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Abstract: Total number born (TNB), number of stillborn (NSB), and gestation length (GL) are econom-
ically important traits in pig production, and disentangling the molecular mechanisms associated
with traits can provide valuable insights into their genetic structure. Genotype imputation can be
used as a practical tool to improve the marker density of single-nucleotide polymorphism (SNP)
chips based on sequence data, thereby dramatically improving the power of genome-wide associ-
ation studies (GWAS). In this study, we applied Beagle software to impute the 50 K chip data to
the whole-genome sequencing (WGS) data with average imputation accuracy (R2) of 0.876. The
target pigs, 2655 Large White pigs introduced from Canadian and French lines, were genotyped by
a GeneSeek Porcine 50K chip. The 30 Large White reference pigs were the key ancestral individ-
uals sequenced by whole-genome resequencing. To avoid population stratification, we identified
genetic variants associated with reproductive traits by performing within-population GWAS and
cross-population meta-analyses with data before and after imputation. Finally, several genes were
detected and regarded as potential candidate genes for each of the traits: for the TNB trait: NOTCH2,
KLF3, PLXDC2, NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC; for the NSB trait: NUB1,
TGFBR3, ZDHHC14, FGF14, BAIAP2L1, EVI5, TAF1B, and BCAR3; for the GL trait: PPP2R2B, AMBP,
MALRD1, HOXA11, and BICC1. In conclusion, expanding the size of the reference population and
finding an optimal imputation strategy to ensure that more loci are obtained for GWAS under high
imputation accuracy will contribute to the identification of causal mutations in pig breeding.

Keywords: genotype imputation; genome-wide association analysis; Large White pigs; total number
born; number of stillborn; gestation length

1. Introduction

Reproductive traits, such as total number born (TNB), number of stillborn (NSB), and
gestation length (GL), are economically important traits that directly affect the economic
benefits of the pig industry. The heritabilities of the TNB and NBS traits are about 0.1,
whereas the heritability of the GL trait is about 0.3 [1,2]. The TNB trait is often used as one
of the key indicators to measure the overall profitability of pig production, and the NSB
trait is the most important feature to quantify the reproductive loss of pigs [3]. A study
found that the NSB trait positively correlated with the TNB trait [4]. Several studies have
shown that the key time for piglets to grow and mature is during late gestation [5], and
a gestation length greater than 114 days may improve piglet survival after birth and can
reduce postnatal mortality to a certain extent [6].

Genome-wide association studies (GWAS) have emerged as an efficient method for
dissecting the genetic mechanisms of complex traits. Recently, GWAS have been widely
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employed to identify the candidate genes on traits in pigs, such as growth [7–9], repro-
duction [10–12], meat quality [13–15], and disease resistance [16,17]. The variant detection
power of GWAS is affected by marker density. Now, GWAS are mainly carried out based
on single-nucleotide polymorphism (SNP) chip data in animals. The existing commercial
SNP chips are generally constructed based on information from a few breeds, which cannot
capture the entire genetic variation of the genome due to ascertainment bias [18]. This poses
difficulties in the identification of causal loci for economically important traits. Compared
with SNP chip data, WGS data include all causal mutations. GWAS based on the WGS
data can improve the power of the identification of mutations [19]. Although the cost of
resequencing is decreasing, it is still expensive to resequence thousands of individuals with
high coverage in animals. It is a more efficient approach to impute the SNP chip genotypic
data to the WGS level, which is inexpensive [20].

Genotype imputation technology has been widely utilized in the processing of various
genotype data in various fields and has become a particularly significant and routine tool.
The accuracy of imputation is affected by many factors, such as reference population size,
target population marker density, genetic distance between reference population and target
populations, minor allele frequencies, and the imputation strategy [21–23]. The application
of genotype imputation in GWAS can greatly narrow the genomic regions associated with
target traits, which allows GWAS to find causal variants. Moreover, genotype imputation
also provided the basis for the meta-analysis of GWAS. The use of imputed data for fine
mapping led to the identification of many new key sites that increase the risk of type
2 diabetes in humans [24]. It was reported that the power of GWAS was dramatically
improved using imputation-based WGS data, and out of 88 significant SNPs associated
with the body shape of pigs, 85 were identified in imputation-based WGS data [25].

In this study, we selected 30 key ancestral individuals related to the target population
for whole-genome resequencing, and then used them as a reference population to impute
the 50K chip data to the WGS data. We identified genetic variants associated with the TNB,
NSB, and GL traits in Large White pigs by performing GWAS with data before and after
imputation. Therefore, the objective of this study was to impute the 50K chip data to the
WGS data, and to analyze the possible factors influencing the imputation accuracy, so as
to provide a certain reference for imputing the chip data to the WGS data. Furthermore,
the data before and after imputation were used to conduct within-population GWAS and
cross-population meta-analyses on the two different lines of Large White pigs. Our results
provide some information for the breeding of important reproductive traits in pigs.

2. Results
2.1. Descriptive Statistics of Phenotypic Data

The descriptive statistics of the adjusted phenotypes for the TNB, NSB, and GL traits
in the two Large White pig lines are shown in Table 1. The distribution of the phenotypes
for the TNB, NSB, and GL traits is shown in Supplementary Figure S1.

Table 1. Descriptive statistics for total number born (TNB), number of stillborn (NSB), and gestation
length (GL) in the two lines of Large White pigs.

Line Trait Samples Size Mean Standard Deviation Minimum Maximum

Canadian
TNB

1403 14.42 1.97 8.10 22.30
French 1252 14.29 1.72 7.85 21.03

Canadian
NSB

1403 1.26 0.85 −0.21 4.65
French 1252 1.16 0.74 −0.19 5.73

Canadian
GL

1403 114.59 0.93 111.35 117.69
French 1252 114.09 1.12 110.11 119.82
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2.2. Genotype Imputation and Imputation Accuracy

We performed initial quality control of the WGS reference and target chip data. After
quality control, 14,561,445 and 43,549 SNPs were retained in the 18 autosomes of the
reference and target populations, respectively. We summarized the number of SNPs before
and after imputation, the number of SNPs in imputation-based WGS data after quality
control in each chromosome. In addition, we calculated the average imputation accuracy R2

before and after the quality control at R2 > 0.8. These are shown in Supplementary Table S1.
Figure 1a,b represent the number of loci and imputation accuracy of the 18 autosomes
before and after quality control, respectively. After imputation, 14,561,445 SNPs were
obtained from the 18 autosomes of 2655 Large White pigs in this study, with 11,521,836 loci
remaining after quality control according to R2 < 0.8 and MAF < 0.05. In addition, when we
applied the same quality control condition to each line, 10,006,597 and 9,944,741 SNPs were
retained after quality control for the Canadian and French lines, respectively. We calculated
the average imputation accuracy R2 for all loci before and after quality control, which were
0.876 and 0.943, respectively.
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Figure 1. The summary of imputation accuracy and number of SNPs after imputation from 50K chip
data to WGS data. (a) Imputation accuracy in each chromosome in Large White pigs. Imputation
accuracy before quality control (blue), after quality control, with R2 > 0.8 (orange). (b) Number of
SNPs after imputation with or without quality control in each chromosome in Large White pigs.
Number of SNPs before quality control (blue), Number of SNPs after quality control (orange).

