analysis of AgCPSs and AgKSL1 reaction products obtained from in vitro assays.
(a) 1~5: The product of AgCPS1/2/4/5 and ZmCPS2 (specific to ent-CPP) enzymatic reaction with
GGPP, it is proved that the products of AgCPS1/2/4 and AgCPS 5 were CPP and 8,13-CPP; 6~8: The
product of AgCPS1/2/4/5 and ZmCPS2 combined with AtKS (specific to ent-kaurene), it is proved
that the products of AgCPS1/2/4 were the ent-configuration; 9~12: the product of AgCPS1/2/4/5
and ZmCPS2 combined with AgKSL1/IrKSL4 (specific to ent-atiserene), it is proved that the products
of AgKSL1 was ent-atiserene. The enzymes ZmCPS2, PcTPS1, IrKSL4, and AtKS were used as
controls. (b) Extracted ion chromatograms (EIC) of the product in different combinations above.
Peak1: ent-CPP; Peak2: ent-8,13-CPP; Peak3: ent-kaurene; Peak4: ent-atiserene.
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2.5. Functional Characterization of Diterpene Synthase from A. gymnandrum

To clearly define the role of diterpene synthases in ent-atiserene biosynthesis, we
identify their biochemical functions through in vitro assays. The recombinant proteins
of AgCPS1~6 (transcript 19173, transcript 18548, transcript 17999, transcript 19234, tran-
script 17416, and transcript 17291) and AgKSL1(transcript 16317) were expressed in E. coli
(Supplementary Figure S7). We first incubated AgCPSs with GGPP individually for com-
parison with the product of ZmCPS2. Three enzymes, AgCPS1, AgCPS2, and AgCPS4,
yielded a single product (1) with identical retention time and mass spectrum to the product
of ZmCPS2 (Figure 5), indicating that the product of these AgCPSs was CPP (geranyl
pyrophosphate). They have then incubated with GGPP and AtKS synthase (specific to
ent-CPP) to determine the configuration of CPP. All three AgCPSs produced ent-kaurene
(3), indicating that the product configuration of those enzymes was ent-CPP. However,
when AgCPS5 was incubated with GGPP, it produced a single unknown product (2), unlike
other AgCPSs, the mass spectrum of peak2 was consistent with ent-8,13-CPP, the product
catalyzed by PcTPS1 (ent-8,13-CPP synthase) from Pogostemon cablin (Figure 4) [23].

Figure 5. Identification of co-expression network modules in A. gymnandrum. (a) Gene dendro-
gram was obtained by clustering the dissimilarity based on consensus topological overlap with
the corresponding module colors indicated by the color row. (b) Modular eigenvector clustering
heatmap. The heatmap shows the relatedness of the 6 co-expression modules identified in WGCNA,
with red indicating highly related and blue indicating not related. (c) Module-atisine correlation
heatmap. The right transverse panel with red-blue indicates a color scale for module–trait correlation,
from –0.5 to 0.5.

As for AgKSL1, we first incubated it with ZmCPS2 (ent-CPP synthases) and found
that AgKSL1 could convert ent-CPP to ent-atiserene (4), which was identified by the known
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ent-atiserene synthase IrKSL4 from Isodon rubescens [24]. When combined AgKSL1with
AgCPS1, AgCPS2, AgCPS4, and AgCPS5, they produced a single product, ent-atiserene,
even though AgCPS5 is not an ent-CPP synthase. In conclusion, two CPP types were
identified in A. gymnandrum and AgKSL1 was shown to be able to catalyze both of them to
generate ent-atiserene, which ensured the efficient biosynthesis of atisine-type C20-DAs in
A. gymnandrum.

