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Abstract: Blood cell detection is an essential branch of microscopic imaging for disease diagnosis. TE-
YOLOF is an effective model for blood cell detection, and was recently found to have an outstanding
trade-off between accuracy and model complexity. However, there is a lack of understanding of
whether the dilated encoder in TE-YOLOF works well for blood cell detection. To address this issue,
we perform a thorough experimental analysis and find the interesting fact that the dilated encoder is
not necessary for TE-YOLOF to perform the blood cell detection task. For the purpose of increasing
performance on blood cell detection, in this research, we use the attention mechanism to dominate
the dilated encoder place in TE-YOLOF and find that the attention mechanism is effective to address
this problem. Based upon these findings, we propose a novel approach, named Enhanced Channel
Attention Module (ECAM), based on attention mechanism to achieve precision improvement with
less growth on model complexity. Furthermore, we examine the proposed ECAM method compared
with other tip-top attention mechanisms and find that the proposed attention method is more effective
on blood cell detection task. We incorporate the spatial attention mechanism in CBAM with our
ECAM to form a new module, which is named Enhanced-CBAM. We propose a new network
named Enhanced Channel Attention Network (ENCANet) based upon Enhanced-CBAM to perform
blood cell detection on BCCD dataset. This network can increase the accuracy to 90.3 AP while
the parameter is only 6.5 M. Our ENCANet is also effective for conducting cross-domain blood cell
detection experiments.

Keywords: blood cell detection; TE-YOLOF; attention mechanism

1. Introduction
1.1. Background

Blood cells are an important element in maintaining the normal functioning of human
organs and tissues. Through the analysis of blood cells in microscopic images by identifying
the cell types and distributions, doctors can make an accurate diagnosis of various diseases,
such as blood disorders, polycythemia, and so on [1]. As for the auxiliary tools for the
analysis of microscope images, slide scanners are used to generate super-resolution whole
slide images (WSI) [2], which can realize the digitization of microscope images, thereby
assisting physicians in disease diagnosis. However, this tool is to transfer the microscope
image to the computer, where the doctor can judge the digitized image—it does not change
the essence of manual statistics.

The application of machine learning in cell biology is the first attempt to solve the
above artificial analysis problem [3]. Classical machine learning methods have been used
to address blood cell detection problems, such as K-Nearest Neighbor (KNN), Naive
Bayes (NB), Support Vector Machine (SVM), and so on [4–6]. The limitation with these
methods is that they need to manually process image features first, then perform the blood
cell detection task. Deep learning, developed from machine learning, is a representation
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learning method that can learn representations from raw data by multiple processing
layers [7]. This method naturally addresses the limitations of machine learning methods
and elevates blood cell detection to the degree that it can be deployed in an end-to-end
way. With the power of deep learning, doctors can avoid the manual positioning of image
information and focus more on information analysis. For researchers, they can allocate
more attention to addressing the problem of adaptability and accuracy of deep network
models in blood cell detection. The initial methodology for researchers is to directly use
the original deep network model to process and analyze the blood cell detection dataset,
using either object detection methods [8,9] or semantic segmentation methods [10,11].

In this paper, we focus more on the application of object detection methods in blood
cell detection. Kutlu et al. proposed a convolutional neural network based on R-CNN and
transfer learning methods to achieve blood cell detection [8]. Zhang et al. used the YOLOv3
detector for blood cell detection [9]. The direct transfer of original models to new domains
for detection is effective, but they are relatively expensive on model complexity. Recently,
many lightweight models have appeared in the field of medical detection analysis [12,13],
as well as in the blood cell detection task [14,15]. Our research focus in this paper is on
the recently proposed model TE-YOLOF [15], which is an effective model for blood cell
detection with an outstanding trade-off between accuracy and model complexity. In the
process of understanding the architecture of the model, a question naturally arises: is the
dilated encoder a necessary component in TE-YOLOF for blood cell detection task? See
Figure 1 for a detailed comparison under the premise of TE-YOLOF with or without the
dilated encoder module. Figure 1 clearly shows that the dilated encoder does not contribute
much to the performance improvement of blood cell detection but occupies a part of the
limited model complexity.

Figure 1. ’BN‘ denotes that the backbone network used is EfficientNet-BN. We perform a thorough
experimental analysis on the TE-YOLOF examining whether the dilated encoder can help in the
blood cell detection on the blood cell detection BCCD dataset. This figure shows the performance
comparison of the model on mAP with or without the dilated encoder module when replacing
different backbones of TE-YOLOF. The metric of mAP represents that the mean Average Precision of
each category with the Intersection Over Union (IoU) threshold of 0.5.

