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Abstract: Genetic alterations of DNA repair genes, particularly BRCA2 in patients with prostate
cancer, are associated with aggressive behavior of the disease. It has reached consensus that somatic
and germline tests are necessary when treating advanced prostate cancer patients. Yet, it is unclear
whether the mutations are associated with any presenting clinical features. We assessed the incidences
and characteristics of BRCA2 mutated cancers by targeted sequencing in 126 sets of advanced
prostate cancer tissue sequencing data. At the time of diagnosis, cT3/4, N1 and M1 stages were
107 (85%), 54 (43%) and 35 (28%) samples, respectively. BRCA2 alterations of clinical significance by
AMP/ASCO/CAP criteria were found in 19 of 126 samples (15.1%). The BRCA2 mutated cancer did
not differ in the distributions of TNM stage, Gleason grade group or histological subtype compared
to BRCA2 wild-type cancers. Yet, they had higher tumor mutation burden, and higher frequency
of ATM and BRCA1 mutations (44% vs. 10%, p = 0.002 and 21% vs. 4%, p = 0.018, respectively). Of
the metastatic subgroup (M1, n = 34), mean PSA was significantly lower in BRCA2 mutated cancers
than wild-type (p = 0.018). In the non-metastatic subgroup (M0, n = 64), PSA was not significantly
different (p = 0.425). A similar trend was noted in multiple metastatic prostate cancer public datasets.
We conclude that BRCA2 mutated metastatic prostate cancers may present in an advanced stage with
relatively low PSA.

Keywords: prostate cancer; BRCA2; PSA

1. Introduction

Germline mutations of DNA homologous recombination repair (HRR) genes, particu-
larly BRCA2, are frequently found in advanced prostate cancers (PCs) [1,2], and predict
poor outcomes for conventional therapies [3–6]. Therefore, PCa screening using serum
prostate-specific antigen (PSA) is recommended in BRCA1/2-carrying males [7]. Also, so-
matic alterations of BRCA1/2 are found in 5–10% of de novo metastatic cancers and 10–15%
of metastatic castration-resistant prostate cancers (mCRPCs) [8,9]. Furthermore, BRCA2
mutation in mCRPC is associated with poor response to docetaxel chemotherapies and
new hormonal agents [5,10,11]. In contrast, recently, polyadenosine diphosphate-ribose
polymerase (PARP) inhibitors olaparib and rucaparib have demonstrated improved overall
survival in BRCA2-altered metastatic PCs, combined with or followed by conventional
chemo-hormonal therapies [12–14]. This suggests that BRCA2-altered PCs are genetically
and biologically distinguished from the rest, which is linked to drug sensitivity.

It has been known that some PCs present with low serum PSA but high-grade histology,
which often rapidly progresses to lethal disease [15,16]. Reportedly, the PSA-low tumors
are characterized by aberrant histology such as neuroendocrine, ductal/intraductal, or
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sarcomatoid features [15,17,18]. In particular, intraductal and cribriform histology are
frequently found in BRCA2 and other HRR gene-mutated PCs [19–21].

We hypothesized that BRCA2 mutation—either somatic or germline—is a special
subgroup of PC and may be clinically or pathologically distinguished from those wild-type
tumors. In this paper, we reviewed a consecutive series of targeted gene panel sequencing
data of high-risk PCs—Gleason grade group (GGG) 4–5, cT3/4 stage, N1 or M1 stage
at diagnosis. We identified those with BRCA2 mutations, and compared their clinical,
pathological and genomics characteristics with the wild-type tumors.

2. Results

We evaluated 126 sets of consecutive prostate cancer tissue NGS data (from June 2019
and April 2021). There were 26 patients with 44 BRCA2 genetic alterations (42 mutations,
1 amplification and 1 heterozygous loss) (Table S1). Among the 26 patients, we identified
19 (15.1%) patients with BRCA2 alterations that were classified as “Pathogenic” or “Likely
Pathogenic” by ACMG classification and “Tier I” or “Tier II” by AMP/ASCO/CAP clas-
sification (Table S2). Of note, the 1 hetloss was considered as an alteration whereas the
1 amplification was considered as wild-type, since BRCA2 is a tumor-suppressor gene.