2.6. WGCNA Analysis of Genes Associated with the C20-DAs Biosynthesis Pathway

Weighted gene correlation network analysis (WGCNA) is a new network modeling
method designed for studying biological networks based on pairwise correlations between
variables [25,26]. This method allows researchers to find the co-expressed gene modules,
and explore the relationship between gene networks and phenotypes of interest, and the
hub genes in the networks. We used WGCNA analysis to explore candidate genes involved
in atisine biosynthesis. A total of 11,661 genes (FPKM > 10 in three biological replicates) in
the root were used to perform the co-expression analysis. The MAD (median absolute devi-
ation) of each gene was calculated using the gene expression profile and the top 4000 genes
were selected to analyze. WGCNA was further used to build the scale-free co-expression
network, and six co-expression modules were finally obtained, each module contained
270~1107 genes. The modules were color-coded, as shown in Figure 5a. The comparison of
modules genes (Figure 5b) revealed four related module groups, which displayed similar
expression profiles in different samples: (i) MEblue; (ii) MEbrown, MEgreen; (iii) Meyellow;
(iv) MEturquoise, MEred (Supplementary Table S4).

The application of exogenous MJ usually activates the jasmonate (JA) signaling path-
way in plants [27]. Here, three genes, transcript 72154, transcript 65043, transcript 47202,
from TIFY transcription factor family, which usually acted as repressors to release targeted
transcriptional factors in the JA signaling pathway were identified in module green [28].
The expression levels of these genes were significantly up-regulated to about 8-fold than
the untreated control. Additionally, genes involved in MJ biosynthesis and responsive were
also identified in this module, such as AOC (allene oxide cyclase, transcript 66981) and
OPR (12-oxophytodienoate reductase, transcript 49184).

Deep analysis revealed that the green module contained a total of 298 genes. AgCPS1
and AgKSL1, together with two DXS, 1 DXR and 1 HDS in MEP pathway, and 1 GGPPS were
assigned in this module. All the above genes were up-regulated after MJ induction. DXS
gene (transcript 21356) had the highest induction effect (more than 9.6-fold up-regulated
at 12 h) compared to the untreated samples. Moreover, some common post-modification
enzymes of DAs, including 9 CYP450s and 7 2-ODDs (2-oxoglutarate-dependent dioxy-
genase), were found in module green. Among them, the CYP450 gene family might play
significant roles in the hydroxylation of atisine biosynthesis. A phylogenetic tree based
on eight full-length CYP450s and 324 functionally identified CYP450s [29,30] showed that
all of them belonged to Clan 71 (Supplementary Figure S8). Seven candidate CYP450
genes (transcript 31575, transcript 28993, transcript 34646, transcript 31908, transcript 36192,
transcript 36601, and transcript 38746) grouped with the CYP 71A subfamily, which were
identified as potential regulators of alkaloids or flavonoids [31,32]. Transcript 34,521 and
CYP706B1(from Gossypium arboreum) were grouped into a cluster, which involved the
hydroxylation of sesquiterpene olefins [33].

2.7. Co-Expression Network Analysis of Module Green

To find hub genes from the module green, the function of 298 genes was further de-
scribed by KEGG annotation (https://www.kegg.jp/, accessed on 8 July 2022)
(Supplementary Table S5). Ninety-eight genes annotated to be involved in metabolism
and environmental information processing were used to construct a co-expression network
(Figure 6). It showed that the top 10 hub genes with the highest degree values included
three 2-ODDs (transcript 45862, transcript 49735, transcript 49882), D-3-phosphoglycerate
dehydrogenase (PGDH, transcript 19239), TIFY (transcript 65043), UDP-glucose gluco-