Based on this finding, we directly remove the dilated encoder in TE-YOLOF. At this
point, another interesting question naturally arises: can we improve the accuracy of the
model while not increasing the model complexity greatly? Our intention is to improve the
performance without affecting the overall architecture of the network; then, this question
evolves into whether it is possible to design a module and place it in the position where the
dilated encoder is located so as to achieve the effect of improved performance.

The above question motivates us to pay attention to the attention mechanism.
SENet [16] and CBAM [17] are the representative networks that use the channel attention
mechanism and spatial attention mechanism, respectively. These attention mechanism
approaches have been successful used in other medical analysis problems [18,19]. See
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Section 1.2.2 for details on the application of the attention mechanism. We attempt to
incorporate these attention mechanisms into TE-YOLOF. Later experiments can prove that
integrating them in our network can effectively enhance the detection performance. Based
upon these findings, we deeply analyze how these mechanisms are effective and propose
a new approach based on the channel attention mechanism, which is named Enhanced
Channel Attention Module (ECAM). See Section 4.1 for specific module details of ECAM
and the source of improvement idea. We examine the proposed ECAM method compared
with other attention mechanisms to prove that the proposed attention method is effective
on addressing blood cell detection problem. In a nutshell, the contributions of this paper
can be summed up as the following items:

• Through experiments, we prove that the dilated encoder is a non-essential component
in TE-YOLOF to address the problem of blood cell detection. This finding can reduce
nearly one-third of the parameters of the original model, which reduce the model
complexity from 9.94 M to 6.46 M.

• Attention mechanism is an effective way to increase model TE-YOLOF detection
performance without greatly increasing model complexity on the blood cell detec-
tion task.

• The proposed attention mechanism ECAM can perform better on blood cell detection
than other attention methods, such as SENet, CBAM, and so on. TE-YOLOF-B0 is still
only 6.49 M after incorporating this module. Even the model complexity of ECBAM,
which adds the spatial attention mechanism in CBAM into ECAM, is only 6.5 M.

1.2. Related Work
1.2.1. Blood Cell Detection

Blood cell detection can provide necessary information for the diagnosis of various
diseases. With the advent of the era of big data and the digitization of blood cell pictures
through WSI, a large number of microscope images can be generated, which provides fertile
soil for the growth of automatic data analysis methods [20]. A typical blood cell tissue has
three components: white blood cells (WBCs), red blood cells (RBCs), and platelets [21]. For
their analysis, the first attempt is to use machine learning methods to automate the blood
cell analysis, so as to achieve computer-aided goals. The initial blood cell detection system
has mainly three steps: (1) Detection of blood cells from the image. (2) Extracting features
from the detection area. (3) Designing a classifier to perform the blood cell classification
task [22]. Kumar et al. used the K-Nearest Neighbor and Naive Bayes Classifier to perform
the blood cell detection task [4]. Markiewicz et al. proposed a classifier based on Support
Vector Machine to conduct blood cell classification, which is the innovation of their third
step [6]. Mandal et al. proposed a classifier based on Gradient Boosting Decision Tree
(GBDT) for blood cell detection [23].

The object detection method based on deep learning takes the above machine learning
methods a big step forward, combining the three steps of the traditional blood cell detection
system into one step. The detection system only needs to perform detection on the original
image to obtain the desired effect. Because of this simplicity of thought, researchers have
tried to transfer the two-stage and one-stage object detection networks for addressing blood
cell detection problems. Kutlu et al. proposed a convolutional neural network based on
regional convolutional neural network, which is the essential component of the two-stage
object detection network, to achieve blood cell detection [8]. Zhang et al. used the YOLOv3
detector, which is the representative one-stage object detection network, for blood cell
detection [9]. The difference in medical problems compared with general object detection
problems is that they require a network with lower model complexity and good detection
effect to meet a wider range of usage scenarios, as well as in blood cell detection problems.
For the purpose of meeting this demand, Shakarami et al. made a lightweight improvement
to YOLOv3 for blood cell detection [14]. On the basis of the above improvements, Xu et al.
proposed a lightweight TE-YOLOF to further improve the accuracy and reduce the model
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complexity to less than 10 M [15]. The research in this paper is to further reduce the model
complexity on the basis of TE-YOLOF.

1.2.2. Attention Mechanisms

The application of attention mechanisms in the field of computer vision mainly in-
volves channel attention mechanism and spatial attention mechanism. SENet [16] and
CBAM [17] are the representative modules for the above two attention mechanisms sep-
arately. They are initially used to improve the accuracy of object classification task by
enhancing the expressiveness of feature maps. These attention mechanism modules and
their variants can be applied to many other tasks, not limited to object classification tasks.
Li et al. proposed FCAM that adds one Multilayer Perceptron (MLP) in channel attention
layer to improve performance on point cloud detection [24]. Hu et al. proposed a Twin
attention mechanism that updates the channel attention and the spatial attention in CBAM
to parallel and uses this method to carry out surface defect classification [25]. Zhu et al.
used the SE block to perform enhancing feature task in region channel [26].