2.1. Clinical Characteristics of BRCA2 Mutated Prostate Cancers

We compared the clinical characteristics of the 19 cases of BRCA2 oncogenic alterations
with the remaining 107 wild-type cases. Patient age or TNM stage distribution were not
significantly different between BRCA2 mutated (BRCA2mut) and wild-type (BRCA2WT)
tumors (Table 1). Interestingly, mean PSA at diagnosis of BRCA2mut group tended to
be lower than that of the BRCA2WT group (94.7 ng/mL vs. 242.7 ng/mL, p = 0.101,
Tables 1 and S3).

Table 1. Clinical and Pathologic Characteristics of BRCA2 mutated cancers.

BRCA2 Mutated
N = 19

BRCA2 Wild Type
N = 107 p Value

Age at diagnosis (years)
Mean (range) 64.1 (43–88) 66.3 (44–86) 0.432 1

PSA at diagnosis (ng/mL)
Mean (range) 94.7 (5.6–682) 242.7 (2.4–5000) 0.101 1

cT stage, N (%)
0.925 2T2 3 (16%) 16 (15%)

T3/4 16 (84%) 91 (85%)
N1 stage, N (%) 6 (32%) 48 (45%) 0.324 3

M1 stage, N (%) 8 (42%) 27 (25%) 0.165 3

Gleason grade group, N (%) *
0.140 21–4 6 (32%) 51 (50%)

5 13 (68%) 51 (50%)
Histologic Type, N (%) *

0.070 3
Adenocarcinoma, acinar type 16 (84%) 86 (84%)
Adenocarcinoma, ductal type 1 (5%) 15 (15%)

Neuroendocrine small cell 2 (11%) 1 (1%)
Adenosquamous 0 (0%) 1 (1%)

1 unpaired t-test with Welch’s correction, two-tailed; 2 Chi-square test; 3 Fisher’s exact test. * Five wild type
tumors were from metastatic specimen, unevaluable for GGG or histologic typing.

2.2. Pathologic Characteristics of BRCA2 Mutated Prostate Cancers

Gleason grade group (GGG) 5 tumors were more frequent in BRCA2mut group than
the BRCA2WT group, yet not statistically significant (68% vs. 50%, p = 0.140, Table 1). Neu-
roendocrine/small histology was more frequent in BRCA2mut group, yet not statistically
significant either (11% vs. 1%, p = 0.06, Table 1). Lastly, ductal adenocarcinoma was less
significant in BRCA2mut group (5% vs. 15%, p = 0.06, Table 1).
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2.3. PSA at Presentation by Initial Stage and by BRCA2 Mutation

We separated the cohort into metastasis at presentation (M1, n = 34) and no metastasis
at presentation (M0, n = 92) subgroups. The mean serum PSAs at presentation were:
102 ng/mL (BRCA2mut M1, n = 8), 869 ng/mL (BRCA2WT M1, n = 26), 89 ng/mL
(BRCA2mut M0, n = 11) and 39 ng/mL (BRCA2WT M0, n = 80), respectively. In the M1
subgroup, mean PSA at presentation was significantly lower in the BRCA2mut group than
the BRCA2WT group (102 ng/mL vs. 869 ng/mL, p = 0.018, t-test with Welch’s correction,
Table S3). In the non-metastatic subgroup, contrastingly, serum PSA was not significantly
different between the BRCA2mut group and the BRCA2WT group (89 ng/mL vs. 39 ng/mL,
p = 0.425, t-test with Welch’s correction).