https://www.kegg.jp/
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syltransferase (transcript 42527), limonene synthase (transcript 29295), citrate synthase
(transcript 33670) and BAHD-type acyltransferase (transcript 49129). Two CYP450s, tran-
script 31,513 and transcript 31,908, were among the top 20 hub genes (Supplementary
Table S6). Due to the fact that 2-ODDs were involved in the biosynthesis of various phy-
tochemicals, including glucosinolates, flavonoids, and alkaloids [34,35]. In particular, NR
(NCBI non-redundant protein sequences) described transcript 49,882 as hyoscyamine 6-
dioxygenase, which catalyzed the epoxidation of scopolamine at the C6 position [36]. They
may also play an important role in DA biosynthesis. PGDH was involved in the biosynthe-
sis of serine [37], which provides the N source for atisine-type C20-DAs [38]. Additionally,
the transcription factor TIFY (transcript 65043) showed a suitable correlation with TIFY
(transcript 72154), CYP450 (transcript 36192), 2-ODD (transcript 59503), and BAHD-type
acyltransferase (transcript 50810, transcript 49129). It suggested these genes could play an
important role in the MJ induction process in A. gymnandrum.

Figure 6. Co-expression analysis in module green of A. gymnandrum. Transcript 45862, transcript
49735, transcript 49882, transcript 19239, transcript 65043, transcript 42527, transcript 29295, transcript
33670, and transcript 49129 were filtered as hub genes by degree. The circle depicts genes co-expressed
with 10 hub genes (r > 0.8; 77 genes in total). The size and color (red to green) of the circle were
arranged according to the degree, and the lines indicate the p-value between the genes (purple is the
largest and yellow is the smallest).
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3. Discussion
3.1. DAs from A. gymnandrum Have Different Response to MJ

MJ participates in plant biological and abiotic stress responses as a hormone and
signal molecule. It is used in many plants to induce the accumulation of alkaloids, such
as D. Officinale, C. roseus, and T. wilfordii. [39–41]. However, there have been no reports
on the induction of diterpene alkaloids by MJ. Here, we combined metabolomics and
transcriptomics to unveil the MJ-inducible biosynthesis of DAs in the sterile seedling of
A. gymnandrum. The induction effect was evident in the root, both in the induced number
of DAs and their corresponding fold-change ranges, when compared with aerial portions
(Supplementary Table S2). The up-regulated genes in the root also outnumber those in
the aerial portions. This may due to the fact that we mainly dripped MJ onto the solid
medium so that the root contacted MJ more fully. Further investigation found more C20-
DAs (80%) induced by MJ than C19-DAs (54.9%). This is consistent with the inference that
C19-DAs originated from the further rearrangement of C20-DAs [13–15]. To obtain more
C19-DAs with noticeable induction effects, it may be necessary to use different induction
concentrations or different types of elicitors for further study.

A total of 65 DAs were detected in the sterile seedlings of A. gymnandrum. However,
the widely distributed C19-DAs in Aconitum, such as talatizidine and talatisamine, which
were found in the wild plant [16] were not detected in sterile seedlings. Karakomine,
12-epi-napelline, and other napline-type C20-DAs [16] were also not observed. However,
wild plants accumulated a comparatively higher concentration of C20-type DAs. Ati-
sine, gymnandine (denadine-type C20 DAs), as well as C19 diester-type DAs (aconigymin
and 14-acetyltalatisamine) also accumulated in sterile seedlings. Therefore, we specu-
late that the accumulation of various forms of DAs in sterile seedlings is atisine-type
C20 DAs > denadine-type C20 DAs > C19-DAs, implying atisine-type C20 DAs are the most
primitive DAs in A. gymnandrum, which highlights its role as precursors for other C19-DAs.