The application of attention mechanism is not limited to the above questions, they also
have been used in medical analysis problems as well as in blood cell detection problems.
Tong et al. proposed ASCU-Net, which places the attention gate before CBAM to address
the skin lesion problem [18]. Jiang et al. integrated CBAM into each stage output in
YOLOv3 [27] for feature enhancement to perform blood cell detection [28]. Our research
focuses on integrating attention mechanism into TE-YOLOF to improve the performance of
blood cell detection tasks.

2. Results
2.1. Implementation Details

In this work, the implementation of our network is the same as TE-YOLOF in [15].
The overall architecture is implemented by Pytorch and uses an Nvidia GeForce 1080Ti to
train our network. The training strategy we use is SGD and the mini-batch setting is 4. All
models are trained under an initial learning rate of 0.12 with 12 epochs. We set the warmup
iterations as 1500 at the beginning to stabilize the training. In the post-processing, we use
the threshold of 0.6 of NMS to process results. For the evaluation metrics, we use the MS
COCO detection evaluation metrics in all our experiments.

2.2. Dataset

The BCCD dataset https://public.roboflow.com/object-detection/bccd (accessed on
26 July 2021), which includes 364 images, is used to conduct the blood cell detection task,
which contains three cell objects: platelets, white blood cells (WBC), and red blood cells
(RBC). All the images in this dataset are 416× 416× 3, after being resized from the original
dimensions of 640× 480× 3. The division protocol of this dataset divided images into
training, val, and test sets at a ratio of 7:2:1. In addition, data augmentation strategies such
as horizontal flip and vertical flip are used to expand the diversity of images. In order to
prove that our network can achieve cross-domain blood cell detection, the BCDD dataset
https://github.com/draaslan/blood-cell-detection-dataset (accessed on 16 October 2021)
and the WBC Image Dataset (WID) https://github.com/zxaoyou/segmentation_WBC
(accessed on 18 October 2021) are used for generalization verification. All datasets are
annotated in COCO format.

2.3. Comparison with TE-YOLOF

For fair comparison with TE-YOLOF, we use the same settings for TE-YOLOF as
in [15]. The only difference in this comparison is that the dilated encoder is changed to the
proposed method and other attention methods. In the ablation experiments below, we can
find that the spatial attention mechanism is useful for improving the performance of blood
cell detection; so, we use the proposed ECBAM, which is ECAM with the spatial attention

https://public.roboflow.com/object-detection/bccd
https://github.com/draaslan/blood-cell-detection-dataset
https://github.com/zxaoyou/segmentation_WBC
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mechanism, to perform the comparison task. In each version of the backbone in TE-YOLOF,
we also conduct the comparison. The comparison results can be seen in Table 1.

Table 1. Comparison with TE-YOLOF on the BCCD validation set. Models marked with the suffix
’B(N)‘ adopt EfficientNet-B(N) as backbone by default. ‘- dilated encoder’ represents that TE-YOLOF
does not use the dilated encoder to achieve feature enhancement, and uses the 1× 1 conv to reduce
the channels from backbone to the default number of 512. ‘+ BAM’ represents using the spatial
attention mechanism in CBAM to achieve feature enhancement, while this module is placed in the
original dilated encoder location. ‘+ CBAM’ represents using the original attention mechanism in [17],
which contains the channel attention mechanism and the spatial attention mechanism. ‘+ ECBAM’
represents using the Enhanced Channel Attention Module we proposed with the spatial attention
mechanism in CBAM.

Model #Params GFLOPS AP AP50 AP75 APS APM APL

TE-YOLOF-B0 9.94 M 6.21 G 55.6 89.4 59.8 35.1 58.2 48.1
- dilated encoder 6.46 M 2.73 G 56.1 89.7 59.5 37.1 59.9 47.3

+ BAM 6.46 M 2.73 G 55.5 89.8 57.2 36.1 58.8 44.1
+ CBAM 6.5 M 2.73 G 56.8 90.3 60.6 36.0 59.8 49.4

+ ECBAM 6.5 M 2.73 G 57.1 90.3 63.8 37.1 58.9 48.2

TE-YOLOF-B1 12.45 M 6.32 G 57.8 90.1 64.5 38.4 62.2 46.1
- dilated encoder 8.97 M 2.84 G 57.3 89.4 67.0 43.6 58.5 47.3

