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Abstract: The caterpillar of the Premolis semirufa moth, commonly called Pararama, is found in the
Brazilian Amazon region. Contact with the hairs can cause a chronic inflammatory reaction, termed
“pararamosis”. To date, there is still no specific treatment for pararamosis. In this study, we used a
whole human blood model to evaluate the involvement of the complement in the proinflammatory
effects of P. semirufa hair extract, as well as the anti-inflammatory potential of complement inhibitors in
this process. After treatment of blood samples with the P. semirufa hair extract, there was a significant
increase in the generation of soluble terminal complement complex (sTCC) and anaphylatoxins (C3a,
C4a, and C5a), as well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8,
RANTES, MIG, MCP-1, and IP-10. The inhibition of C3 with compstatin significantly decreased
IL-17, IL-8, RANTES, and MCP-1 production. However, the use of the C5aR1 antagonist PMX205
promoted a reduction in the production of IL-8 and RANTES. Moreover, compstatin decreased CD11b,
C5aR1, and TLR2 expression induced by P. semirufa hair extract in granulocytes and CD11b, TLR4,
and TLR2 in monocytes. When we incubated vascular endothelial cells with extract-treated human
plasma, there was an increase in IL-8 and MCP-1 production, and compstatin was able to decrease
the production of these chemokines. C5aR1 antagonism also decreased the production of MCP-1 in
endothelial cells. Thus, these results indicate that the extract of the Pararama bristles activates the
complement system and that this action contributes to the production of cytokines and chemokines,
modulation of the expression of surface markers in leukocytes, and activation of endothelial cells.
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1. Introduction

Pararamosis is an occupational disease of an inflammatory nature caused by contact
with the hairs of the caterpillar or cocoon of the Premolis semirufa moth [1]. The term
pararamosis is used in reference to the popular name given to the larval form of this moth,
“Pararama”. This caterpillar is native to the Amazonian region and lives on rubber trees
(Hevea spp), feeding on its leaves. The highest frequency of accidents occurs when rubber
extractors collect latex and get in contact with caterpillar hairs containing the venom [1–3].

Contact with the caterpillar hairs through the skin causes immediate reactions of
intense itching, followed by pain, heat, and redness, typical of an acute inflammatory
process lasting 3 to 7 days [1]. However, in some injured individuals, the process can
become chronic with synovial membrane thickening, which can evolve to deformities and
immobilization of the affected joint, configuring the clinical picture of ankylosis, similar,
in some aspects, to rheumatoid arthritis (RA) [2,3] and osteoarthritis (OA) [4,5]. There is
still no specific treatment for this disease, but corticosteroids have been used to prevent the
development or alleviate chronic disease [6,7].

Int. J. Mol. Sci. 2022, 23, 13333. https://doi.org/10.3390/ijms232113333 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232113333
https://doi.org/10.3390/ijms232113333
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4187-798X
https://orcid.org/0000-0003-1896-9074
https://doi.org/10.3390/ijms232113333
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232113333?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 13333 2 of 20

Our group previously investigated the biological characteristics and immune response
to the Pararama hair extract to identify possible targets for the treatment of this disease.
We demonstrated that the hair extract of P. semirufa possesses a mixture of enzymes that,
acting together, can promote the clinical manifestations of pararamosis. In addition, re-
peated inoculations of Pararama hair extract in the mouse paw induced an important local
inflammatory response with neutrophilic infiltrate [8]. Continuing the evaluation of local
inflammation, the presence of macrophages and neutrophils was observed, possibly due
to the increased production of cytokines (TNF-α, IL-1, IL-6, IL-2, IFN-γ, IL-12, IL-17, and
IL-23), as observed at the inoculation site [9].

More recently, increased production of IL-6, IL-8, MCP-1, prostaglandin E2, metallo-
proteinases (MMP-1, MMP-2, MMP-3, and MMP-13), and complement system components
(C3, C4, and C5) was observed in chondrocytes cultured with P. semirufa hair extract. In
addition, a significant decrease in both aggrecan and type II collagen and an increase in
HMGB1 protein were shown after extract treatment. This study also identified important
pathways related to the inflammatory process of joint diseases, such as the inflammatory
response, chemotaxis of immune cells, and extracellular matrix (ECM) remodeling [5].

In addition to the participation of cytokines, macrophages, and neutrophils in the im-
mune response triggered by Pararama hair extract, in vitro experiments showed that, using
human serum, the extract also activates the complement system, generating anaphylatoxins
(C3a, C4a, and C5a) and the soluble terminal complement complex (sTCC) [10].

The complement system is involved in the pathogenesis and clinical manifestations of
several systemic autoimmune diseases, such as systemic lupus erythematosus (SLE) [11],
vasculitis [12], antiglomerular basement membrane disease [13], antiphospholipid antibody
syndrome [14], systemic sclerosis [15], dermatomyositis [16], and rheumatoid arthritis [17],
as well as in the pathogenesis and progression of osteoarthritis [18,19]. In the last 60 years,
several studies have shown that uncontrolled activation of the complement system is
involved in the development and/or increase in inflammatory arthritis [20–34]. These data
indicate that anti-complement therapies may have considerable potential as a strategy for
the treatment of inflammatory arthritis.