3.2. New Diterpene Precursor Was Found in A. gymnandrum

Six full-length CPS genes were obtained from the full-length transcriptome. After
induction of MJ, the expression of AgCPS1, AgCPS2, AgCPS3, AgCPS5, and AgCPS6 were
up-regulated both in root and aerial portions, while AgCPS4 was only up-regulated in aerial
portions (Supplementary Figure S6). AgCPS4 also had higher expression in aerial portions
than in root, which suggests that AgCPS4 was responsible for the biosynthesis of DAs in the
aerial portions of A. gymnandrum. Functional identification revealed that AgCPS1, AgCPS2,
and AgCPS4 can catalyze GGPP to produce ent-CPP, which was previously regarded as the
sole precursor for all DAs [13,14,42]. However, when we incubated AgCPS5 with GGPP, a
new diterpene ent-8,13-CPP was identified. This ent-8,13-CPP synthase was only reported
in Pogostemon cablin from Lamiaceae [23]. Further combination with AgKSL1 showed all
four CPSs could produce ent-atiserene, which formed the skeleton of atisine-type C20 DAs.
Thus, besides ent-CPP, we found a new precursor ent-8,13-CPP potentially involved in
DA biosynthesis, which highlights the diverse diterpene synthase evolution in Aconitum.
Neither AgCPS3 nor AgCPS6 could catalyze GGPP to produce any product, thus more
substrates need to be tested to verify their functions.

Besides the different induced expression patterns, the diterpene synthase genes also
had different expression levels in root and aerial portions (Supplementary Figure S9).
AgCPS1 and AgCPS5 were mainly expressed in the root. AgCPS2, AgCPS3, and AgKSL1
had relatively higher expression levels in root than in aerial portions, while AgCPS4 and
AgCPS6 were mainly expressed in aerial portions, which suggests they could have different
physiological roles in plants. The highest expression level of AgCPS1 and AgKSL1 provides
them more opportunities for the biosynthesis of DAs in the root. Compared with three
different functional KSL enzymes in A. carmichaelii [15], we only identified AgKSL1 in
A. gymnandrum. The fact that AgKSL1 could combine with all four identified CPS enzymes
to produce the single diterpene ent-atiserene highlighted the possibility that ent-atiserene
could be the main precursor in atisine biosynthesis in A. gymnandrum. The absence of
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napline-type C20 DAs in the seedling coincides with with the lack of an identified ent-
kaurene synthase, which was regarded as the precursor of napline-type C20 DAs [14,15].
However, the ent-kaurene-mediated gibberellin phytohormones biosynthesis is universal
in the plant kingdom [43], thus more KSL genes need to be further identified.

3.3. Establishing the Atisine Biosynthesis Pathway in A. gymnandrum

In comparison to the previously predicted atisine biosynthesis in A. heterophyllum,
we found ent-atiserene could be the key precursor of atisine in A. gymnandrum, which is
produced from two different intermediates, namely ent-CPP and ent-8,13-CPP. Based on
these results, we outlined a detailed biosynthetic pathway of atisine in A. gymnandrum.
First, ent-atiserene undergoes series-step oxidation by ent-kaurene oxidase-like enzymes
to form intermediates ent-atis-16-en-19,20-diol and ent-atis-16-en-19,20-dial (ent-atisanes).
L-serine is then catalyzed by a decarboxylase to form ethanolamine and further reacts
with ent-atis-16-en-15-ol-19,20 dial to form the diterpene alkaloid intermediate 1 under the
action of transaminase [38]. Then, the carbonyl group at C20 of intermediate 1 forms an
N-bridge with the amino group at C19 [38], followed by dehydration and dehydrogenation
to obtain intermediate 2 and dihydroatisine [44]. The hydroxylation of the C15 position
is catalyzed by CYP450, but the reaction order is uncertain, and it may also be involved
in catalysis after intermediate 2. Finally, atisine forms under the action of enzymes with
cyclization functions such as 2-ODD (Figure 7).

Figure 7. The predicted biosynthetic pathway of atisine and the involved enzyme genes in A.
gymnandrum, red colors represent functional qualification, blue colors were screened from transcripts,
and orange colors were filtered in the module green. Abbreviations: KO: ent-kaurene oxidase, SDC:
serine decarboxylase, TA: transaminase.
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In addition to the functionally identified diterpene synthases, there are five other
types of enzymes including KO, 2-ODD, serine decarboxylase, CYP450, and transaminase
involved in the atisine biosynthesis pathway. Among them, six CYP450 and seven 2-
ODDs were screened from 194 CYP450s and 31 2-ODDs by WCGNA analysis, all fell
into the green module together with AgCPS1 and AgKSL1 (Supplementary Table S3).
There were three KOs, one serine decarboxylase, and two transaminases genes in the
transcriptome, seven of them were induced by MJ in different degrees, which placed them
in the hypothesized pathway (Figure 7). Identifying the functions of these genes by in vivo
or in vitro experiments will be the goal of our next study.