+ BAM 8.97 M 2.84 G 55.6 89.8 61.3 37.3 59.1 47.0
+ CBAM 9 M 2.84 G 55.5 90.4 59.5 39.6 58.9 44.1

+ ECBAM 9 M 2.84 G 57.2 90.4 66.0 39.3 60.0 44.6

TE-YOLOF-B2 13.7 M 6.4 G 56.6 90.1 60.4 37.1 59.1 47.8
- dilated encoder 10.22 M 2.92 G 57.0 89.9 62.0 37.6 59.1 46.9

+ BAM 10.22 M 2.92 G 58.3 89.9 62.0 40.3 60.2 46.8
+ CBAM 10.25 M 2.92 G 56.5 90.4 59.2 38.2 57.8 47.7

+ ECBAM 10.25 M 2.92 G 57.3 90.0 63.3 38.2 58.7 48.0

TE-YOLOF-B3 16.76 M 6.6 G 58.4 90.6 66.0 40.4 59.6 47.5
- dilated encoder 13.28 M 3.12 G 57.6 90.2 61.7 34.4 61.0 49.2

+ BAM 13.28 M 3.12 G 57.2 90.3 62.8 39.0 59.1 46.7
+ CBAM 13.31 M 3.12 G 57.4 90.5 63.4 40.4 58.5 44.6

+ ECBAM 13.31 M 3.12 G 57.3 90.5 65.2 39.3 60.6 44.9

According to the results in Table 1, it is obvious that TE-YOLOF can achieve blood
cell detection well under different versions of backbone without dilated encoder, but this
change can bring a litter reduced accuracy in AP50. Without dilated encoder, TE-YOLOF-
B0 can reduce the parameters from 9.94 M to 6.46 M (−3.48 M) and the GFLOPS from
6.21 G to 2.73 G (−3.48 G), the other versions from EfficientNet-B1 to EfficientNet-B3 also
reduced the parameters at 3.48 M and the GFLOPS at 3.48 G. Then, in each version of
backbone, we use the TE-YOLOF without dilated encoder as baseline. With the power of
the spatial attention mechanism in CBAM, the accuracy of AP50 can improve 0.1–0.4 AP
based upon the different backbone. Meanwhile, when we introduce the channel attention
mechanism, the accuracy of AP50 can be improved by 0.2–0.6 AP based upon the different
backbone. All versions of modified TE-YOLOF can improve the accuracy of AP50 higher
than 90.0; further, they can all be stable in the range of 90.0 to 90.5. Such blood cell detection
results are already comparable with the detection results of the original TE-YOLOF. The
detection result of TE-YOLOF-B0 is 90.3 AP, which is lower than the detection result 90.5 AP
of TE-YOLOF-B3 by only 0.2 AP. Comparing the 1.2 AP gap of the original TE-YOLOF
between the EfficientNet-B0 and EfficientNet-B3 backbones, this comparison result shows
that the proposed method ECBAM can give the power of stable detection performance for
different backbones. From this comparison, it can be clearly seen that the parameters can be
reduced from 13.31 M to 6.5 M and the GFLOPS can be reduced from 3.12 G to 2.73 G. From
the perspective of computational complexity, this method saves a lot of computational
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resources. ECBAM has the same power of improving the accuracy on AP50 compared with
CBAM, and it can increase on AP75 by 1.8 to 6.5 AP compared with CBAM.

2.4. Ablation Experiments

In this section, we run a number of ablations to analyze the rationality of the proposed
ECAM and ECBAM. We first run the ablation of different channel attention modules to an-
alyze whether the proposed method of ECAM is more effective than other tip-top attention
mechanisms. Then, we analyze the necessity of adding a spatial attention mechanism so as
to form our proposed method of ECBAM. Finally, we perform spatial attention module
kernel size ablation experiments to select the best kernel size for our ECBAM and perform
the reduction ratio of MLP in ECAM ablation experiments to select the best reduction ratio
in ECAM. For the credibility, all the ablation results are the average of three trials. The base
model is TE-YOLOF-B0.

2.4.1. Different Channel Attention Module

In the selection of the channel attention mechanisms, based upon the selection of SE
and CAM in CBAM, we also add an ECA [29] module, which is improved based on SE,
to perform the ablation study. A total of three attention mechanisms are selected. Details
can be seen in Table 2. The ECA module is not effective for improving performance of
the blood cell detection task, even if it does not increase the parameters and the GFLOPS.
The SE module and the CAM in CBAM both can improve the performance by 0.2–0.3 AP.
Meanwhile, our proposed method of ECAM module can improve the accuracy to 90.1
under the premise of the same model complexity with the above two attention mechanisms.
With the power of the Enhanced Channel Attention Mechanism, AP50 can be increased
from 89.7 to 90.1, while the parameters are increased by 0.3 M and GFLOPS stay the same.
So, the proposed method of ECAM is the most effective attention mechanism in blood cell
detection task.