2.4. Genomic Characteristics of BRCA2 Mutated Prostate Cancers

Common genetic alterations in prostate cancer, such as TMPRSS2-ERG fusion, TP53,
AR, MYC, or CDK12 were not significantly associated with BRCA2 mutations. Enriched
gene mutations (including variants of unknown significance) in BRCA2mut group in-
cluded ATM, APC and BRCA1 (Table 2, sample data available in Table S1). Enriched gene
mutations in wild-type tumors include SPOP (7.5% vs. 0.0%, p = 0.606, Fisher’s exact
test) (Table S1). Median tumor mutation burden (TMB) was calculable in 87 (69%) of the
126 sequenced samples, and microsatellite instability (MSI) was calculable in 89 (71%) of
the samples. TMB of BRCA2mut group was significantly higher than BRCA2WT group
(12.2 vs. 3.9 mutation/Mb, p < 0.001, Mann-Whitney test, Table S3). In contrast, median
microsatellite instability (MSI) was not significantly different between the two groups
(2.90% vs. 3.23%, p = 0.895, Mann-Whitney test).

Table 2. Genomic Characteristics of BRCA2 mutated cancers.

BRCA2 Mutated
N = 19

BRCA2 Wild Type
N = 107 p Value

TMPRSS2-ERG fusion, N (%) 3(16%) 27(25%) 0.560 1

TP53, N (%) 2(11%) 22(22%) 0.522 1

AR, N (%) 7(37%) 19(18%) 0.070 1

MYC, N (%) 7(37%) 18(17%) 0.061 1

CDK12, N (%) 3(16%) 16(15%) >0.999 1

FGFR1, N (%) 1(5%) 17(16%) 0.140 1

ATM 8(42%) 11(10%) 0.002 1

APC 7(37%) 9(8%) 0.003 1

BRCA1 4(21%) 4(4%) 0.018 1

1 Fisher’s exact test.

2.5. Serum PSA Level Validation in Public Datasets

To validate our findings, we assessed four large public datasets of metastatic castration-
resistant (n = 444, 123) [6,22], metastatic castration-sensitive (n = 424) [23], and localized
prostate cancers (n = 187) with serum PSA data available [24]. The prevalence of BRCA2
alterations in the studies are summarized in Table 3.

Table 3. BRCA2 mutation incidences in prostate cancer datasets with PSA level data available.

Source (Disease State) BRCA2 Mutated BRCA2 Wild Type

This paper (nmCSPC) 11 (12%) 80 (88%)
TCGA (nmCSPC) 7 (4%) 180 (96%)

This paper (mCSPC) 8 (23%) 27 (77%)
Stopsack et al. (mCSPC) 17 (5%) 303 (95%)

Abida et al. (mCRPC) 56 (15%) 321 (85%)
Wei et al. (mCRPC) 20 (19%) 83 (81%)
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2.5.1. Localized BRCA2 Mutated Prostate Cancer

In the TCGA-localized prostate cancers, BRCA2 genetic alterations (mutations or deep
deletion, somatic/germline) were found in 7 (4%) patients. In this group, Serum PSA of
BRCA2-mutated tumors was not significantly different from the wild-types
(26.4 ng/mL vs. 10.4 ng/mL, p = 0.107, t-test with Welch’s correction, Figure 1), con-
sistent with our data. Median mutation count was higher in the BRCA2-mutated group,
yet did not reach statistical significance (30 vs. 21, p = 0.067, Mann-Whitney test).
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Figure 1. Serum PSA level at diagnosis in BRCA2-mutated vs. wild-type prostate cancer, stratified
by metastatic stage and castration-sensitivity. Asterisks: * p < 0.05; ** p < 0.01. black circle: BRCA2
wild-type sample (WT); pink circle: BRCA2 mutated sample (mut). Colored bar = median. Datasets:
This paper, TCGA. [24], Stopsack et al. [23], Abida et al. [22], Wei et al. [6].