Several compounds that interfere with the complement cascade have been studied
and entered into clinical trials [35,36]. For example, the humanized monoclonal anti-
body against C5 (eculizumab), which inhibits its cleavage to C5a and C5b, promoted a
significant improvement in the clinical score of rheumatoid arthritis when administered
intravenously [37]. Other compounds directed to the complement system have already
been used in animal models of inflammatory diseases, such as serine protease inhibitors
(FUT-175 and BCX-1470), C3 inhibitors (compstatin, Cp40), C5 inhibitors (TS-A12/22 and
K76COONa), and C3a (SB290157) and C5a (PMX-53) antagonists [35,38].

Most of the in vitro experiments carried out with the aim of investigating complement
system participation in different types of cells are performed using proteins and isolated
cells. However, to study the role of the complement system as a mediator of inflammation,
it is necessary that all soluble or membrane mediators be present and able to interact. For
this interaction to occur, the ex vivo human whole blood model is an ideal approach [39].
Thus, the objective of the present study was to evaluate the involvement of the complement
system in the proinflammatory effects of Premolis semirufa hair extract using a human whole
blood ex vivo model. We also used specific complement inhibitors of key points in the
cascade to determine mechanistically the drivers of the inflammatory process in this model.

2. Results
2.1. Pararama Hair Extract Activates the Complement System in Human Blood

To evaluate whether the Pararama hair extract induces complement system activation
and, consequently, the generation of anaphylatoxins (C3a, C4a, and C5a) and soluble
terminal complement complex (sTCC and SC5b-9), lepirudin-treated blood samples were
incubated with the extract and, as a positive control, with lipopolysaccharide (LPS). Figure 1
shows that both the extract and LPS induced a significant increase in the generation of the
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anaphylatoxins C3a, C4a, and C5a, and the extract induced higher production of C5a than
LPS. Moreover, the extract induced a significant generation of sTCC when compared to
the negative control, PBS. This production was significantly higher than the production
induced by LPS.
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Figure 1. Production of anaphylatoxins and the terminal complement complex in whole blood stimu-
lated with Pararama hair extract. Human blood samples anticoagulated with lepirudin (50 µg/mL)
were incubated with Pararama hair extract (95 µg/mL), LPS (5 µg/mL), or PBS for 30 min at 37 ◦C.
After plasma collection, anaphylatoxin (C3a, C4a, and C5a) production was assessed by flow cy-
tometry, and SC5b-9 was assessed by ELISA. The results are presented as the mean ± SD of three
independent experiments. * p: < 0.05. ** p: < 0.01. *** p: < 0.001. **** p: < 0.0001. ns: not significant.

2.2. Pararama Hair Extract Induces Increased Expression of Cell Surface Markers in Human Blood

To assess whether the hair extract from the P. semirufa caterpillar had any effect on
leukocytes, human blood samples treated with buffer, LPS or extract were analyzed by flow
cytometry for the expression of the surface markers CD11b, CD14, TLR4, TLR2, C3aR, and
C5aR1 in granulocyte (CD66b+) and monocyte (CD33+) populations, and the results are
expressed as the median fluorescence intensity (MFI).

Figure 2A shows that the extract induced a significant increase in the expression of
CD11b, TLR2, and TLR4 in monocytes. When compared to the Pararama hair extract, LPS
induced higher expression of CD11b and TLR2. The expression of CD14, C3aR, and C5aR1
protein was not modulated by the treatments in the monocyte population (data not shown).

Figure 2B shows a significant increase in the expression of CD11b, CD14, TLR2, and
C5aR1 in the granulocyte population when compared to the negative control (PBS). LPS
induced a higher expression of CD11b than the extract. The expression of TLR4 and C3aR
molecules was not modulated by the treatments (data not shown).
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Figure 2. Expression of surface markers in monocytes and granulocytes stimulated with Pararama
hair extract. Human blood samples anticoagulated with lepirudin (50 µg/mL) were incubated with
Pararama hair extract (95 µg/mL), LPS (5 µg/mL), or PBS for 30 min at 37 ◦C. After lysis of ery-
throcytes, cells were stained with anti-CD33 (monocytes), anti-CD66b (granulocytes), anti-CD11b,
anti-CD14, anti-TLR2, anti-TLR4 and anti-C5aR. The expression of these markers was evaluated
by flow cytometry, and the results are expressed as the median fluorescence intensity (MFI) after
the acquisition of 20,000 events. The results are presented as the mean ± SD of three indepen-
dent experiments. (A): Monocytes. (B): Granulocytes. * p: < 0.05. ** p: < 0.01. **** p: < 0.0001.
ns: not significant.