Table 2. Comparison with different Channel Attention Modules in TE-YOLOF without dilated
encoder. The ‘*’ represents TE-YOLOF-B0 without dilated encoder and using 1× 1 conv to reduce the
channel number to default 512. Specifically, ‘+ ECA’ represents the Efficient Channel Attention used
in [29].

Model Params GFLOPS AP50

TE-YOLOF * 6.46 M 2.73 G 89.7
+ ECA [29] 6.46 M 2.73 G 89.0

+ CAM in CBAM [17] 6.49 M 2.73 G 89.9
+ SE [16] 6.49 M 2.73 G 90.0
+ ECAM 6.49 M 2.73 G 90.1

2.4.2. Add Spatial Attention Module or Not

The spatial attention mechanism we used is the spatial attention mechanism in CBAM.
For the validity of the ablation experiments for the spatial attention mechanism, we add
the spatial attention mechanism to the above effective channel attention mechanism to
validate whether to add the spatial attention module or not. We select the SE block, CAM
in CBAM, and the proposed ECAM as the base channel attention mechanism. We add
the spatial attention mechanism after these channel attention mechanisms to perform the
ablation study. The results are shown in Table 3. The spatial attention mechanism can
increase the parameters by 0.01 M while the GFLOPS is stable with 2.73 G. With the power
of the spatial attention mechanism, each module can improve the accuracy by 0.2–0.4 AP.
Further, our proposed ECBAM can improve the accuracy from 89.7 AP to 90.3 AP, which is
the highest AP.
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Table 3. Add Spatial Attention Module or not. ‘TE-YOLOF *’ represents the same setting in TE-
YOLOF-B0 used in Table 2. Each grid above is used to compare adding a spatial attention module or
not in different channel attention mechanisms.

Model Params GFLOPS AP50

TE-YOLOF * 6.46 M 2.73 G 89.7

+ CAM in CBAM [17] 6.49 M 2.73 G 89.9
+ CBAM 6.5 M 2.73 G 90.3

+ SE [16] 6.49 M 2.73 G 90.0
+ SE + SAM in CBAM 6.5 M 2.73 G 90.2

+ ECAM 6.49 M 2.73 G 90.1
+ ECBAM 6.5 M 2.73 G 90.3

2.4.3. Spatial Attention Module Kernel Size

The ablation study of spatial attention module kernel size is used to select the con-
volution kernel size of the spatial attention mechanism that is most conducive to blood
cell detection. The results are shown in Table 4. It is obvious that the accuracy increases
linearly as the kernel size increases from 3 to 7, while it decreases linearly from 7 to 11.
The kernel size in the range of 5 to 9 can lead to performance improvement in blood cell
detection. Further information we can find is that when the kernel size is too large or too
small, it will have a negative effect on the improvement of accuracy. The best effect can be
achieved at 90.3 AP when the kernel size is 7. Therefore, 7 is the best kernel size with the
best receptive field for the spatial attention mechanism to extract spatial information for
blood cell detection.

Table 4. Ablation study of spatial attention module kernel size in ECBAM. Kernel size represents the
kernel size of convolution layer used in the spatial attention module in ECBAM.

Kernel Size Params GFLOPS AP50

3 6.49 M 2.73 G 89.8
5 6.49 M 2.73 G 90.2
7 6.5 M 2.73 G 90.3
9 6.5 M 2.73 G 90.2
11 6.5 M 2.73 G 89.7

2.4.4. Reduction Ratio of MLP in ECAM

The base model is the ENCANet with the ECBAM, and the ablation study is on the
reduction ratio of MLP in ECAM, which is the channel attention mechanism in ECBAM.
The ablation experiments are shown in Table 5. According to Table 5, the reduction ratio of
MLP in the range of 8 to 32 can give the power for ECBAM to improve the performance.
The reduction ratio in a small number could have a negative effect on ECBAM to perform
blood cell detection. It is obvious that the best reduction ratio for ECAM is 16, which helps
the ENCANet to achieve the accuracy of 90.3 AP, while the parameters are only 6.5 M. When
the reduction ratio of MLP is 16, it can maintain the model complexity without drastic
changes on the basis of extracting channel attention information to the maximum extent.

Table 5. Experiments on the reduction ratio of MLP in ECAM.