2.3. Genome-Wide Association Studies
2.3.1. GWAS for Data before Imputation

For the TNB trait, the Manhattan plots are shown in Figure 2a–d. The Q-Q plots are
shown in Supplementary Figure S2a–d, with genome inflation factors between 0.950 and
1.000 (Supplementary Table S2). For the GWAS analysis within two lines of Large White
pigs, no genome-wide significant SNPs were detected. Two SNPs (SSC4: 101,156,553 and
SSC8: 30,016,379) at the suggestive significant level were observed in the Canadian line
and only one SNP (SSC8: 56,076,247) at the suggestive significant level was observed in the



Int. J. Mol. Sci. 2022, 23, 13338 4 of 23

French line. In the GWAS analysis of the combined two lines of Large White population, one
SNP (SSC8: 56,076,247) at the genome-wide significant level was observed. There was one
significant SNP (SSC8: 56,076,247) at the genome-wide level and one SNP (SSC5: 79,145,588)
at the suggestive significant level in the cross-population meta-analyses (Table 2).

For the NSB trait, the Manhattan plots are shown in Figure 3a–d. The Q-Q plots are
shown in Supplementary Figure S3a–d, with genome inflation factors between 0.957 and
1.006 (Supplementary Table S2). For the Canadian line, one genome-wide significant SNP
(SSC10: 17,881,060) was detected, and four SNPs (SSC4: 123,733,425, SSC18: 6,400,611,
SSC18: 5,909,015, and SSC1: 9,677,339) at the suggestive significant level were observed.
For the French line, one genome-wide significant SNP (SSC6: 23,735,225) was detected,
and one SNP (SSC14: 138,357,861) at the suggestive significant level was observed. In the
GWAS analysis of the combined two lines of Large White population, five SNPs (SSC4:
125,301,443, SSC18: 5,909,015, SSC11: 70,923,126, SSC11: 70,551,880, and SSC1: 9,677,339)
at the suggestive significant level were observed. The suggestive significant SNPs in the
cross-population meta-analyses were the same as in the combined Large White population
(Table 2).
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born (TNB) trait using chip data (a–d) and imputed WGS data (e–h). (a,e) Canadian line; (b,f) French
line; (c,g) combined lines of Large White pigs; (d,h) cross-population meta-analyses.

Table 2. The significant and suggestive SNPs in the genome with the total number born (TNB),
number of stillborn (NSB), and gestation length (GL) traits using chip data in pigs.

Trait SSC SNP Name SNP Position
(bp)

p
(Canadian) p (French) p (Combined

LW) p (Meta) Candidate
Gene

TNB

4 WU_10.2_4_111043929 101,156,553 1.47 × 10−5 6.50 × 10−1 2.39 × 10−3 6.20 × 10−4 NOTCH2
5 ALGA0122851 79,145,588 1.11 × 10−4 3.71 × 10−2 4.26 × 10−5 2.22 × 10−5 -
8 H3GA0024679 30,016,379 1.69 × 10−6 4.62 × 10−1 9.30 × 10−5 6.75 × 10−5 KLF3
8 Affx-114981021 56,076,247 4.95 × 10−4 4.44 × 10−6 1.61 × 10−8 1.30 × 10−8 -

NSB

1 INRA0000573 9,677,339 1.37 × 10−5 1.35 × 10−2 1.54 × 10−5 1.20 × 10−6 TMEM242
4 ALGA0029239 123,733,425 7.90 × 10−6 7.47 × 10−1 6.98 × 10−4 2.46 × 10−3 FNBP1L
4 WU_10.2_4_136884741 125,301,443 1.94 × 10−3 6.29 × 10−4 1.78 × 10−6 4.20 × 10−6 TGFBR3
6 WU_10.2_6_21881195 23,735,225 8.94 × 10−1 2.51 × 10−7 1.92 × 10−2 2.72 × 10−4 -

10 ASGA0046895 17,881,060 7.95 × 10−7 4.08 × 10−1 9.49 × 10−5 3.22 × 10−5 -
11 WU_10.2_11_78220891 70,923,126 6.20 × 10−4 1.30 × 10−3 1.08 × 10−5 2.65 × 10−6 -
11 ALGA0063609 70,551,880 5.29 × 10−3 9.79 × 10−4 2.05 × 10−5 1.77 × 10−5 -
14 MARC0062790 138,357,861 5.25 × 10−1 1.10 × 10−5 1.39 × 10−2 4.98 × 10−4 -
18 WU_10.2_18_6267059 5,909,015 1.71 × 10−5 - 8.92 × 10−6 1.71 × 10−5 NUB1
18 MARC0056921 6,400,611 1.26 × 10−5 6.43 × 10−1 6.66 × 10−5 4.79 × 10−4 GIMAP2

GL

1 ASGA0104591 254,755,615 1.82 × 10−2 1.84 × 10−5 4.08 × 10−7 3.58 × 10−6 COL27A1
6 WU_10.2_6_144601434 156,647,853 8.97 × 10−6 1.21 × 10−1 2.60 × 10−1 3.05 × 10−2 -

11 ALGA0124549 25,293,190 9.56 × 10−1 3.24 × 10−6 3.60 × 10−4 1.26 × 10−3 VWA8
12 WU_10.2_12_3290782 3,251,323 2.42 × 10−3 2.74 × 10−3 8.38 × 10−5 2.03 × 10−5 -
14 MARC0035949 61,937,863 4.86 × 10−2 1.48 × 10−3 1.18 × 10−5 2.98 × 10−4 BICC1

SSC, Sus scrofa chromosome. SNP name, name of significant and suggestive SNPs; SNP position (bp), the position
of significant and suggestive SNPs. p (Canadian), p-value from within-population GWAS in the Canadian line.
p (French), p-value from within-population GWAS in the French line. p (Combined LW), p-value from within-
population GWAS in the combined two lines of Large White pigs. p (Meta), p-value from cross-population
meta-analyses. Bolded text shows the potential candidate gene detected in both chip and WGS data.
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For the GL trait, the Manhattan plots are shown in Figure 4a–d. Q-Q plots are shown
in Supplementary Figure S4a–d, with genome inflation factors between 0.973 and 1.024
(Supplementary Table S2). For the GWAS analysis within both Large White lines, no
genome-wide significant SNPs were detected. One SNP (SSC6: 156,647,853) at the sugges-
tive significant level was observed in the Canadian line and two SNPs (SSC11: 25,293,190,
SSC1: 254,755,615) at the suggestive significant level were observed in the French line. In
the GWAS analysis of the combined lines of Large White population, one genome-wide
significant SNP (SSC1: 254,755,615) and one SNP (SSC14: 61,937,863) at the suggestive sig-
nificant level were detected. There were two SNPs (SSC1: 254,755,615 and SSC12: 3,251,323)
at the suggestive significant level in the cross-population meta-analyses (Table 2).
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2.3.2. GWAS for Data after Imputation