2.3. Pararama Hair Extract Induces the Production of Cytokines and Chemokines in Human Blood

Cytokine and chemokine production was evaluated in plasma after treatment of blood
samples with Pararama hair extract, PBS, or LPS. Figure 3 shows that the extract induced
a significant increase in the production of two cytokines that play an important role in
the development of RA and OA, i.e., IL-17 and TNF-α, and was unable to induce the
production of IL-2, IL-4, IL-6, IL-10, and IFN-γ (data not shown). LPS did not induce a
significant increase in IL-17 production; however, LPS induced a TNF-α level that was
significantly higher than the TNF-α level induced by the extract. The Pararama hair extract
induced a significant increase in the production of the chemokines IL-8, RANTES, MIG,
MCP-1, and IP-10 compared to the negative control. Regarding LPS, the difference was
significant only for IL-8, MIG, and MCP-1. LPS, at the concentration used in the assay,
did not induce a significant increase in any of the analyzed chemokines in relation to the
negative control.
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Figure 3. Cytokine and chemokine levels in whole blood stimulated with Pararama hair extract.
Human blood samples anticoagulated with lepirudin (50 µg/mL) were incubated with Pararama
hair extract (95 µg/mL), LPS (5 µg/mL), or PBS for 30 min at 37 ◦C. After plasma collection, the
production of cytokines (IL-17A, TNF) and chemokines (IL-8, RANTES, MIG, MCP-1, and IP-10) was
determined by flow cytometry. The results are presented as the mean ± SD of three independent
experiments. * p: < 0.05. *** p: < 0.001. **** p: < 0.0001. ns: not significant.

2.4. Compstatin Inhibits C3a, C5a, and TCC Generation Induced by Pararama Hair Extract in
Human Blood

Figure 4 shows that compstatin was able to inhibit the generation of C3a, C5a, and
the soluble terminal complement complex (SC5b-9) and that the control peptide did not
interfere with this generation induced by the Pararama hair extract. However, compstatin
was not able to control the production of C4a induced by the extract.
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Figure 4. Production of anaphylatoxins and the terminal complement complex in whole blood stimu-
lated with Pararama hair extract in the presence of compstatin. Human blood samples anticoagulated
with lepirudin (50 µg/mL) were preincubated with PBS, compstatin (50 µM), or control peptide
(50 µM) and then incubated with Pararama hair extract (95 µg/mL) or PBS for 30 min at 37 ◦C. After
plasma collection, anaphylatoxin (C3a, C4a, and C5a) generation was assessed by flow cytometry,
and SC5b-9 production was assessed by ELISA. The results are presented as the mean ± SD of three
independent experiments. * p: < 0.05. ** p: < 0.01. *** p: < 0.001. **** p: < 0.0001. ns: not significant.

2.5. Compstatin Modulates Surface Cell Marker Expression Induced by Pararama Hair Extract in
Granulocytes and Monocytes

Figure 5A shows that the inhibition of the complement system promoted a significant
decrease in the expression of CD11b, TLR2, and TLR4 induced by Pararama hair extract in
monocytes. In granulocytes, the presence of compstatin produced a significant decrease in
the expression of CD11b, TLR2, and C5aR induced by Pararama hair extract (Figure 5B).
The expression of CD14 was not modulated by the treatments, and the control peptide
did not interfere with the tests performed, showing similar results with the human blood
samples stimulated only with the hair extract of the P. semirufa caterpillar.
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Figure 5. Expression of surface markers in monocytes and granulocytes stimulated with Pararama
hair extract in the presence of compstatin. Human blood samples anticoagulated with lepirudin
(50 µg/mL) were preincubated with PBS, compstatin (50 µM), or control peptide (50 µM) and
then incubated with Pararama hair extract (95 µg/mL) or PBS for 30 min at 37 ◦C. After lysis of
erythrocytes, cells were stained with anti-CD33 (monocytes), anti-CD66b (granulocytes), anti-CD11b,
anti-CD14, anti-TLR2, anti-TLR4, and anti-C5aR. The expression of these markers was evaluated
by flow cytometry, and the results are expressed as the median fluorescence intensity (MFI) after
the acquisition of 20,000 events. The results are presented as the mean ± SD of three independent
experiments. (A): Monocytes. (B): Granulocytes. * p: < 0.05. *** p: < 0.001. **** p: < 0.0001.
ns: not significant.

2.6. Compstatin Modulates IL-17, IL-8, RANTES, and MCP-1 Production Induced by Pararama
Hair Extract in Human Blood

To assess whether inhibition of the complement system with compstatin could interfere
with the cytokine and chemokine production induced by the Pararama hair extract, human
blood samples were preincubated with compstatin or control peptide and then treated
with the extract or PBS. Figure 6 shows that in the presence of compstatin, there was a
significant decrease in the production of IL-17A induced by Pararama hair extract; however,
compstatin did not interfere with the production of TNF-α.