Reduction Ratio Params GFLOPS AP50

2 6.72 M 2.73 G 89.8
4 6.59 M 2.73 G 89.3
8 6.53 M 2.73 G 90.0
16 6.5 M 2.73 G 90.3
32 6.48 M 2.73 G 90.0
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2.5. Visual Results

For the qualitative analysis, visual results of different attention mechanisms are shown
in Figure 2 and the quantitative results are given in Tables 2 and 3. The base model we
used is the proposed ENCANet with EfficientNet-B0 as backbone, which has the minimum
model complexity. The attention maps in Figure 2 are calculated for the outputs of the used
model with the introduction on the left. For the analysis, we aggregate the attention maps
of all modules together for comparison. In Figure 2, it can be clearly seen that the ECAM-
integrated network and ECBAM-integrated network cover the blood cell object regions
better than other methods—that is, the ECAM-integrated network and ECBAM-integrated
network can perform the feature enhancement task more effectively and comprehensively
than other attention mechanisms.

Figure 2. Attention map results on BCCD test set. Top to bottom: input images; the attention maps
generated after backbone; the visualization results after the selected attention mechanisms, such as
SE, and CAM in CBAM, ECAM, BAM, CBAM, ECBAM, and so on; the detection results of input
images. The visualization is calculated after the selected module.
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Based on the above analysis, we use the ECBAM-integrated network, which is named
ENCANet, to perform the blood cell detection task on BCCD test dataset and other blood
cell datasets such as BCDD dataset and WID dataset. The detection results on BCCD test
dataset of the proposed ENCANet can be seen in Figure 3. The BCDD dataset and WID
dataset are used to perform generalization verification of our proposed network for other
blood cell detection tasks. The visualization detection results can be seen in Figures 4 and 5
separately. Through Figures 3–5, it can be clearly observed that our proposed model
ENCANet trained in BCCD dataset can perform the blood cell detection task on the BCCD
test dataset well. Our ENCANet can be directly transferred for inference on other cross-
domain blood cell datasets with excellent performance.

Figure 3. Visualization detection results on BCCD test dataset.

Figure 4. Visualization detection results on BCDD dataset.

Figure 5. Visualization detection results on WID dataset.
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3. Discussion

When the slide scanners are used to perform digitization of microscope images, and
Flow Cytometry Instrumentation [30] is used to perform an automated count task for blood
cells traditionally, these methods are used to assist the physicians to conduct accelerated
medical analysis. When the machine learning methods and the deep learning methods
receive the microscope images of blood cells, these methods can perform blood cell de-
tection without manual testing compared with traditional methods. Based on this purely
automated method that has been separated from manual operations, it requires relatively
high accuracy and low model complexity that can be used to perform blood cell detection
in more complex environments.

In this research, we presented the lightweight model ENCANet to achieve 90.3 AP on
blood cell detection with only 6.5 M parameters. In this new network, we incorporated the
proposed ECBAM to perform the feature enhancement task; this new attention mechanism
can improve the ENCANet by 0.6 AP with the price of only 0.04 M parameters. This
new channel attention mechanism of ECAM in ECBAM can perform better than other
tip-top channel attention mechanisms on blood cell detection; detailed results can be seen in
Table 2. Attention mechanisms have been used to carry out medical image analysis in recent
years [18,31]. The proposed method ECBAM retains the possibility of being applicable to
other medical issues.

Our proposed model is used for detection on the raw images of blood cells, while
recent researches have partly turned their attention to image quality that can be used to
enhance the image content and preserve information. By using medical image fusion
technique to create a single image by combing multiple image modalities, these methods
can be used as the potentially effective way to enhance original image contrast and object
demarcation, such as EOA [32], MPA [11], and so on.

4. Materials and Methods
4.1. Enhanced Channel Attention Module

In this section, we first conduct a detailed analysis of the architecture of the Squeeze-
and-Excitation (SE) Block in [16]. Then, we present a detailed comparison and analysis of
the channel attention mechanism used in CBAM [17]. Finally, we introduce the design of
our Enhanced Channel Attention Module (ECAM).

4.1.1. Review of SENet

Squeeze-and-Excitation block is a powerful lightweight attention mechanism that
focuses on enhancing the representation of the network by modeling channelwise relation-
ships in a computationally efficient manner. This module is an efficient way to map input
features X ∈ RH×W×C to output features O ∈ RH×W×C that embed the channel attention
information. The transformation from X to O can be seen as the learned set of filter kernels,
using V = [v1, v2, ..., vc] to denote these filters, while vc refers to the parameters of the c-th
filter. Then, we can write the output feature maps as O = [o1, o2, ..., oc], where oc = vc ∗ xc.
Here, vc is generally a scalar, and xc is an input feature map where xc ∈ RH×W . The ∗
denotes scalar multiplication.