For the TNB trait, the Manhattan plots are shown in Figure 2e–h. The Q-Q plots are
shown in Supplementary Figure S2e–h, with genome inflation factors between 0.969 and
0.993 (Supplementary Table S3). For the GWAS analysis within both Large White lines,
no genome-wide significant SNPs were detected. There were 147 SNPs at the suggestive
significant level in the Canadian line and 136 SNPs at the suggestive significant level were
in the French line. In the GWAS analysis of the combined lines of Large White population,
there were 3 SNPs at the significant level and 203 SNPs at the suggestive significant
level. There were 175 SNPs at the suggestive significant level in the cross-population
meta-analyses (Table 3).

Table 3. The genome significant and suggestive SNPs with the total number born (TNB) trait using
imputed WGS data in pigs.

SSC SNP_R (Mb) T_SNP_P (bp) SNP_N p
(Canadian) p (French) p (Combined

LW) p (Meta) Candidate Gene

1 261.86–261.90 261,882,219 4 4.42 × 10−1 7.79 × 10−7 2.41 × 10−2 4.60 × 10−3 TTLL11
2 4.90–4.94 4,917,216 1 6.89 × 10−7 - 3.47 × 10−6 6.89 × 10−7 UNC93B1/ALDH3B2
2 4.94–4.98 4,964,340 19 5.72 × 10−7 6.61 × 10−1 2.02 × 10−4 8.56 × 10−4 TBX10/NDUFV1
2 127.88–127.92 127,904,283 13 4.21 × 10−6 - 8.20 × 10−5 4.21 × 10−6 -
3 6.81–6.85 117,058,450 1 3.78 × 10−4 - 4.61 × 10−6 3.78 × 10−4 -
3 117.04–117.08 6,831,554 1 6.12 × 10−4 1.65 × 10−3 1.08 × 10−5 3.29 × 10−6 -
4 117.63–117.67 117,647,397 1 9.90 × 10−1 4.47× 10−6 2.16 × 10−3 1.68 × 10−3 CDC14A
5 78.38–78.42 78,396,126 1 8.21 × 10−5 9.81 × 10−3 7.00 × 10−6 3.55 × 10−6 COL2A1
5 78.40–78.44 78,424,002 1 4.34 × 10−6 3.17 × 10−3 1.08 × 10−7 8.03 × 10−8 SENP1
5 78.53–78.57 78,554,745 1 1.14 × 10−5 3.20 × 10−3 2.80 × 10−7 1.84 × 10−7 CCDC184
5 79.02–79.12 79,102,021 11 1.30 × 10−6 2.89 × 10−2 1.13 × 10−6 5.21 × 10−7 -
5 79.12–79.16 79,144,763 8 6.11 × 10−6 3.86 × 10−2 2.66 × 10−6 2.50 × 10−6 -
5 79.24–79.28 79,262,197 2 1.07 × 10−6 7.45 × 10−3 8.06 × 10−6 3.25 × 10−6 KANSL2
5 79.24–79.29 79,271,540 7 1.38 × 10−6 2.44 × 10−2 5.50 × 10−7 4.31 × 10−7 KANSL2, SNORA2C
5 79.25–79.29 79,266,042 3 1.32 × 10−5 2.44 × 10−2 3.71 × 10−6 2.44 × 10−6 KANSL2, SNORA2C
5 79.70–79.74 79,716,662 1 4.02 × 10−7 4.12 × 10−2 1.97 × 10−7 3.66 × 10−7

5 79.71–79.75 79,732,010 3 2.71 × 10−7 6.65 × 10−1 4.30 × 10−4 5.45 × 10−5 SLC41A2
7 115.99–116.04 116,017,230 9 2.94 × 10−5 1.30 × 10−3 5.09 × 10−8 1.55 × 10−7 GSC
7 115.06–116.10 116,082,776 2 1.44 × 10−5 2.58 × 10−3 3.67 × 10−8 1.76 × 10−7 GSC
7 116.32–116.36 116,344,726 1 1.62 × 10−5 - 1.63 × 10−6 1.62 × 10−5 -
8 29.96–30.00 29,982,306 2 5.03 × 10−7 - 2.49 × 10−5 5.03 × 10−7 -

8 30.04–31.11 31,089,176 87 4.23 × 10−6 1.79 × 10−1 1.91 × 10−3 1.98 × 10−5
KLF3, FAM114A1,

TLR10, TLR1, TLR6,
WDR19, PDS5A

8 56.06–56.10 56,076,247 1 5.72 × 10−4 5.79 × 10−6 2.33 × 10−8 1.94 × 10−8 -
10 54.58–54.62 54,600,820 1 3.16 × 10−6 1.11 × 10−1 5.38 × 10−6 7.38 × 10−6 PLXDC2
10 55.49-55.53 55,514,613 9 1.57 × 10−4 1.66 × 10−2 4.62 × 10−6 1.12 × 10−5 -
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Table 3. Cont.

SSC SNP_R (Mb) T_SNP_P (bp) SNP_N p
(Canadian) p (French) p (Combined

LW) p (Meta) Candidate Gene

13 205.13–205.17 205,150,403 1 2.16 × 10−6 7.41 × 10−1 1.53 × 10−4 2.42 × 10−4 RIPK4
15 2.20–2.28 2,257,349 4 - 3.69 × 10−5 4.41 × 10−6 3.69 × 10−5 -
15 2.24–2.35 2,325,462 4 5.96 × 10−3 3.20× 10−5 3.10 × 10−6 2.46 × 10−6 -
15 2.50–2.56 2,538,624 5 - 1.41 × 10−7 2.79 × 10−7 1.41× 10−7 MMADHC
15 2.54–2.60 2,578,548 6 1.56 × 10−1 3.42 × 10−7 1.96 × 10−6 2.10 × 10−5 -
15 2.57–2.61 2,586,649 2 8.65 × 10−1 8.25 × 10−7 9.70 × 10−5 4.51 × 10−4 LYPD6
15 2.54–2.61 2,564,841 83 - 9.22 × 10−7 1.67 × 10−6 9.22 × 10−7 LYPD6
15 2.65–2.69 2,671,075 1 2.53 × 10−3 3.27 × 10−4 6.97 × 10−6 3.13 × 10−6 LYPD6
15 2.76–2.80 2,778,681 1 - 3.07 × 10−6 3.83 × 10−5 3.07 × 10−6 LYPD6