Inhibition of the complement system by compstatin promoted a significant decrease
in the production of the chemokines IL-8, RANTES, and, mainly, MCP-1 that returned to
basal levels. However, compstatin did not interfere with the production of MIG and IP-10
induced by the Pararama hair extract (Figure 6).
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Figure 6. Cytokine and chemokine levels in whole blood stimulated with Pararama hair extract in
the presence of compstatin. Human blood samples anticoagulated with lepirudin (50 µg/mL) were
preincubated with PBS, compstatin (50 µM), or control peptide (50 µM) and then incubated with Pararama
hair extract (95 µg/mL) or PBS for 30 min at 37 ◦C. After plasma collection, the production of cytokines
and chemokines was determined by flow cytometry. The results are presented as the mean ± SD of three
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independent experiments. ** p: < 0.01. *** p: < 0.001. **** p: < 0.0001. ns: not significant.

2.7. C5a Is Involved in the Production of IL-8 and RANTES Induced by Pararama Hair Extract in
Human Blood

C5a induces or amplifies several innate immune responses and promotes most of its
functions through interaction with C5a receptor 1 (C5aR1). To evaluate the role of C5a in
cytokine and chemokine production, human blood samples were preincubated with the
C5aR1 antagonist PMX205 and incubated with Pararama hair extract or PBS. Figure 7 shows
that the inhibition of C5aR1 significantly decreased the production of the chemokines IL-8
and RANTES but did not interfere with the MCP-1 and IL-17A production induced by
Pararama extract.
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Figure 7. Cytokine and chemokine levels in whole blood stimulated with Pararama hair extract in
the presence of PMX205. Human blood samples anticoagulated with lepirudin (50 µg/mL) were
preincubated with PBS, PMX205 (10 µM), or PMX control vehicle and then incubated with Pararama
hair extract (95 µg/mL) or PBS for 30 min at 37 ◦C. After plasma collection, the production of
cytokines and chemokines was determined by flow cytometry. The results are presented as the mean
± SD of three independent experiments. ** p: < 0.01. *** p: < 0.001. **** p: < 0.0001. ns: not significant.

2.8. Pararama Hair Extract Induces IL-8 and MCP-1 Production in Eahy926 Human
Endothelial Cells

To analyze whether the Pararama hair extract has a direct action on endothelial cells,
EAhy926 cells were treated with 15, 30, and 60 µg/mL extract or PBS for 24, 48, and 72 h.
After stimulation, cytokine and chemokine production in the supernatant of cultures and
cell viability was assessed. The Pararama hair extract did not affect the viability of the cells
at any of the times and concentrations tested (Figure 8A). (Figure 8B,C) shows that the
extract induced the secretion of the IL-8 and MCP-1 chemokines at all concentrations used
after 72 h of stimulation.
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Figure 8. Cell viability and chemokine levels in cultures of EA.hy926 cells stimulated with Pararama
hair extract. The endothelial cell line EA.hy926 (5 × 104 cells/well) was treated with 15, 30, or
60 µg/mL extract or PBS for 24, 48, and 72 h in a CO2 incubator. After stimulation, the production of
IL-8 and MCP-1 was determined in the supernatants of the cultures, and cell viability, expressed as a
percentage, was evaluated by the MTT assay. The results are presented as the mean ± SD of three
independent experiments. (A): Cell viability. (B): IL-8 levels. (C): MCP-1 levels. * p < 0.05; ** p < 0.01.
ns: not significant.

2.9. Complement Activation Products Induced by Pararama Hair Extract Are Involved in IL-8 and
MCP-1 Production by Endothelial Cells

To evaluate whether the complement activation products induced by the extract could
stimulate endothelial cells to produce chemokines and cytokines, EAhy926 cells were
incubated with plasma collected from human blood samples stimulated with PBS, extract,
or extract + compstatin. Similar final concentrations (~1.9 µg) of the hair extract, present in
the plasma samples, were used in the cultures of endothelial cells, and no secretion of the
cytokines and chemokines was detected (data not shown).

The role of C5a in these assays was assessed using the C5aR1 antagonist PMX205 in
the cell culture. The MTT assay was performed to assess whether the plasma stimulus
was capable of compromising endothelial cell viability. The cells remained viable after
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all the stimuli and periods tested (Figure 9A). (Figure 9B,C) shows that Pararama hair
extract-treated plasma, at all times analyzed, induced a significant increase in IL-8 and
MCP-1 production compared to the control (PBS-treated plasma). Complement system
inhibition with compstatin significantly decreased the chemokine production induced by
Pararama hair extract-treated plasma. However, the incubation of endothelial cells with
extract-treated plasma in the presence of PMX205 did not modulate the production of
IL-8, indicating that C5a is not involved in the production of this chemokine in these cells.
However, the use of the C5aR1 antagonist significantly decreased the production of MCP-1
in all periods of stimulation.
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Figure 9. Cell viability and chemokine levels in cultures of EA.hy926 cells stimulated with Pararama
hair extract-treated plasma. The endothelial cell line EA.hy926 (5 × 104 cells/well) was treated with
plasma (1:10 in culture medium) collected from blood samples stimulated with PBS (PBS-treated plasma),
Pararama hair extract (extract-treated plasma) and Pararama hair extract in the presence of compstatin
(extract-treated plasma and compstatin). After stimulation, the production of IL-8 and MCP-1 was
determined in the culture supernatants by flow cytometry. To evaluate the role of C5a, Pararama hair
extract-treated plasma in the presence of PMX205 was used in cultures (PMX205+ extract-treated plasma).
The results are presented as the mean ± SD of three independent experiments. ** p < 0.01 compared to
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PBS-treated plasma. *** p < 0.001 compared to PBS-treated plasma. # p < 0.05 compared to
Pararama hair extract-treated plasma. ## p < 0.01 compared to Pararama hair extract-treated plasma.
### p < 0.001 compared to Pararama hair extract-treated plasma. α p < 0.05 compared to 24 h.
ααα p < 0.001 compared to 24 h. β p < 0.05 compared to 48 h.