2.5.2. Metastatic Castration-Sensitive BRCA2 Mutated Prostate Cancer

In the mCSPC dataset (Stopsack et al.), we excluded those received androgen de-
privation therapy (n = 104) for PSA level comparison. In the hormone-naïve subgroup
(n = 297), Serum PSA of BRCA2-mutated tumors was significantly lower than the wild-types
(127 ng/mL vs. 306 ng/mL, p = 0.031, t-test with Welch’s correction, Figure 1). For mutation
count comparison, we used the full dataset. BRCA2-mutated tumors (n = 23) had higher
mutation count than the wild-types (n = 401) (p < 0.0001, Mann-Whitney test, Figure 2),
consistent with our results.
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circle:BRCA2 mutated sample (mut). Colored bar =median. Datasets: This paper, TCGA. [24], Stop-
sack et al. [23], Abida et al. [22], Wei et al. [6]. 
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T3/4 and 14–23% M1 disease at diagnosis [25]. Based on our analysis, we speculate that 
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static PCs, it is now recommended by the NCCN, AUA or EAU guidelines to run both. 

Serum PSA is a highly sensitive biomarker for prostate cancer diagnosis as well as 
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without PSA elevation [26]. Our findings speculate that BRCA2-altered prostate cancer 

Figure 2. Tumor mutation burden or mutation count of BRCA2-mutated prostate cancer vs. wild-type
prostate cancer tissues. From left to right: tumor mutation burden (mutation/Mb), data from this
paper; tumor mutation count (total), data from Stopsack et al.; tumor mutation count (total), data from
Abida et al. Asterisks: **** p < 0.0001. black circle: BRCA2 wild-type sample (WT); pink circle: BRCA2
mutated sample (mut). Colored bar = median. Datasets: This paper, TCGA. [24], Stopsack et al. [23],
Abida et al. [22], Wei et al. [6].

2.5.3. Metastatic Castration-Resistant BRCA2 Mutated Prostate Cancer

In the first mCRPC dataset (Abida et al.), clinically significant BRCA2 alterations
were found in 47 samples (10%). Compared to those with wild-type BRCA2 (n = 374),
BRCA2-mutated samples had significantly lower serum PSA at presentation (48 ng/mL
vs. 186 ng/mL, p = 0.017, t-test with Welch’s correction, Figure 1) and higher mutation
count (p < 0.0001, Mann-Whitney test, Figure 2). In the second mCRPC dataset (Wei et al.),
BRCA2 alterations (somatic and germline) were found in 20 samples (19%). Similarly, their
serum PSA at presentation was significantly lower than the wild-type tumors (53.4 ng/mL
vs. 190 ng/mL, p = 0.006, t-test with Welch’s correction, Figure 1).

2.6. Genomic Characteristics Validation in Public Dataset

Using the cBioPortal, we validated the co-occurrence or mutual exclusivity of gene mu-
tations with BRCA2 genetic alterations in prostate cancer public datasets (6875 patients or
7151 samples from 22 studies). BRCA2 genetic alterations were found in 383 (6%) of queried
patients. Tumor mutation burden was significantly higher in the BRCA2-altered samples.
We confirmed enriched genomic alterations of ATM (11% vs. 5.1%, p = 1.442 × 10−5) and
APC (16% vs. 5.8%, p < 1 × 10−10) (Fisher’s exact test), consistent with our data. SPOP
mutation was more frequent in BRCA2-altered group (16% vs. 9.9%, p = 6.079 × 10−4),
opposite to our data.

3. Discussion

We found that BRCA2-mutated metastatic PCs present with relatively low serum PSA.
In localized tumors, however, serum PSA of BRCA2 mutated PCs was not lower than the
wild-type PCs. Also, we validated our findings with multiple publicly available mCSPC
and mCRPC datasets. To our knowledge, this is first report that suggests BRCA2-mutated
metastatic tumors differ from the wild-type tumor by PSA level at diagnosis. Velho et al.
reported that germline DNA-repair gene mutation-positive prostate cancer patients (52%
BRCA1 or BRCA2) had lower median PSA levels at diagnosis than mutation-negative
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patients. The patient cohort analyzed by Velho et al. consisted of 53–62% of T3/4 and
14–23% M1 disease at diagnosis [25]. Based on our analysis, we speculate that the PSA-low
advanced stage tumors are enriched by BRCA2 mutation carriers. For metastatic PCs, it is
now recommended by the NCCN, AUA or EAU guidelines to run both.