15 2.68–2.81 2,779,384 11 9.87 × 10−1 2,779,3842.99
× 10−6 5.85 × 10−4 1.39 × 10−3 LYPD6

15 2.90–2.95 2,933,736 6 - 7.06 × 10−6 3.30 × 10−6 5.68 × 10−6 LYPD6B
15 2.92–2.96 2,938,800 2 - 3.47 × 10−6 2.44 × 10−6 3.47 × 10−6 LYPD6B
15 3.24–3.28 3,264,770 1 4.51 × 10−1 4.48 × 10−6 6.54 × 10−5 2.17 × 10−4 KIF5C
15 3.26–3.30 3,278,046 2 9.74 × 10−2 1.03 × 10−5 3.90 × 10−6 2.29× 10−5 KIF5C
15 3.36–3.40 3,376,487 8 4.19 × 10−3 1.30 × 10−4 1.95 × 10−6 2.48 × 10−6 KIF5C
15 3.37–3.41 3,392,704 8 1.18 × 10−3 2.91 × 10−3 2.42 × 10−6 1.07 × 10−5 -
15 3.37–3.57 3,545,949 8 1.11 × 10−2 1.33 × 10−5 2.73 × 10−7 1.32 × 10−6 EPC2
15 4.15–4.43 4,408,571 14 2.42 × 10−2 4.58× 10−5 3.03 × 10−6 9.11 × 10−6 ORC4, ACVR2A
15 4.79–4.88 4,857,043 20 3.63 × 10−1 1.07 × 10−6 5.46 × 10−3 7.16 × 10−3 -

SSC, Sus scrofa chromosome. SNP_R, range of significant and suggestive SNPs region. SNP_N, number of
significant and suggestive SNPs. T_SNP_P, the position (bp) of the top SNP in range of significant and suggestive
SNPs region. p (Canadian), p-value from within-population GWAS in the Canadian line. p (French), p-value from
within-population GWAS in the French line. p (Combined LW), p-value from within-population GWAS in the
combined lines of Large White pigs. p (Meta), p-value from cross-population meta-analyses. The bolded text
shows the potential candidate gene detected in both chip and WGS data.

For the NSB trait, the Manhattan plots are shown in Figure 3e–h. The Q-Q plots are
shown in Supplementary Figure S3e–h, with genome inflation factors between 0.938 and
1.036 (Supplementary Table S3). For the Canadian line, seven genome-wide significant
SNPs and 708 suggestive significant SNPs were observed. For the French line, no genome-
wide significant SNPs were detected and 152 SNPs at the suggestive significant level were
observed. In the GWAS analysis of the combined lines of Large White population, one SNP
at the genome-wide significant level and 385 suggestive significant SNPs were observed.
One genome-wide significant SNP and 506 SNPs at the suggestive significant level were
observed in the cross-population meta-analyses (Table 4).

Table 4. The genome significant and suggestive SNPs with the number of stillborn (NSB) trait using
imputed WGS data in pigs.

SSC SNP_R (Mb) T_SNP_P (bp) SNP_N p
(Canadian) p (French) p (Combined

LW) p (Meta) Candidate Gene

1 9.04–9.42 9,404,407 12 3.60 × 10−5 1.11 × 10−2 1.07 × 10−5 2.06 × 10−6 SYNJ2, ZDHHC14
1 9.38–9.43 9,411,440 57 3.57 × 10−5 6.68 × 10−4 3.87 × 10−7 9.23 × 10−8 ZDHHC14

1 9.44–9.76 9,743,278 13 1.03 × 10−4 7.68 × 10−3 3.83 × 10−5 3.26 × 10−6 ZDHHC14,
TMEM242

3 5.44–5.49 5,470,408 5 1.25 × 10−2 2.52 × 10−5 8.38 × 10−6 2.48 × 10−6 TECPR1, BRI3,
BAIAP2L1

3 5.43–5.50 5,478,442 5 7.49 × 10−3 2.30 × 10−5 1.83 × 10−6 1.23 × 10−6 TECPR1, BRI3,
BAIAP2L1

3 126.29–126.42 126,396,984 9 1.62 × 10−6 5.71 × 10−1 6.02 × 10−5 1.06 × 10−4 CYS1
3 126.38–126.43 126,405,359 6 6.22 × 10−6 4.31 × 10−2 3.09 × 10−6 2.96 × 10−6 CYS1, KLF11
3 126.53–136.57 126,553,254 1 1.13 × 10−6 4.53 × 10−1 4.10 × 10−5 5.05 × 10−5 TAF1B
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Table 4. Cont.

SSC SNP_R (Mb) T_SNP_P (bp) SNP_N p
(Canadian) p (French) p (Combined

LW) p (Meta) Candidate Gene

3 126.55–126.60 126,576,921 4 5.17 × 10−7 1.70 × 10−1 3.46 × 10−6 4.39 × 10−6 TAF1B
3 126.57–126.63 126,610,508 4 5.74 × 10−6 5.69 × 10−2 3.90 × 10−6 4.13 × 10−6 TAF1B
4 123.49–123.53 123,514,051 1 1.04 × 10−5 - 1.48 × 10−6 2.83 × 10−6 BCAR3
4 123.48–123.54 123,515,536 5 3.21 × 10−5 7.62 × 10−1 1.48 × 10−6 6.79 × 10−6 BCAR3
4 123.69–123.86 123,842,741 5 4.68 × 10−6 7.62 × 10−1 5.02 × 10−4 1.81 × 10−3 FNBP1L, DR1
4 124.53–124.57 124,546,985 3 2.58 × 10−6 - 7.72 × 10−6 2.58 × 10−6 EVI5
4 124.63–124.67 124,647,920 1 4.54 × 10−6 1.26 × 10−1 7.50 × 10−2 2.25 × 10−2 GFI1
4 124.88–124.93 124,907,426 136 4.62 × 10−6 - 2.15 × 10−5 4.62 × 10−6 BTBD8
4 124.84–124.93 124,912,144 83 2.38 × 10−6 6.77 × 10−1 4.03 × 10−5 2.03 × 10−4 BTBD8
4 124.89–124.95 124,934,706 71 1.67 × 10−6 3.45 × 10−1 2.50 × 10−5 3.62 × 10−5 BTBD8
4 124.93–124.97 124,946,497 7 2.48 × 10−8 5.10 × 10−1 1.05 × 10−6 6.64 × 10−6 BTBD8, EPHX4
4 124.92–125.00 124,977,862 102 1.55 × 10−6 8.97 × 10−1 5.50 × 10−4 6.65 × 10−4 BTBD8, EPHX4
4 124.96–125.00 124,978,259 3 2.88 × 10−6 - 2.79 × 10−6 2.88 × 10−6 EPHX4
4 125.08–125.29 125,266,938 27 2.59 × 10−3 9.16 × 10−4 3.54 × 10−6 7.94 × 10−6 TGFBR3
4 125.25–125.29 125,266,999 1 3.98 × 10−6 9.16 × 10−4 1.28 × 10−8 1.81 × 10−8 TGFBR3
4 125.25–125.33 125,314,460 38 1.39 × 10−3 9.61 × 10−4 2.35 × 10−6 4.41 × 10−6 TGFBR3
6 10.13–10.21 10,185,432 61 2.66 × 10−6 9.08 × 10−1 8.04 × 10−2 8.57 × 10−4 NUDT7
6 23.63–24.55 24,525,703 151 6.56 × 10−1 5.10 × 10−8 2.09 × 10−3 4.81 × 10−5 -