3. Discussion

Pararamosis is a neglected tropical disease affecting mainly rubber tappers living in the
Amazonian region, and to date, no specific treatment has been developed for this disease.

To evaluate the inflammatory effect of the extract in a system where the interaction of
cells and blood components occurs and that also allows determination of the involvement
of the complement system in this effect, the ex vivo human whole blood model was used.
This model allows pharmacological interventions to be carried out at specific points of
the complement system cascade, such as the use of compstatin, a peptide that binds to
C3, preventing its proteolytic cleavage by C3 convertase [39,40] and the complement C5a
receptor 1 (C5aR1) antagonist PMX205 [41,42].

After treatment of human blood samples with the P. semirufa hair extract, there was a
significant increase in the generation of anaphylatoxins (C3a, C4a, and C5a) and sTCC as
well as the production of the cytokines TNF-α and IL-17 and the chemokines IL-8, RANTES,
MIG, MCP-1, and IP-10.

In osteoarthritis (OA), the most common joint disease that can develop as a sequel
of joint cartilage trauma [43] and evolve to cartilage and bone destruction, the role of
complement was suggested 15 years ago [44] and still remains a promising field for in-
vestigation, since patients with OA had increased synovial fluid concentrations of C3a,
which can be generated from all three pathways, compared to levels in healthy control
subjects [19]. However, a detailed pathogenetic pathway triggered in the joint by comple-
ment activation and its crosstalk with other signaling routes contributing to OA remains
poorly characterized.

Synovial fibroblasts and chondrocytes isolated from patients with OA, when stimu-
lated in vitro with IL-17, have been shown to produce IL-8 and MCP-1 (chondrocytes) and
IL-8 (fibroblasts), which suggests that IL-17 may contribute to cartilage degradation and
synovial infiltration in OA [45]. Additionally, a positive correlation was shown between
the serum level of IL-17 and primary knee osteoarthritis, which may reflect the severity of
the disease [46]. The effects of IL-17 on chondrocytes and synovial fibroblasts derived from
cartilage and synovium of patients with end-stage knee OA were evaluated by Mimpen and
collaborators [47], who showed an increase in the gene expression of IL-6, CXCL1, CXCL2,
CXCL3, CXCL3, MMP1, and MMP3. Tumor necrosis factor (TNF) may play an important
role in the inflammatory responses that occur during osteoarthritis [48–50], triggering
the production of IL-6 [51], IL-8 [52], and RANTES [53,54] by human articular chondro-
cytes [55]. In the present study, we observed that P. semirufa venom induced the production
of IL-17 and TNF, and complement inhibition at the C3 level decreased IL-17 production.

Anticomplement therapy in models of disease has been widely explored in recent
decades, such as the use of cobra venom factor (CVF) to inhibit disease in animal mod-
els [56], and increasing efforts are being made to produce selective complement inhibition
by employing monoclonal antibodies against complement components or by administering
specific inhibitors [57].

The C3 blocker compstatin, administered intravitreally in nonhuman primates, has
shown a reversal of drusen formation by suppression of complement activation in age-
related macular degeneration (AMD) [58]. The standard procedure for patients with
paroxysmal nocturnal hemoglobinuria (PNH) with significant clinical symptoms is the
humanized monoclonal antibody eculizumab (Soliris), which binds to C5 and blocks
the terminal complement pathway and was approved in 2007 [59,60]. Other anti-C5
antibodies have also been developed and are currently in clinical trials, such as tesi-
dolumab, also known as LFG316, which is undergoing testing for AMD (NCT01527500),
PNH (NCT02534909) and non-infectious intermediate, posterior or panuveitis (NIIPPU)
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(NCT01526889); ravulizumab, also called ALXN1210, is in phase 3 clinical trials for PNH
(NCT03056040), substituting in the treatment for eculizumab, with results not inferior to
eculizumab [61].

Pegcetacoplan (APL-2 or EMPAVELI), a long half-life form derivative from compstatin,
is the first C3-targeted PNH therapy to be approved (in May 2021) in the USA [62–64], and its
regulatory assessment is currently underway in the EU and Australia [63]. Another compstatin
derivative, AMY-101 (Cp40), is currently in phase II clinical trials in adults with gingivitis
(NCT03694444) [65,66] and for the management of patients with acute respiratory distress syn-
drome (ARDS) caused by SARS-CoV-2 infection (NCT04395456) [67,68] and has demonstrated
good safety and tolerability in human volunteers in a phase I study (NCT03316521).