4. Materials and Methods
4.1. Plant Materials and MJ Treatment

Seeds of A. gymnandrum were collected from Tongren County, Huangnan Tibetan
Autonomous Prefecture, Qinghai, China. The seeds were inoculated on Murashige-Skoog
solid medium (0.75% agar and 30 g L-1 sucrose, pH 5.8) after disinfection with 70% ethanol
for 30 s and 2% sodium hypochlorite for 10 min, cultured in the dark at 25 ◦C until they
sprouted. Then every six germinated seeds were transferred to a culture bottle (8 cm
diameter, 12 cm height) containing 100 mL of the same medium. They were grown in
a greenhouse for 20 days at 25 (±2 ◦C) under a 12 h-light/12 h-dark cycle provided by
a white fluorescent lamp (1500~2000 lx). When the height of the aseptic seedling was
8–10 cm, the aseptic seedling could be used as the treatment material for MJ.

Each bottle was dripped with 2 mL MJ (0.5 mM) onto the solid medium. The sample
was collected at 0 h, 6 h, 12 h, 24 h, and 48 h after MJ induction for transcriptome analysis
and 0 h, 12 h, day 2, day 3, day 6, and day 9 for metabolomics analysis. Three bottles were
collected for each time point. Then, the plants were divided into aerial portions (stem, leaf)
and roots. Samples for transcriptome analysis were stored at −80 ◦C until use. The others
were freeze-dried for metabolomic analysis.

4.2. Ditepenoid Alkaloids Extraction and UPLC-Q-TOF-MS Analysis

All the samples were dried to a constant weight under a vacuum drying process and
crushed in a tissue crusher. About 10 mg of different samples were weighed, and 1.5 mL of
50% methanol (Fisher Scientific, Geel, Belgium) was added. Berberine with a concentration
of 2 µg/mL was used as the internal standard. All the samples were subjected to ultrasonic
treatment for 30 min, then filtered through a 0.22 µm syringe filter before analysis. The
atisine reference substance provided by Li Chun from the Chinese Academy of Chinese
traditional medicine was dissolved in 50% methanol.

The Acquity UPLCTM system (Waters, Corp., Milford, MA, USA) was performed for
Metabolite profiling. The mobile phase composition used for UPLC-Q-TOF-MS comprised
a mixture of miliQ water (Millipore, Billerica, MA, USA) with 0.1% (v/v) formic acid
(A) and acetonitrile (B) by an Acquity UPLC CSH C18 column (100 mm × 2.1 mm, 1.8 µm,
Waters, Milford, MA, USA). The gradient of mobile phase is as follows: 0–0.1 min, 95~95%A;
0.1–3 min, 95~88%A; 3–5 min, 88~82%A; 5–8 min, 82~82%; 8–9.5 min, 82~78%; 9.5–15.5 min,
78~72%; 15.5–16 min, 72~70%; 16–17 min, 70~50%; 17–18 min, 50~20%; 18–20 min, 20~2%;
20–25 min, 2~2%; 25–25.10 min, 2~95%; 25.10–28 min, 95~95%. The injection volume was
1 µL, and the flow rate was set at 0.4 min/L. The column temperature was set at 45 ◦C.