8 135.32–135.43 135,411,117 3 2.64 × 10−6 5.19 × 10−1 5.40 × 10−3 2.97 × 10−3 LIN54, THAP9,
SEC31A

10 17.51–17.56 17,535,810 2 - 1.29 × 10−3 1.05 × 10−6 1.29 × 10−3 -
11 70.38–70.93 70,913,213 48 4.86 × 10−3 5.62 × 10−5 3.14 × 10−6 1.48 × 10−6 FGF14
11 70.89–70.94 70,915,607 13 8.02 × 10−3 5.62 × 10−5 8.92 × 10−6 2.68 × 10−6 -

14 31.82–31.86 31,835,585 1 5.00 × 10−2 6.43 × 10−5 4.63 × 10−6 3.06 × 10−5 ARPC3, GPN3,
FAM216A

15 2.24–3.42 3,396,362 8 2.72 × 10−4 3.87 × 10−3 2.77 × 10−6 3.65 × 10−6 -
15 3.39–3.43 3,411,573 1 2.08 × 10−1 1.14 × 10−6 3.24 × 10−6 2.06 × 10−5 EPC2
15 3.53–3.57 3,545,949 1 2.09 × 10−4 1.65 × 10−3 1.79 × 10−7 1.20 × 10−6 EPC2
18 1.70–1.74 1,721,220 1 3.82 × 10−3 5.29 × 10−5 4.73 × 10−6 1.07 × 10−6 MNX1
18 1.69–1.78 1,758,722 4 4.17 × 10−3 2.37 × 10−4 2.26 × 10−5 4.09 × 10−6 MNX1, HOM1
18 4.16–5.70 5,675,281 71 1.88 × 10−6 1.12 × 10−1 1.94 × 10−2 1.77 × 10−2 PRKAG2

18 5.68–5.84 5,822,905 19 6.15 × 10−6 - 4.08 × 10−6 6.15 × 10−6 PRKAG2, RHEB,
CRYGN

18 6.15–6.21 6,190,743 63 2.31 × 10−6 - 8.90 × 10−7 2.31 × 10−6

AGAP3, FASTK,
SLC4A2, ASIC3,
ABCB8, ATG9B,

NOS3

18 6.18–6.25 6,231,446 52 1.16 × 10−6 - 2.01 × 10−6 1.16 × 10−6
ASIC3, ABCB8,
ATG9B, NOS3,

KCNH2
18 6.21–6.25 6,232,825 4 3.93 × 10−6 - 5.27 × 10−6 3.93 × 10−6 NOS3, KCNH2
18 6.21–6.27 6,246,190 25 3.93 × 10−6 - 1.32 × 10−6 3.93 × 10−6 NOS3, KCNH2

18 6.23–7.09 7,071,468 10 2.47 × 10−6 7.24 × 10−1 3.10 × 10−4 2.46 × 10−4 KCNH2, GIMAP2,
TAS2R39

18 9.84–9.98 9,961,849 7 1.34 × 10−4 1.43 × 10−2 4.47 × 10−6 8.26 × 10−6 TBXAS1, HIPK2

SSC, Sus scrofa chromosome. SNP_R, range of significant and suggestive SNPs region. SNP_N, number of
significant and suggestive SNPs. T_SNP_P, the position (bp) of the top SNP in range of significant and suggestive
SNPs region. p (Canadian), p-value from within-population GWAS in the Canadian line. p (French), p-value from
within-population GWAS in the French line. p (Combined LW), p-value from within-population GWAS in the
combined lines of Large White pigs. p (Meta), p-value from cross-population meta-analyses. The bolded text
shows the potential candidate gene detected in both chip and WGS data.

For the GL trait, the Manhattan plots are shown in Figure 4e–h. The Q-Q plots are
shown in Supplementary Figure S4e–h, with genome inflation factors between 0.975 and
1.024 (Supplementary Table S3). For the GWAS analysis within both Large White lines, no
genome-wide significant SNPs were detected. Seven SNPs at the suggestive significant
level were observed in the Canadian line and 136 SNPs at the suggestive significant level in
the French line. In the GWAS analysis of the combined lines of the Large White population,
no genome-wide significant SNPs and 156 SNPs at the suggestive significant level were
detected. There were 48 SNPs at the suggestive significant level in the cross-population
meta-analyses (Table 5).
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Table 5. The genome significant and suggestive SNPs for the gestation length (GL) trait using imputed
WGS data in pigs.

SSC SNP_R (Mb) T_SNP_P (bp) SNP_N p
(Canadian) p (French) p (Combined

LW) p (Meta) Candidate Gene

1 254.70–254.77 254,753,857 15 9.06 × 10−2 2.19 × 10−5 4.87 × 10−6 3.40 × 10−5 AMBP, KIF12,
COL27A1

1 254.73–254.78 254,756,216 10 6.79 × 10−2 7.84 × 10−6 1.31 × 10−6 4.91 × 10−6 COL27A1
1 254.74–254.78 254,757,687 5 3.92 × 10−2 3.23 × 10−6 7.39 × 10−7 1.77 × 10−6 COL27A1
2 148.22–148.26 148,238,122 1 6.20 × 10−1 3.91 × 10−6 4.08 × 10−4 4.16 × 10−4 PPP2R2B
6 156.54–156.58 156,564,691 2 5.73 × 10−4 8.95 × 10−4 1.06 × 10−5 1.71 × 10−6 -
6 156.55–156.60 156,578,616 2 3.48 × 10−6 6.73 × 10−2 2.07 × 10−1 3.43 × 10−2 -
6 159.28–159.49 159,467,436 4 3.98 × 10−3 5.68 × 10−4 3.85 × 10−6 2.45 × 10−6 ZYG11B, PODN