The C5aR1 blocker, the cyclic hexapeptide PMX53, modeled on the C-terminus of
C5a, showed high specificity and affinity for C5aR1 in many species. Several phase I
and IIa clinical trials with PMX53 were initiated for diseases such as rheumatoid arthritis,
osteoarthritis, psoriasis, and AMD. The molecule proved to be safe but with low oral
bioavailability resulting in poor efficacy. However, a modified version of PMX53, PMX205,
showed improvements in these parameters and improved brain penetrance and thus may
be more suitable for future clinical trials [69–71]. In rodent models, PMX205 has shown ben-
eficial effects in amyotrophic lateral sclerosis [72,73], striatal neurodegeneration [74], spinal
cord injury [75,76], reduction of memory loss in mice with Alzheimer’s disease [77,78], and
in Naja annulifera snake envenomation, demonstrating the importance of the C5a-C5aR1
axis in the immunopathology caused by this venom [79].

In our study, the inhibition of C3 by compstatin significantly decreased IL-17, IL-8,
RANTES, and MCP-1 production, indicating a possible involvement of the complement
system in the production of these molecules. However, the use of the C5aR1 antagonist
PMX205 promoted a reduction in the production of IL-8 and RANTES. Since PMX205
did not alter the production of IL-17 and MCP-1, it is possible to consider that these
cytokines were stimulated by the extract-induced C5a anaphylatoxin. With the use of
compstatin, maintenance of the generation of anaphylatoxin C4a was observed, likely
because compstatin binds to the C3 component, preventing its cleavage, but does not
interfere with the action of C1 and MASPs, which are responsible for the cleavage of the
C4 component, in C4a and C4b. This increase can also occur by direct cleavage of C4 by
metalloproteinases present in Pararama hair extract, as already demonstrated by Villas
Boas et al. [10]. As the production of TNF, MIG, and IP-10 was not affected by compstatin or
PMX205, we can conclude that their release was independent of C3a and C5a. In our assay,
the release of these mediators could therefore be induced by C4a or by the direct action of
Pararama extract on leukocytes or through the activation of other plasma compounds. This
axis remains to be further investigated.

The use of compstatin in our model also decreased CD11b, TLR2, and C5aR1 expres-
sion induced by P. semirufa caterpillar hair extract in granulocytes, and CD11b, TLR4, and
TLR2 in monocytes suggest that complement system activation and the interaction of its
products with some receptors may contribute to the progression of pararamosis.

The vascular endothelium contributes to and is affected by inflammatory processes.
Exposure of the endothelium to mechanical, chemical, or immunological stimuli induces a
proinflammatory state with progressive loss of fundamental physiological functions. The
activated endothelium is characterized by increased expression of adhesion molecules and
cytokine/chemokine secretion, resulting in increased permeability to leukocyte migration.
A variety of stimuli are able to activate endothelial cells, such as LPS, IL-1, TNF-α, and
lipid derivatives [80,81].

The endothelium can also be activated by products generated by complement system
activation [82]. Endothelial cells exposed to TCC may undergo lysis but often release
and express molecules involved in important biological functions [83]. TCC deposition in
endothelial cells promoted NF-κB activation and secretion of IL-8 and MCP-1 [84]. C5a ana-
phylatoxin is a powerful stimulus for the activation of endothelial cells, inducing increased
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expression of P-selectin, von Willebrand factor secretion [85], superoxide generation [86],
and the production of IL-8 and MCP-1 [87].

When we incubated Ea.hy926 cells with extract-treated plasma, there was an increase
in IL-8 and MCP-1 production, and complement system inhibition at the C3 level us-
ing compstatin in the whole blood assay was able to decrease the production of these
chemokines. The incubation of these cells with the extract-treated plasma in the presence of
PMX205 did not interfere with the production of IL-8, indicating that C5a is not involved
in the production of this chemokine in our model, suggesting that this occurs due to high
levels of C3a or TCC present in the extract-treated plasma. However, the use of this C5aR1
antagonist decreased the production of MCP-1 in endothelial cells, indicating a strong role
of extract-induced C5a anaphylatoxin in the activation of endothelial cells.

In conclusion, the data obtained here show that the human whole blood model,
together with the EA.hy926 endothelial cell activation model, is useful for studying the
role of complement system activation in the inflammatory process caused by contact
with P. semirufa caterpillar hairs. Furthermore, the data suggest that inhibition of the
complement system at the level of C3 or C5aR1 may be useful in relieving inflammation
and pararamosis progression.