The Q-TOF MS instrument used was a Synapt MS system (Waters, Corp., Milford, MA,
USA). The data acquisition mode was TOF MSE in positive ESI mode. The parameters were
set as follows: scanning ranges from 50 to 1200 mDa. The scanning time was 0.15 s, the
low-energy collision voltage was 6 V, and the high-energy collision voltage was 50–70 v.
The cone voltage was 40 V, dry gas(N2) flow rate was 6 L/min. Data were analyzed by
Masslynx 4.1 (Waters, Milford, MA, USA) and Progenesis QI software (Waters, Milford,
MA, USA).
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4.3. RNA Extraction, RNA Sequencing, and Iso-Seq Library Construction

Total RNA was extracted from different induction times in aerial portions and roots
using a HuaYueYang RNA isolation kit (biotechnology, Beijing, China), and three biological
replicates per sample were used. RNA samples were subjected to sequencing by a service
provider (Anoroad, https://www.annoroad.com, accessed on 1 April 2020). The RNA
integrity was detected using 1.0% agarose gel electrophoresis and Nanodrop (NanoDrop
Technologies, Wilmington, DE, USA) was used for RNA degradation, contamination,
and RNA purity. Agilent 2100 bioanalyzer and Qubit were further used to evaluate the
quantified concentration of total RNA.

For RNA-seq, the samples of different time points (0 h, 6 h, 12 h, 24 h, and 48 h) after
MJ treatment were performed to obtain the abundance of gene expression in different parts
of the treatment time using Illumina HiseqTM2500 platform. The RNA-seq library was
prepared using the TruSeq RNA Sample Prep Kit for Illumina, starting with 1 µg of total
RNA. The library was purified on Beckman AMPure XP beads. The barcoded RNA-seq
library was assessed by qRT-PCR using the Library Quantification Kit. The size range
of the final cDNA libraries was determined on an Agilent bioanalyzer DNA7500 DNA
chip (Agilent Technologies, Santa Clara, CA, USA). The cDNA libraries were sequenced
on one lane for 151 cycles from each end of the cDNA fragments on a HiSeq2500 using a
TruSeq SBS sequencing kit v3-HS (Illumina). The sequence images were transformed to bcl
files with the Real-Time Analysis 1.17.21.2 Illumina software, which were multiplexed to
fastq files with CASAVA version 1.8.2. The quality-scores line in fastq files processed with
Casava1.8.2 uses an ASCII offset of 33 for presentation in the Sanger format.

SMRT sequencing was conducted using a Pacbio Sequel platform. The first-strand
cDNA was synthesized using the SMARTer PCR cDNA Synthesis Kit (Clontech, Shiga,
Japan), and the reverse-transcribed cDNA was PCR amplified with KAPA HiFi PCR Kits.
Amplified cDNA was fractionated into 1~2 kb, 2~3 kb, and >3 kb fractions by BluePippin
Size Selection (Sage Science, https://www.sagescience.com, accessed on 1 March 2020)
and the SMRTbell Template Prep Kit 1.0. Libraries were used to construct three libraries
of different insert sizes. Library preparation and sequencing were conducted by Anoroad
(Beijing, China).

4.4. Iso-Seq Data Processing and Annotation

SMRTlink was used to analyze the Iso-Seq data to obtain the subreads sequence, from
which the circular consensus sequencing (CCS) was extracted. Then it was divided into full-
length read and non-full-length read according to the integrity of the sequence via Isoseq3.
The isoform was clustered by a hierarchical n*log(n) algorithm and polished by arrow
software. Finally, a high-quality consensus was obtained. The next-generation data were
used to correct the consensus sequence based on LoRDEC software, and the redundancy
was removed based on CD-HIT. Function annotation of identified transcripts or proteins
was performed using Trinotate Release v3.2.0 (https://github.com/Trinotate/Trinotate,
accessed on 20 March 2020) with default parameters, which are based on blastx, blastp,
and hmmscan sequence homology searching for SWISS-PROT (A manually annotated and
reviewed protein sequence database), PFAM (protein family, protein domain), KOG/COG
(Clusters of Orthologous Groups of proteins), NR (NCBI non-redundant protein sequences),
NT(NCBI non-redundant nucleotide sequences), GO (Gene Ontology), KO (KEGG Ortholog
database) databases.