10 54.75–54.79 54,772,721 1 7.92 × 10−3 7.50 × 10−4 4.94 × 10−6 2.19 × 10−5 MALRD1
11 24.70–24.78 24,756,403 2 - 5.31 × 10−7 3.65 × 10−6 5.31 × 10−7 AKAP11
11 24.73–24.78 24,763,839 30 - 3.39 × 10−7 5.11 × 10−5 1.05 × 10−5 AKAP11
11 24.75–24.87 24,848,044 15 - 6.15 × 10−7 1.90 × 10−3 1.64 × 10−3 DGKH
11 24.93–25.02 24,996,968 3 - 3.98 × 10−7 6.50 × 10−8 3.98 × 10−7 DGKH
11 25.04–25.09 25,069,836 59 - 2.85 × 10−6 2.19 × 10−4 1.09 × 10−4 VWA8
11 25.05–25.09 25,072,777 5 - 5.46 × 10−7 8.49 × 10−8 5.46 × 10−7 VWA8
11 25.08–25.25 25,229,257 10 - 1.72 × 10−6 1.71 × 10−5 1.72 × 10−6 VWA8
11 25.21–25.33 25,306,498 58 - 8.50 × 10−6 3.40 × 10−6 8.50 × 10−6 VWA8
11 25.30–25.37 51,268,401 6 - 2.57 × 10−6 1.87 × 10−7 2.57 × 10−6 VWA8
11 51.25–51.29 51,268,401 1 2.87 × 10−6 4.07 × 10−1 6.18 × 10−2 4.61 × 10−3 -
14 61.85–62.44 62,420,628 46 2.87 × 10−2 2.29 × 10−4 3.67 × 10−6 2.30 × 10−4 BICC1
17 46.30–46.38 46,358,876 4 4.03 × 10−6 9.01 × 10−1 5.28 × 10−3 5.89 × 10−4 GTSF1L
18 45.35–45.39 45,371,853 1 4.60 × 10−4 1.55 × 10−3 3.95 × 10−6 2.36 × 10−6 HOXA13, HOXA11

SSC, Sus scrofa chromosome. SNP_R, range of significant and suggestive SNPs region. SNP_N, number of
significant and suggestive SNPs. T_SNP_P, the position (bp) of the top SNP in range of significant and suggestive
SNPs region. p (Canadian), p-value from within-population GWAS in the Canadian line. p (French), p-value from
within-population GWAS in the French line. p (Combined LW), p-value from within-population GWAS in the
both lines of Large White pigs. p (Meta), p-value from cross-population meta-analyses. The bolded text shows the
potential candidate genes detected in both chip and WGS data.

2.4. Bioinformatics Annotation Analysis

In this study, GWAS based on 50K chip data and WGS data were used to detect
candidate functional genes. According to the Sus Scrofa 11.1 pig genome, candidate genes
were detected within a 20 kb region centering each significant and suggestive SNP.

For the TNB trait, 2 and 30 genes were found for 50K chip data and imputed WGS
data, respectively. Additionally, one gene was simultaneously identified in both sets of
data. For the NSB trait, 5 and 47 genes were found for 50K chip and imputed WGS data,
respectively. Moreover, one gene was simultaneously identified in both datasets. For the
GL trait, 3 and 14 genes were found for 50K chip and imputed WGS data, respectively.
Furthermore, one gene was simultaneously identified in both datasets.

3. Discussion
3.1. Imputation of 50K Chip Data to WGS Data

In recent years, genotype imputation has been widely applied with the rapid decline
in the cost of whole-genome resequencing data and the need for high-density markers.
Genotype-population can be used to impute data with lower-density markers to the WGS
data, and the imputation accuracy may be affected by the size of the reference population,
the genetic distance between the reference and target populations, and the imputation
strategy [23].

3.1.1. Reference Population Size and Imputation Accuracy

The thirty Large White pigs used as the reference population in this study were the
ancestral individuals in the population. The genetic distance between the reference and
the target populations was relatively close. In addition, 14 pigs were also genotyped by
50K chip data and participated in the subsequent analysis. In this study, the accuracy of
genotype imputation was higher than 0.858 for each chromosome before quality control,
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with an average imputation accuracy of 0.876 for 18 chromosomes, and higher than 0.928
for each chromosome after quality control, with an average imputation accuracy of 0.942.
Quality control was applied in each population the loci loss rate of each population was
13.15% and 13.69% for the Canadian and French line-pigs, respectively. However, we
imputed target pigs of the Canadian and French lines to WGS data by using 13 Canadian-
line and 17 French-line Large White pigs as the reference population. The imputation
accuracy before quality control was lower than that of the combined reference population.
The imputation accuracy was 0.830 and 0.825 in Canadian and French lines, respectively.
After quality control, the imputation accuracy was almost the same as that of the combined
reference population, which was 0.943 and 0.944, respectively. However, the site loss rate
after quality control was much higher than that of the combined reference population,
which was 29.07% and 30.18%, respectively, being more than twice the loss rate of the
combined reference group. The variation in the number of the reference population may be
an important reason for this phenomenon. Using Beagle software, we imputed a medium-
density chip of 50K to a high-density chip of 777K. As the size of reference population
increased from 488 to 1229, their imputation error rate decreased from 0.67% to 0.41% [26].
We used Beagle software to impute the GBS data to the WGS data in Landrace pigs with
20 in the reference population and Large White pigs with 40 in the reference population,
resulting in imputation accuracy of 0.42 and 0.45, respectively [27].

3.1.2. Genetic Distance between Reference and Target Populations and
Imputation Accuracy

The imputation accuracy of GBS data imputed to WGS data in the study on Large
White pigs was 0.42 before quality control [27], which was much smaller than the 0.876 in
this study before quality control. The possible reason was that the reference population in
this study contained the key individuals in the population, and the genetic relationship
between the target and the reference population was close. In a previous study, imputation
was performed from 600K chip data to WGS data using multiple pig populations, and
the average imputation accuracy before quality control was 0.49 [28]. In another study,
Beagle software was used to impute the 60K chip data of 933 F2 populations to the WGS
data. In this study, the 117 reference populations included 19 ancestors in F2 generations.
The genotypic concordance and imputation accuracy were 0.89 and 0.80, respectively
using cross-validation procedures [29]. In our study, we used 20-fold cross-validation
procedures to evaluate the imputation genotypic concordance and imputation accuracy
of chromosomes 1, 6, and 12; the genotypic concordance of the three chromosomes was
0.931, 0.936, and 0.899, respectively, and the imputation accuracy was 0.866, 0.867, and
0.812, respectively, which is close to a previously reported finding [29]. In a study on the
imputation of multibreed sheep, if the individuals related to the individuals to be imputed
were removed from the reference population, the concordance and accuracy of imputation
reduced by 2.63% and 4.60%, respectively [30].