Serum PSA is a highly sensitive biomarker for prostate cancer diagnosis as well as
monitoring for recurrence and drug response. Yet, its specificity is not high enough for
metastatic disease monitoring, leaving cases with clinical or radiographic progression
without PSA elevation [26]. Our findings speculate that BRCA2-altered prostate cancer
progresses rapidly to metastatic and castration-resistant disease not necessarily accom-
panied by increased serum PSA level. Molecular studies suggest that BRCA2 mutation
combined with RB1 alteration, which is located closely on chromosome 13q14, can generate
an aggressive PC model with castration resistance [27].

Our study shows that BRCA2 mutation is associated with lower PSA at the metastatic
state, but not in the localized setting. We suggest some explanations, but these are not yet
definitive. First, the major source of serum PSA in patients with metastatic prostate cancer
is the cancer cells themselves. However, in a localized setting, theoretically, PSA released
from adjacent normal cells may contribute more significantly than in a metastatic setting.
Secondly, genetic characteristics of BRCA2 wild-type localized cancer may be different from
those of BRCA2 wild-type metastatic cancer. As BRCA2 mutation is enriched in metastatic
prostate cancer, TP53 mutation or RB1 deletions are also enriched in metastatic disease,
whereas SPOP mutation is more frequent in localized disease [6,21,22,28,29]. Lastly, the
metastatic microenvironment may pressure cancer cells to express PSA more or less than
the primary site. In other words, a BRCA2-mutated cancer cell at the primary site (prostate)
may express high PSA while a cell with same genetic background but located in bone
marrow may express less PSA.

Among the various DNA-repair genes of HRR or mismatch repair, we focused on
BRCA2 alteration because it is the most frequently mutated HRR gene in advanced PCs [1],
and represents a subset of patients that are likely to respond to PARP inhibitors [12,13].
While earlier studies combined ATM mutation in this subgroup [4], recent evidence shows
that PARP inhibitor alone is not enough to treat the ATM mutated PCs [30]. Indeed, we
found that ATM mutation frequently accompanies BRCA2, which may explain the earlier-
documented benefit of PARP inhibitors in ATM-mutated cases. ATM germline mutation
increases the likelihood of PC development [31], and ATM mutation or protein loss are
enriched in high-grade cancer [32]. In response to DNA double strand break, the ATM
protein modulates diverse aspects of the cell’s responses such as cell cycle checkpoint arrest,
apoptosis—not limited to DNA repair itself [33–35]. This may lead to varying responses to
DNA-damaging agents such as PARP inhibitors or radiations in patients with ATM somatic
or germline alterations unlike BRCA1 or BRCA2 [36–38].

We point to some limitations in this study. Interpretation of our data is limited due
to the study’s retrospective design. Serum PSA data was available in only a subset of the
datasets analyzed in this study, which may increase selection bias. We did not perform
survival analysis as the consecutive treatments after sequencing analysis were rather
heterogenous. Particularly, some of the patients with HRR mutations underwent clinical
trials involving PARP inhibitors which would deviate survival outcome. Lastly, we tried
setting some arbitrary cut-off points (100 ng/mL, 10 ng/mL) of PSA threshold or values
that could possibly be considered suspicious and warrant genetic testing in metastatic PC
at presentation, which were not successful. We argue that somatic and germline genetic
testing is recommended in patients with metastatic PC no matter what their PSA level is.

It has been known that there is a clinically distinctive aggressive variant prostate cancer
(AVPC), presenting with low-serum PSA, neuroendocrine small cell or ductal histology,
which frequently metastasizes to visceral organs and rapidly develops castration resistance.
Yet there is substantial genomic and transcriptomic heterogeneity that exists within these
tumors [39]. Our paper addresses the contention that BRCA2-mutated metastatic PC fits in
the criteria of AVPC, providing further understanding on this disease entity.
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4. Materials and Methods

Patient data: The YUHS Big-Data team identified cases of prostate cancer patients
who had performed next generation sequencing on their achieved prostate cancer tissues
(prostatectomy, biopsy or transurethral resection specimen) between January 2019 and
May 2021. Associated clinical and pathological information was retrieved from electrical
medical records. The study design was approved by Severance Hospital Institutional
Review Board (IRB #4-2020-0812). Patient consent was waived due to the retrospective
nature of the study. All data underwent deidentification process.