The terpenoid biosynthesis-related genes were further manually checked by aligning
them with the reported genes from other species, such as Salvia miltiorrhiza and Scutellaria
barbata. Besides the above annotation, the diterpene synthase genes from A. carmichaelii (Ac-
CPS1, MW478118; AcCPS2-1, MW478119; AcKSL2-1, MW478123; AcKSL3-1, MW478125)
were also used as the query sequence to blast the transcriptome of A. gym-nandrum.

https://www.annoroad.com
https://www.sagescience.com
https://github.com/Trinotate/Trinotate
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4.5. Cloning of the Full-Length DiTPS Genes

Due to the high atisine content in the callus from the root [20], the total RNA of
it was further used to verify the full length of diterpene synthase genes obtained from
transcriptome assembly. One to 5 µg of total RNA was reverse transcribed into cDNA using
the PrimerScriptTM RT reagent kit with a gDNA eraser (TaKaRa Corp., Dalian, China),
according to the manufacturer’s instructions. pEASY®-Uni Seamless Cloning and Assembly
Kit (TransGen Biotech, Beijing, China) was used for directly cloning the full-length cDNA
into pET32 plasmid (Merck, Kenilworth, NJ, USA) for expression in Escherichia coli. The
gene-specific oligonucleotides are shown in Supplementary Table S7. The plasmid was
further verified by sequencing.

4.6. Heterologous Expression in E. coli

The plasmids with the AgCPS and AgKSL encoding gene and pET32a were trans-
formed in prokaryotic expression strain transetta (DE3). A single positive colony was used
to inoculate 200 mL of LB culture medium with 100 µg.mL−1 ampicillin and grown at 37 ◦C
with shaking for OD600 to 0.6–0.8. Then, 40 µL 1M Isopropyl β-D-thiogalactopyranoside
(IPTG) was added to the culture medium to induce protein expression with shaking for 14 h
at 16 ◦C. Cells were harvested by centrifugation and resuspended in 10 mL of pre-chilled
binding buffer (20 mM phosphate buffer, 137 mM NaCl, 100 mM KCl, 10 mM MgCl2, 2 mM
DTT, 10% glycerol, pH 7.4). Cells were lysed with a regime of work for 3 s with an interval
of 7 s pause to allow for cooling, a total of 15 min at 30% amplitude. Lysates were subjected
to centrifugation at 12,000× g at 4 ◦C for 20 min, and soluble protein in the supernatant was
mixed with the HisTrap HP Purification column. A total of 10 mL of washing buffer (bind-
ing buffer with 50 mM imidazole) and 3 mL elution buffer (binding buffer with 500 mM
imidazole) were used to wash bacteria proteins and recombinant proteins, respectively.

4.7. In Vitro Enzyme Assay

Each recombinant AgCPS (300 µL) reacted with 5 µL of GGPP (Sigma) for 3 h at
30 ◦C. After the reaction, fully mixed with 1.5µL CIAP overnight in 37 ◦C incubators for
dephosphorylating of CPP. The recombinant KSLs (400 µL) further reacted with ZmCPS2 or
AgCPSs (200 µL), together with GGPP (5 µL) as substrate under the same conditions. Assay
mixtures were extracted twice with 700 µL hexane. The combined hexane fractions were
dried under nitrogen and resuspended in 120 µL hexane for GC-MS analysis. Four known
enzymes, ZmCPS2 (Genbank: NM_001111787), IrKSL4 (KX580633), AtKS (Q9SAK2), and
PcTPS1 (MH626632), were used as controls.