4. Materials and Methods
4.1. Premolis Semirufa Hair Extract

Caterpillars from P. semirufa were collected in São Francisco, Pará, Brazil (capture
and maintenance licenses from Brazilian Institute of Environment and Renewable Natural
Resources (IBAMA), Brazil, number 45166–6). The caterpillar hairs were cut and transferred
to tubes containing phosphate-buffered saline (PBS) buffer (8.1 mM Na2HPO4; 1.5 mM
KH2PO4; 137 mM NaCl; 2.7 mM KCl; pH 7.4) and frozen at −80 ◦C until use. To prepare
the extract, samples were macerated with a glass rod, and the insoluble material was
removed by centrifugation at 560× g for 20 min at 4 ◦C. The supernatant was filtered
through a 0.22 µm membrane (Whatman-GE Healthcare, Chicago, IL, USA), aliquoted, and
stored at −80 ◦C (Access to Genetic Heritage n◦ AEA2993). The protein concentration was
determined using the bicinchoninic acid (BCA) Protein Assay kit (Pierce Biotechnology,
Rockford, IL, USA) according to the manufacturer’s recommendations.

The presence of endotoxin contamination in the Pararama extract was determined
using PYROGENT™ Plus Gel Clot LAL Assays (Lonza, MD, USA) by the Microbial Control
Unit of Butantan Institute (São Paulo, SP, Brazil). Endotoxin contamination was below the
detection level (0.125 UE/mL), indicating that the results obtained in this study were due
to the Pararama extract effect.

4.2. Human Whole Blood Model

Blood samples were collected from healthy consenting donors at the Ambulatory of
the Butantan Institute (Human Research Ethics Committee from the University of São
Paulo, São Paulo, Brazil, certificate number 1452/18). Blood was collected by venipuncture
into tubes containing 50 µg/mL lepirudin (Refludan, Celgene, Munich, Germany), the
recombinant form of hirudin with an anticoagulant activity that does not interfere with
complement system activation [88].

4.3. Blood Sample Treatment

After collection, human blood samples (72% of the total volume, v/v) were incubated
with a previously validated concentration of Pararama hair extract that activates the comple-
ment system in normal human serum (95 µg/mL–Villas Boas et al. [10]), LPS (lipopolysac-
charide from Escherichia coli strain O111:B4, Sigma-Aldrich, St. Louis, MO, USA; 5 µg/mL)
or PBS (28% of total volume, v/v) for 30 min in a water bath at 37 ◦C under agitation. Then,
the tubes were centrifuged at 404× g at 4 ◦C for 10 min, and plasma samples were recovered.
Plasma samples were aliquoted and stored at −80 ◦C in the presence of ethylenediaminete-
traacetic acid (EDTA) (10 mM) for further analysis. The pellet was resuspended in red
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cell lysis buffer (Lysing Solution-BD Biosciences, Franklin Lakes, NJ, USA) and incubated
for 10 min at room temperature. After incubation, the material was centrifuged at 720× g
at 4 ◦C for 10 minutes and resuspended in PBS-paraformaldehyde 0.5% for analysis of
the expression of the cell surface markers by flow cytometry in BD FACSCanto II (BD
Biosciences, San Jose, CA, USA).

4.4. Complement System Inhibition

For complement inhibition, we used Compstatin, a 13 amino acid cyclic peptide
(ICVVQDWGHHRCT) isolated from a random peptide library that binds to C3 and inhibits
its proteolytic cleavage by the C3 convertase. In parallel to the use of compstatin, we used
a control peptide (IAVVQDWGHHRAT), which completely lacks complement-inhibitory
activity (Sahu et al., 1996) (Tocris Bioscience, Bristol, UK). We also used PMX205, a cyclic
peptide (hydrocinnamate-[Orn-Pro-dCha-Trp-Arg]) antagonist of C5aR1 [41].

Blood samples (72% of total volume, v/v) were incubated with PBS, compstatin (50 µM),
or the control peptide (50 µM) for 5 min at room temperature (14% of the total volume,
v/v). Alternatively, blood samples (72% of the total volume, v/v) were incubated with PBS,
PMX205 (10 µM), or PMX205 dilution vehicle (5% glucose–Sigma-Aldrich, Missouri, USA)
for 5 min at room temperature (14% of the total volume, v/v). In sequence, PBS or Pararama
hair extract (95 µg/mL) (14% of the total volume, v/v) was added to the tubes. Samples
were incubated at 37 ◦C in a water bath under agitation for 30 min. Then, the tubes were
centrifuged at 404× g at 4 ◦C for 10 min, and the plasma samples were collected. The
plasma samples were aliquoted and stored at −80 ◦C in the presence of EDTA (10 mM)
for further analysis. The pellet was resuspended in red cell lysis buffer and incubated
for 10 min at room temperature. After incubation, the material was centrifuged at 720× g
at 4 ◦C for 10 min and resuspended in PBS-paraformaldehyde 0.5% for analysis of cell
marker expression.