Panel Sequencing of Prostate Cancer Tissues: Targeted DNA and RNA sequencing
were performed using TruSight Tumor 170 or 500 (Illumina, San Diego, CA, USA). Briefly,
40 ng of formalin-fixed paraffin-embedded (FFPE) tissue-derived DNA and RNA were
extracted using QIAGEN AllPrep DNA/RNA FFPE Kit (Qiagen, Hilden, Germany). After
hybridization capture-based target enrichment, paired-end sequencing (2 × 150 bp) was per-
formed using a NextSeq sequencer (Illumina) according to the manufacturer’s instructions.
Variants with a total depth of at least 100× were included for analysis. Variant interpreta-
tion was based on recommendations from the Association for Molecular Pathology (AMP),
American Society of Clinical Oncology (ASCO) and College of American Pathologists
(CAP) [40]. AMP/ASCO/CAP Tier 1 variant included level 1 and level 2 genetic alterations
that are FDA-approved biomarkers and standard of care. Tier 2 variant included alterations
with compelling clinical or preclinical evidence to drug response. Variant interpretations
followed the “Standards and guidelines for the interpretation of sequence variants” pub-
lished by the American College of Medical Genetics and genomics (ACMG) [41]. Each
variant was initially queried using Varsome (Varsome.com) which annotates variants by
combining data resources including AACT Clinical Trials from clinicaltrials.gov, Pharma-
cogenomics Knowledge Base (PharmGKB), COSMIC by the Sanger Institute, Polyphen-2
scores by Harvard University, CADD scores by the University of Washington, Clinical Phar-
macogenetics Implementation Consortium (CPIC), the Drug-Gene Interaction Database
(DGIdb) and OMIM [42]. Output variant annotation was manually reviewed in OncoKB
website (http://www.OncoKB.org) (last accessed on 30 September 2022).

Public Dataset Analysis: We downloaded annotated clinical and genomic data from
the cBioportal—“Prostate Adenocarcinoma (TGCA, Cell 2015)”, “Metastatic castration-
sensitive prostate cancer (MSK, Clin Cancer Res 2020)”, and “Metastatic Prostate Adenocar-
cinoma (SU2C/PCF Dream Team, PNAS 2019)”. Additionally, we downloaded annotated
clinical and genomic data of metastatic castration-resistant prostate cancer from the publi-
cation of Wei et al. [6].

Statistical Methods: Cases were grouped by their germline or somatic alteration
status of BRCA2 (mutation, deletion). Serum PSA at diagnosis and tumor mutation count
were compared between BRCA2-altered group and wild-type from each study. Baseline
characteristics, including Gleason grade group, TNM stage and other gene mutations
were compared between the two groups using Pearson’s chi-squared test or Fisher’s exact
test. Continuous variables of age at diagnosis and PSA at diagnosis were compared using
t test with Welch’s correction. Tumor mutation burden or total mutation count were
compared using Mann-Whitney test. All p values were two-sided and p < 0.05 was defined
as statistically significant. Statistical analysis was performed using SPSS 26.0 and GraphPad
Prism 9.2.0.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232113426/s1.

Author Contributions: Conceptualization, H.H. and K.S.C.; methodology, H.H. and C.K.P.; software,
H.H.; validation, H.H.; investigation, N.H.C., K.S.C. and J.L.; resources, W.S.J., W.S.H. and Y.D.C.;
data curation, H.H.; writing—original draft preparation, H.H.; writing—review and editing, H.H.,
C.K.P. and K.S.C.; visualization, H.H.; supervision, Y.D.C. and K.S.C.; project administration, H.H.;
funding acquisition, H.H. and K.S.C. All authors have read and agreed to the published version of
the manuscript.
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