The essential goal of SE block in SENet is to generate the V ∈ R1×1×C, which is named
the Channel Attention PC in Figure 6. Figure 6 is the diagram of the SE block to show how
the channel attention is generated in visualization. The overall architecture of SE can be
divided into two steps, Squeeze and Excitation, separately. The Squeeze step is to squeeze
the global information into a channel descriptor by global average pooling. The channel
descriptors Z ∈ RC are generated by global average pooling method from shrinking spatial
dimensions H ×W to 1× 1. The c-th descriptor of Z can be calculated by

zc = FGAV(xc) =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)
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where GAV denotes global average pooling. After squeeze, the descriptors Z ∈ R1×1×C are
the representative scalar for each channel of input feature maps. The Excitation step is to
capture channelwise dependencies. This objective is implemented by two fully-connected
layers with the non-linearity function. The detailed formula is as follows:

PC = FExcitation(Z, W) = σ(W2δ(W1Z)) (2)

where δ refers to the ReLU [33] function, σ refers to the Sigmoid function, W1 ∈ R C
r ×C,

and W2 ∈ RC× C
r . r is used as a reduction ratio for limiting model complexity. After

channel feature aggregation by the Excitation step, the output channel descriptors could be
in the range of pc ∈ (0, 1). SE block is effective to achieve a performance improvement in
TE-YOLOF for blood cell detection; the experiment is shown in Section 2.4.1.

Figure 6. The channel attention mechanism used in SENet [16].

4.1.2. Motivated by CBAM

Inspired by the channel attention mechanism in SE block that can improve the per-
formance of TE-YOLOF in the blood cell detection task, we turn our attention to the
representative attention mechanism named CBAM that combines channel attention and
spatial attention. This module is effective for improving blood cell detection performance
while defeating the SE block; the detailed experiment can be seen in Table 3.

While CBAM is the attention mechanism that combines channel attention mechanism
and spatial attention mechanism, a question that naturally arises is whether the channel
attention in CBAM is effective for performance improvement in blood cell detection. Thus,
we perform an experiment using CBAM module without spatial attention mechanism; we
named this module Channel Attention Mechanism (CAM). The diagram of the CAM can
be seen in Figure 7. According to the experiments result, CAM is also effective to perform
the blood cell detection task.

The difference between SE block and CAM is that CAM uses the global max pooling
method to perform the same feature aggregation as the global average pooling method
additionally. We define the channel descriptors of global average pooling as the above SE
block used, Z ∈ RC. We define the channel descriptors of global max pooling as M ∈ RC.
The c-th descriptor of M can be calculated as follows:

mc = FMAX(xc) = max
(i,j)∈RH×W

xc(i, j) (3)

The two channel descriptors of Z and M are applied to perform feature aggregation by the
shared multilayer perceptron (MLP) with one hidden layer; then, they can be transformed
to two different channel context descriptors: Favg(XC) and Fmax(XC). In short, the channel
attention mechanism can be computed as below:

PC = σ(MLP(MaxPool(X)) + MLP(AvgPool(X)))

= σ(W2δ(W1(Favg(XC)) + W2δ(W1(Fmax(XC))))
(4)

where σ denotes the sigmoid function, W1 ∈ R C
r ×C and W2 ∈ RC× C

r , and δ is the ReLU
activation function. According to the difference between Equations (2) and (4), with the
visual diagram of attention mechanisms in Figures 6 and 7, it is obvious that the global max
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pooling method is one effective trick to enhance feature aggregation. In addition to using
the global max pooling method like the usage of global average pooling method, what
about using the global max pooling method to enhance the features obtained by global
average pooling method? This motivated us to design a new channel attention mechanism
named Enhanced Channel Attention Mechanism (ECAM), see the section below for details.

Figure 7. The channel attention mechanism used in CBAM [17].

4.1.3. Enhanced Channel Attention Mechanism

By comparing the difference between SE block and the CAM in CBAM, it is obvious
that global max pooling is an effective branch to enhance the final channel attention. Since
it can enhance the final channel attention, can we use it to enhance the global average
pooling branch, so as to achieve the effect of reducing an MLP calculation and improving
performance? This idea motivated us to design our Enhanced Channel Attention Module
(ECAM) below. On the basis of ECAM and the spatial attention mechanism used in CBAM,
we also designed the ECBAM, which contains the channel attention mechanism and the
spatial attention mechanism to further improve performance on blood cell detection.

Enhanced Channel Attention Module

The essence of Enhanced Channel Attention Module is using the global max pooling
method with sigmoid function to enhance channel descriptors generated by global average
pooling method. The detailed diagram of our proposed channel attention module can be
seen in Figure 8. The channel attention descriptors Z′ ∈ RC generated can be seen as the
formula below to enhance the Squeeze step in SE block. The c-th descriptor of Z′ can be
calculated as below:

z′c = FECA(FGAV(xc)) = σ(FMAX(xc)) ∗ FGAV(xc) (5)

where FMAX is the method used in Equation (3) and FGAV is the method used in Equation (1).
Then, the Excitation step can be calculated as below:

PC = FExcitation(Z′, W) = σ(W2δ(W1Z′)) (6)

where σ denotes the sigmoid function, W1 ∈ R C
r ×C and W2 ∈ RC× C

r , and δ is the ReLU
activation function.