4.8. Terpene Product Analysis by GC–MS Chromatography

The terpene product was measured on a Thermo TRACE 1310 gas chromatograph
with a TSQ8000 mass detector (Thermo Fisher Scientific, Waltham, MA, USA) in elec-
tron ionization mode. A capillary column TR-5ms with a 1.0 mL/min Helium flow rate
(30 mm × 0.25 mm ID; DF = 0.25 µm; Thermo Fisher Scientific) using splitless injection.
The GC oven temperature ramp is as follows: 50 ◦C, 2 min, 50 ◦C to 210 ◦C with 40 ◦C/min;
210 ◦C–250 ◦C with 5 ◦C/min; 250 ◦C–300 ◦C with 40 ◦C/min, with a 5 min hold at 300 ◦C.
The ion trap temperature was 280 ◦C. Data analysis was performed with the device-specific
software Xcalibur (Thermo Scientific).

4.9. Data Analyzing Software

PCA analysis was performed by Metware Cloud, which is a free online platform (https:
//cloud.metware.cn, accessed on 11 August 2022). Venn diagrams and Venn networks
were performed using EVeen (http://www.ehbio.com/Esx, accessed on 4 July 2022) [45].
WGCNA analysis was performed using ImageGP [46]. TBtools v1.098745 [47] was used
for all heatmap analyses. The Cytoscape 3.9.0 software was used to visualize the obtained
network [48].

https://cloud.metware.cn
https://cloud.metware.cn
http://www.ehbio.com/Esx
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4.10. GenBank Accessions

The full-length transcriptome reported in this paper has been deposited in China
National Center for Bioinformation under accession number PRJCA010268, which is pub-
licly accessible for all researchers at http://bigd.big.ac.cn/gsa, accessed on 4 July 2022.
GenBank accession numbers for the functional terpene synthases described in this paper
are AgCPS1 (ON881911), AgCPS2 (ON881907), AgCPS4 (ON881908), AgCPS5 (ON881909),
and AgKSL1 (ON881910).

5. Conclusions

This study used metabolomic and transcriptomic data to investigate the effects of
exogenous MJ application on diterpenoid alkaloid biosynthesis in aerial portions and
roots of sterile seedlings of A. gymnandrum. Five diterpene synthases were functionally
identified, and a new diterpene ent-8,13-CPP was found in Aconitum. WGCNA was used to
analyze the related co-expressed genes with atisine, and 10 hub genes were further filtered.
Finally, 5 functional genes and 19 predicted genes involved in the biosynthetic pathway of
atisine were established. This work predicted ent-8,13-CPP as a new precursor of DAs and
provides a basis for further analysis of the C20-DAs biosynthesis pathways.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232113463/s1, Figure S1: Speculative diterpene biosynthetic
pathway forming atisine in A. heterophyllum. Question marks indicate missing enzymes.; Figure S2:
The base peak ion diagram of A. gymnandrum; Figure S3: Correlation of samples with different
induction time; Figure S4: Annotation and classification of genes in public databases in A. gym-
nandrum; Figure S5: The expression profile for the genes involved in terpenoid biosynthesis in the
aerial portions of A. gymnandrum; Figure S6: Heat map of MVP pathways, MEP pathways, and
terpene synthase gene average FPKM (row scale) in roots and aerial portions of A. gymnandrum;
Figure S7: SDS-PAGE electrophoresis of AgKSL and AgCPSs crude proteins (M: marker); Figure S8:
Phylogenetic analysis of CYP450 in the A. gymnandrum. The blue words indicate the CYP450 genes
screened by WGCNA analysis. Figure S9: The expression level of diterpene synthase genes in
root and aerial portions of A. gymnandrum. Table S1: The mass spectrometry data, identification
of chemical constituents, and relative content from Aconitum gymnodendrum maxim; Table S2: The
number of differential genes (DEGs) based on different induction times in aerial portions and root;
Table S3: DEGs in A. gymnandrum and their Functional Annotation; Table S4: eigengenes in 6 mod-
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A. gymnandrum; Table S6: Gene in network ranked by Degree method; Table S7: Primer sequences of
AgCPS and AgKSL genes used in functional identification.
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