3.1.3. Imputation Strategy and Imputation Accuracy

Researchers used Beagle software to impute 60K and 600K chip data to WGS data in
a chicken population, obtaining an imputation accuracy of 0.620 and 0.812, respectively.
In two-step imputation approach, the authors performed indirect imputation from 60K to
600K chip data and then from 600K chip to WGS data with an average imputing accuracy
of 0.742 [22]. Researchers imputed 5K to 50K chip data and then from 50K chip data to HD
data in sheep, which was superior to directly imputing 5K chip data to HD data, which
increased the genotypic concordance by 5.67% [30]. In a study of genotype imputation
in Holstein cattle, first imputing 50K chip data to the HD data and then to the WGS data
improved the imputation accuracy from 0.28 to 0.65 compared with imputing 50K chip
data directly to the WGS data, but was still lower than the imputation accuracy of 0.77
for imputing from the HD to the WGS data [31]. In a study of a small cattle population,
endangered German Black Pied cattle, the accuracy of the two-step imputing method
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was found to be 92.1%, while the imputation accuracy of the one-step method was 93.2%.
The author also analyzed the possible reason for this phenomenon and found that the
intermediate reference level was a small population that is not abundant, which caused the
incorrect imputing of the low-density chip to the medium–high-density in the first step [32].
In future study, we can try to add a medium- to high-density chip and try the two-step
imputation method to compare the imputation accuracy, and the genotypic concordance of
two-step imputing can be improved compared with the previous method.

3.2. Potential Candidate Genes

Imputing the chip data to WGS data using genotype imputation will allow more
marker loci to be obtained for GWAS analysis at low cost. In this study, 50K chip data were
imputed to WGS data, and the average imputation accuracy was 0.943 after quality control,
so GWAS based on imputed WGS data were convincing. Compared with GWAS using the
chip data, GWAS based on imputed WGS data detected more potential candidate genes.
In addition, the meta-analysis improved the power of detection for SNPs by combining
different populations. The advantage of meta-analyses has been reported in pigs [10,33,34].
In our study, we detected novel significant SNPs in the meta-analysis compared with
single-breed analyses. However, there were no candidate genes within the 20 kb region
centering each novel significant SNPs in the meta-analysis.

For the TNB trait, a number of candidate genes located within 20 kb of genome-
wide significant and suggestive significant SNPs were identified in both lines. Among
them, the NOTCH2 gene plays an important role in pregnancy recognition and corpus
luteum maintenance in mice [35]. A study indicated that the NOTCH2 gene can inhibit the
synthesis of estradiol [36]. Another study showed a role of NOTCH2 in T-cell differentiation
in subsets of T cells between intrauterine growth-retarded groups and normal groups [37].
In the early stages of human embryogenesis showed, KLF3 is a transcription factor that
persists during the transition from the zygote to the morula stage [38]. The KLF3 gene
may regulate fatty acid use in the intestine and reproductive tissue [39]. PLXDC2 may
play a role in reproduction and ectopic pregnancies [40]. A study showed a role for
the TBX10 gene in embryo development and diseases of mice [41]. It has been revealed
that maternal nutrition in sows may alter birth weight mainly by regulating placental
lipid and energy metabolism, and the NDUFV1 gene plays an important role in energy
metabolism [42]. The expression level of NDUFV1 was downregulated in the placenta
tissues compared with the normal pregnancy group, and the NDUFV1 gene is involved
in energy production processes in the mitochondrial matrix and membrane [43]. The
TLR10 gene can be expressed in the endometrium, conceptus, and chorioallantoic tissues
of pigs, which may play a key role in regulating mucosal immune responses to support
the establishment and maintenance of pregnancy [44]. The CDC14A gene can regulate
oocyte maturation in mice [45]. The CDC14A gene is a possible candidate gene for protein
yield associated with milk production in North American Holstein cattle [46]. The CDC14A
gene is a candidate gene for body size traits in pigs [25]. The EPC2 gene was found
to be a novel candidate gene associated with reproductive performance in indigenous
Chinese pigs [47]. The ORC4 gene plays an important role in polar body extrusion during
oogenesis [48–50]. The ACVR2A gene is widely expressed in ovarian granulosa cells and
closely related to granulosa cell proliferation and follicular development [51]. The ACVR2A
gene is a candidate gene for reproductive traits in pigs [52]. A study showed that ACVR2A
is associated with female fertility in Japanese Black cattle [53]. The GSC gene can be used as
an early marker of embryonic differentiation and describe embryonic diversity in pigs [54].

For the NSB trait, a number of candidate genes located within 20 kb of the genome-
wide significant and suggestive significant SNPs were identified in both lines. Among
them, the NUB1 gene has been reported to be associated with milk production traits in
cows and sheep [55,56]. The TGFBR3 gene was also reported to be associated with oocyte
maturation in pigs [57]. The ZDHHC14 gene may act as a marker and target for the
clinical diagnosis and treatment of pre-eclampsia [58]. The FGF14 gene may be a promising
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candidate gene associated with litter traits in pigs [59] and a potential candidate gene for teat
number trait in Duroc pigs [60]. The BAIAP2L1 gene may serve as a biomarker in ovarian
cancer [61]. The BCAR3 gene may provide new insights into the mechanism of local estrogen
action in endometriosis [62], and may contribute to the complex tumor heterogeneity of
ovarian cancer cells [63]. The EVI5 gene displayed significantly differential expression
in trophectoderm biopsies associated with live birth and no-implanting [64]. A study
observed that the absence of the TAF1B gene in germline cells leads to the accumulation
of late stage egg chambers in the ovaries [65]. The TAF1B gene is a candidate gene for
congenital splay leg. Porcine splay leg syndrome is still one of the most important causes
of piglet loss, which can be caused by myofibrillar hypoplasia [66].

For the GL trait, a number of candidate genes located within 20 kb of genome-wide
significant and suggestive significant SNPs were identified in both lines. Among them,
the PPP2R2B gene had a genetic significant effect on milk production traits in Chinese
Holstein [67]. This gene may be associated with sperm motility in Duroc pigs as a candidate
gene [68]. The PPP2R2B gene may act as an important reproductive driver gene [69]. A
study found that the AMBP gene was overexpressed in the amniotic fluid of women without
intra-amniotic infection/inflammation [70]. Increased concentrations of this AMBP gene
are often considered an indicator of pre-eclampsia [71]. The MALRD1 gene is associated
with endometriosis in humans [72]. The BICC1 gene is differentially expressed during
prenatal development of skeletal muscle in Pietrain and Duroc pigs [73]. A study identified
the BICC1 gene as an important candidate gene of reproductive traits in Duroc pigs [74].
The HOXA3, HOXA7, HOXA10, and HOXA11 genes were found to be candidates for
reproductive traits in a study of runs of homozygosity in Jinhua pig [75]. It has also been
shown that the HOXA11 gene is expressed in the endometrium [76] and is associated with
endometrial epithelial function [77].