Figure 8. The proposed channel attention mechanism of ECAM.
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Enhanced CBAM

Motivated by CBAM and the fact that the channel attention can be serially combined
with the spatial attention mechanism, we adopt the same architecture as CBAM and replace
the channel attention mechanism in CBAM with our Enhanced Channel Attention Mecha-
nism so as to form the new Enhanced-CBAM attention mechanism. The detailed spatial
attention mechanism used in CBAM can be seen in Figure 9. We define the feature maps
refined by the channel attention mechanism as T = [t1, t2, ..., tc], which is the abbreviation of
temporary feature maps. We describe the detailed operation of the spatial attention below.

Unlike the aggregation method of the channel attention mechanism in spatial dimen-
sion, the spatial attention aggregates channel information by using two pooling methods,
which are the average pooling and the max pooling, to generate two 2D feature maps:
FS

avg ∈ RH×W×1 and FS
max ∈ RH×W×1. These two feature maps can be concatenated

and converged by a standard convolution layer to produce a 2D spatial attention map
PS ∈ RH×W×1. The spatial attention can be calculated as below:

PS = σ( f 7×7([FS
avg(T); FS

max(T)])) (7)

where σ denotes the sigmoid function and f 7×7 represents the standard convolution with
the filter size of 7× 7.

The above context is the introduction of the method of spatial attention mechanism
we used; then, we give a brief introduction to the channel attention mechanism and spatial
attention mechanism in a sequential manner, which we named Enhanced-CBAM (ECBAM).
The overall architecture of ECBAM can be seen in Figure 10.

Figure 9. Diagram of spatial attention mechanism used in CBAM.

Figure 10. Diagram of Enhanced-CBAM.

4.2. Enhanced Channel Attention Network

Based upon the proposed attention mechanism method and the TE-YOLOF used
in [15], we divided the architecture of our network into three components: Backbone,
Encoder, Decoder. The detailed overall architecture can be seen in Figure 11. We assume
that the input is N × H ×W × C, where N represents the batch of input images, H and W
represent the height and weight of input image, and C represents the channels. We attached
the input and output size after the introduction of each component.
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Figure 11. Overall architecture of the Enhanced Channel Attention Network.

4.2.1. Backbone

Backbone is used to perform feature extraction. The choice of the network used in
backbone is generally the network pretrained on a large dataset. In our network, we
use the same backbone used in [15]: EfficientNet [34]. The default is EfficientNet-B0;
EfficientNet-B1 to B3 also can be used to perform feature extraction task in our network.
This ensures flexibility in the selection of network. The input images could be a fixed size
of N × 416× 416× 3.

4.2.2. Encoder

Encoder is used to perform feature enhancement. The component we designed for it
is the proposed method above. The Enhanced Channel Attention Module and Enhanced
CBAM can be placed in the Encoder location. In Figure 11, we use the ECBAM as default.
The input size is the fixed channel number of N × 512× H ×W. These H and W represent
the height and weight of feature map from backbone. The output size of this component is
also N × 512× H ×W.

4.2.3. Decoder

Decoder is used to perform potential object localization. The decoder we used is
the same as the decoder used in [15], which consists of two parallel heads to perform
classification and regression separately. The two heads consist of different numbers of
Depthwise Separable Convolution Modules that combine the depthwise separable convo-
lution and residual connection. The details of Depthwise Separable Convolution Module
that represent the DW Module in Figure 11 can be seen in [15]. In decoder, K represents K
object categories and A stands for A anchors in each pixel of the feature map.

5. Conclusions

In this research, we presented the Enhanced Channel Attention Module (ECAM), a
novel approach based on attention mechanism, to improve performance on blood cell
detection. The approach achieves comparable results to other attention mechanisms on the
BCCD dataset. We incorporated the spatial attention mechanism in CBAM with ECAM to
form Enhanced-CBAM and used it to construct a new network named Enhanced Channel
Attention Network (ENCANet). The results of detailed experiments and comparisons
demonstrate that ENCANet is more effective than other existing methods for blood cell
detection with only 6.5 M parameters. ENCANet can also be generalized to perform the
detection task for other blood cell datasets. However, our model may not be effective in
more complex scenarios such as overcrowded blood cells in image. We hope our ENCANet
can perform blood cell detection with a variety of test scenarios and that ECAM can address
other medical image problems in future research.
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