4.5. Detection of the Soluble C5b-9 Complex, Anaphylatoxins, Cytokines, and Chemokines in
Plasma Samples

The generation of the soluble C5b-9 complex (sTCC) in plasma samples collected from
human whole blood assays was evaluated by enzyme-linked immunoassay (ELISA) using
the MicroVue SC5b-9 Plus EIA kit (Quidel Corporation, San Diego, CA, USA). Plasma
levels of C3a/C3a-desArg, C4a/C4a-desArg, and C5a/C5a-desArg were determined us-
ing the BD Cytometric Bead Array (CBA) Human Anaphylatoxin Kit (BD Biosciences,
San Jose, CA, USA). The measurements of cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ,
and TNF) and chemokines (CXCL8/IL-8, CCL5/RANTES, CXCL9/MIG, CCL2/MCP-1 and
CXCL10/IP-10) were performed using a BD cytometric bead array (CBA) Th1/Th2/Th17
Human cytokine kit (BD Biosciences) and CBA Human Chemokine Kit (BD Biosciences),
respectively. All assays were performed according to the manufacturers’ instructions.

4.6. Analysis of Surface Marker Expression in Granulocytes and Monocytes

After lysing erythrocytes and fixing leukocytes with paraformaldehyde, cell popu-
lations were selected based on their forward- and side-scatter features and using mouse
antihuman monoclonal antibodies: anti-CD66b labeled with Alexa Fluor 647 (A647) (clone
G10F5, BD Biosciences) for granulocytes and anti-CD33 labeled with allophycocyanin
(APC) (clone WM53, BD Biosciences) for monocytes.

The expression of C3aR, C5aR1, CD11b, CD14, TLR2, and TLR4 on the surface of these
cells was analyzed using specific mouse antihuman monoclonal antibodies or isotype con-
trols labeled with R-phycoerythrin (PE) or fluorescein isothiocyanate (FITC): anti-C3aR PE
(clone hC3aRZ8, BD Biosciences); anti-C5aR1 FITC (clone 8D6, Santa Cruz Biotechnology,
Dallas, TX, USA); anti-CD11b PE (clone ICRF44, Invitrogen, Thermo Fisher Scientific, Carls-
bad, CA, USA); anti-CD14 FITC (clone 61D3, eBioscience, San Diego, CA, USA); anti-TLR2
PE (clone 11G7, BD Biosciences); anti-TLR4 PE (clone HTA125, eBioscience, CA, USA);
mouse IgG2bκ PE isotype control (BD Biosciences); mouse IgG2a FITC isotype control
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(Dako, CPH, Glostrup, Hovedstaden, Denmark) and mouse IgG1κ PE isotype control
(Dako). The samples were incubated with the antibodies for 30 min in the dark at room
temperature and washed with flow cytometry staining buffer (FACS) (PBS containing 1%
bovine serum albumin (BSA) for analysis in a FACSCanto II flow cytometer (BD Biosciences)
using BD FACSDiva software, version 4.1 (BD Biosciences). The expression of cell surface
markers was represented as the median fluorescence intensity (MFI) of stained cells after
subtraction of the respective isotype control.

4.7. Direct and Indirect Action of Pararama Hair Extract on Endothelial Cells

The vascular endothelial cell line EAhy926 was cultured in Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco, Invitrogen Corp., Carlsbad, CA, USA) containing 10% (v/v) heat-
inactivated fetal bovine serum (FBS; Cultilab, SP, Brazil) and 1% penicillin–streptomycin
(Gibco, Invitrogen Corp., Carlsbad, CA, USA) at 37 ◦C and 5% CO2.

The cells were subcultured in 96-well plates (5× 104 cells/well) and maintained
overnight in DMEM without FBS, followed by incubation with increasing concentrations
of Pararama hair extract (15, 30, and 60µg/mL), culture medium containing 10% plasma
collected from whole blood samples treated with Pararama hair extract (extract-treated
plasma), Pararama hair extract + compstatin (extract-treated plasma and compstatin), or
PBS (PBS-treated plasma), for 24, 48 and 72 h at 37 ◦C and 5% CO2. To evaluate the
role of C5a in cytokine/chemokine production by endothelial cells, we added the C5aR1
antagonist PMX205 in the presence of a culture medium containing 10% fresh plasma from
whole blood samples treated with Pararama hair extract (PMX205+ extract-treated plasma)
to the wells. After incubation, the supernatants were collected for the measurement of
cytokines and chemokines, and cell viability was assessed by the MTT method [89].

4.8. Endothelial Cell Viability Analysis by MTT Assay

After supernatant collection, cells were incubated with MTT (0.5 mg/mL in 100 µL
DMEM) for 4 h at 37 ◦C and 5% CO2. Then, the MTT solution was removed, and 100 µL of
dimethyl sulfoxide (DMSO) was added to each well. The absorbance was measured in a
spectrophotometer (Multiskan-EX, Labsystems, VANTAA, Uusimaa, Finland) at 540 and
620 nm. The relative cell viability was calculated as follows:

Cell viability (%) =
[Abs 540 nm–Abs 620 nm] (sample)× 100

[Abs 540 nm–Abs 620 nm] (control)

4.9. Statistics

Data were analyzed by one-way or two-way analysis of variance (ANOVA) fol-
lowed by Bonferroni’s post-test using GraphPad Prism software v.9.2 (GraphPad Software,
San Diego, CA, USA). A p-value of <0.05 was considered significant.
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