4. Materials and Methods
4.1. Animals and Phenotype

The Large White pigs used in this study were from a commercial pig company in
Shanghai, China, which were introduced from Canadian and French lines. Feeding and
performance testing for these two lines were conducted on two different farms, with
essentially the same level of nutritional management. A total of 13,379 reproduction
records of 2655 individuals from parity 1 to 7 were collected during the period of 2014–2020,
of which 1403 were from the Canadian line and 1252 were from the French line. According
to pedigree information, there was no genetic connectedness between the two lines. Three
reproductive traits, TNB, NSB, and GL, were selected for subsequent analysis. The DMUAI
procedure of DMU software(Version 6, release 5.2) was used to adjust phenotype on the
repeated records of multiple parities based on the pedigree information [78]. The statistical
model is described below:

yijklm = µ + Li + Tj + YSk + aijkl + peijklm + eijklm

where yijklm is the phenotype, such as TNB, NSB, and GL traits; µ is the total mean; Li is the
line effect; Tj is the parity effect; YSk is the measured year-season effect, where the season is
divided according to the month and consists of four levels (spring = March to May; summer
= June to August; autumn = September to November; winter = December to February);
and aijkl is the additive genetic effect, with a ~N(0,Aσ2

a ), where σ2
a is the additive genetic

variance, A is the numerator relationship matrix, pe is the permanent environmental effect,
with pe~N(0,Iσ2

pe), and eijklm represents residuals.

4.2. SNP Chip Data

We selected 2655 Large White pigs as the target population. Genotyping was per-
formed using a GeneSeek Porcine 50K array. The chip was designed according to Sus Scrofa
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10.2 and contained 50,915 SNPs. We mapped autosomal SNPs to the latest version of the
pig genome Sus Scrofa 11.1, resulting in 46,311 autosomal SNPs for subsequent analysis.

Quality control was performed by PLINK v1.90 software [79]. In each population, pigs
with an individual call rate of lower than 0.9 were excluded. SNP call rates less than 0.9
were removed and we retained SNPs with minor allele frequencies (MAF) of 0.05 or higher.
After quality control, 43,549 SNPs remained in the combined Large White population for
subsequent analysis. For the Canadian and French lines of Large White pigs, we used
41,039 and 40,495 autosomal SNPs for subsequent analysis, respectively.

4.3. Reference Sequence Data

Based on the pedigree information, we first ranked the individuals in the Large White
population according to the number of offspring. Then, we select the top thirty ancestral
individuals that we called the key individuals in the Large White population as the reference
population. Among these 30 Large White pigs, there were 13 Canadian-line pigs and 17
French-line pigs. In addition, fourteen pigs also had chip data and participated in the
subsequent analysis. The whole-genome resequencing of 30 Large White pigs was carried
out on an Illumina HiSeq platform with average sequencing depth of 10-fold. The initial
quality of resequencing data was determined by Trimmomatic (version 0.39) [80]. The
clean reads were mapped to the Sus Scrofa 11.1 reference sequence with BWA (version
0.7.17) software [81]. Afterwards, GATK (version 4.1.8.1) software was used to realign
the mapped reads and call the SNPs [82]. A total of 21,039,605 SNPs were called by
GATK. Quality control was performed by removing duplication sites and SNPs with no
position information or located on sex chromosomes. We retained the SNPs with minor
allele frequency (MAF) > 0.05, SNPs call rate > 0.9, and Hardy–Weinberg equilibrium
(HWE) < 1.0 × 10−6; quality control was performed with VCFtools (version 0.1.16) [83].
After quality control, a total of 14,561,445 SNPs remained.

4.4. Genotype Imputation

Using the WGS reference data of 30 Large White pigs, the GeneSeek Porcine 50K chip
data of 2655 target Large White pigs were imputed to WGS data. Genotype imputation
was conducted with Beagle (version 5.2.2) software [84]. After imputation, quality control
was performed with BCFtools (version 1.8) software in each of the two lines [85]. In each
population, imputation accuracies lower than 0.8 and minor allele frequencies (MAFs) of
lower than 0.05 were excluded. The imputation accuracy R2 at each SNP was the squared
correlation between the known true genotypes and the expected dosages [86].

4.5. Genome-Wide Association Studies

In this study, we used the sum of an estimated breeding value (EBV) and a residual
of an individual as the adjusted phenotype to conduct GWAS. The single SNP regression
models were independently performed on GeneSeek Porcine 50K chip data and imputed
WGS data using GCTA (version 1.93.3beta) [87]. The statistical model is described below:

y = Xb + Wg + e

where y is the vector of the adjusted phenotypes, such as TNB, NSB, and GL traits; b is the
vector of fixed effects; there was no fixed effect in the within-population analysis, and the
line effect was added as a fixed effect in the combined Large White population. g is a vector
of the SNP effects; W and X correspond to the correlation matrix of b and g, respectively; e
is the vector of residual effects, with e~N(0, Iσ2

e ).
In addition, the cross-population meta-analysis based on default method was con-

ducted with METAL software (version “2011-03-25”) [88]. The default method in the
METAL software combines p-values across studies taking into account the sample size and
direction of the effect.

For 50K chip data, the threshold values were determined by the Bonferroni correction
method. The threshold p-values for genome-wide significance and suggestive were set to



Int. J. Mol. Sci. 2022, 23, 13338 19 of 23

−log10 (0.05/SNPs) and −log10 (1/SNPs), respectively. For imputed WGS data, we used
5 × 10−8 as a genome-wide significance level, which was also applied in human GWAS [89].
We adopted 5 × 10−6 as the suggestive level. The Manhattan and quantile-quantile (QQ)
plots were drawn with the R package “qqman” [90].

4.6. Bioinformatics Annotation Analysis

The bioinformatics database BioMart (http://www.ensembl.org/, accessed on 27
August 2022) was used to screen candidate genes located within significant and suggestive
loci. We only considered genes located in the ±20 kb region around significant and
suggestive SNPs.

5. Conclusions

In this study, we imputed 50K chip data to WGS data, with an average imputation
accuracy of 0.876 before quality control and 0.943 after quality control (R2 > 0.8 and MAF>
0.05). The imputed WGS data for GWAS is cost-effective, which can reduce the mapping
noise. These results provide useful, new insights into the genetic variation and genes
associated with TNB, NSB, and GL traits in different lines of Large White pigs. However,
further studies are needed to determine the optimal imputation strategy from chip to
WGS data. GWAS based on chip data and imputed WGS data were performed for three
reproductive traits in the Canadian and French lines of Large White pigs. Finally, combining
the results of GWAS and bioinformatics annotation analysis, NOTCH2, KLF3, PLXDC2,
NDUFV1, TLR10, CDC14A, EPC2, ORC4, ACVR2A, and GSC genes were identified as
potential candidate genes associated with the TNB trait; NUB1, TGFBR3, ZDHHC14, FGF14,
BAIAP2L1, EVI5, TAF1B, and BCAR3 were considered potential candidate genes related
to the NSB trait; and PPP2R2B, AMBP, MALRD1, HOXA11, and BICC1 were detected as
potential candidate genes related to the GL trait in Large White pigs. In addition, the size
of the reference population used in this study was small, and the detection power of GWAS
analysis was weak. Subsequently, we can consider expanding the size of the reference
population and adopting a further fine imputation strategy to discover causal mutations
and validate these identified SNPs and genes.
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