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Abstract: Very-long-chain fatty acids (VLCFAs) are precursors for the synthesis of various lipids, such
as triacylglycerols, sphingolipids, cuticular waxes, and suberin monomers, which play important
roles in plant growth and stress responses. However, the underlying molecular mechanism regulating
VLCFAs’ biosynthesis in quinoa (Chenopodium quinoa Willd.) remains unclear. In this study, we identi-
fied and functionally characterized putative 3-ketoacyl-CoA synthases (KCSs) from quinoa. Among
these KCS genes, CqKCS2B.1 showed high transcript levels in the root tissues and these were rapidly
induced by salt stress. CqKCS2B.1 was localized to the endoplasmic reticulum. Overexpression
of CqKCS2B.1 in Arabidopsis resulted in significantly longer primary roots and more lateral roots.
Ectopic expression of CqKCS2B.1 in Arabidopsis promoted the accumulation of suberin monomers.
The occurrence of VLCFAs with C22–C24 chain lengths in the overexpression lines suggested that
CqKCS2B.1 plays an important role in the elongation of VLCFAs from C20 to C24. The transgenic
lines of overexpressed CqKCS2B.1 showed increased salt tolerance, as indicated by an increased
germination rate and improved plant growth and survival under salt stress. These findings highlight
the significant role of CqKCS2B.1 in VLCFAs’ production, thereby regulating suberin biosynthesis
and responses to salt stress. CqKCS2B.1 could be utilized as a candidate gene locus to breed superior,
stress-tolerant quinoa cultivars.

Keywords: Chenopodium quinoa; β-Ketoacyl CoA Synthase2B.1; very-long-chain fatty acids; suberin
monomers; lateral root; salt tolerance

1. Introduction

Very-long-chain fatty acids (VLCFAs) are fatty acids with more than 18 acyl carbons
in their backbone chain. These fatty acids are structurally and functionally diverse, and
their activity depends on their chain length, degree of unsaturation, associated lipids and
polar head type. The VLCFAs are present in the form of triacylglycerol in seeds and cuticle
waxes that are deposited on the primary surfaces of plants [1]. A modified form of VLCFAs
is also present in suberin [2]. The VLCFAs have a variety of functions in plant growth and
development, cell-to-cell transport, and hormone signal regulation. For example, in cotton,
a VLCFA–ethylene pathway controls cotton fiber length [3]. In Arabidopsis thaliana, VLCFA
synthesis in the epidermis inhibits excessive cytokinin production and cell proliferation,
and controls shoot growth at the apices by inhibiting cytokinin biosynthesis at the shoot
tips [4]. During cytokinesis and cell differentiation, VLCFA-containing phospholipids
play a key role in endomembrane dynamics [5]. As well as their roles in growth and
development, VLCFAs are actively involved in conferring tolerance to a wide range of
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abiotic and biotic stresses [6,7]. For example, under salt stress, the contents of saturated
and unsaturated VLCFAs with chain lengths of C20–C26 increase in Chenopodium album L.,
with a greater increase in the root than in the leaf cuticle [8]. In Arabidopsis, the ectopic
expression of CsKCS6 was found to increase VLCFA accumulation in the cuticle wax on the
leaves, thereby enhancing tolerance to drought and saline stress [9]. The adaptive response
to salt stress in halophytic plants includes increased saturation and length of fatty acids
(FAs), resulting in a rigid membrane and decreased salt permeability [10].

In plants, VLCFAs are synthesized in the endoplasmic reticulum. The synthesized C16–
C18 acyl CoAs in the plastid are catalyzed by the fatty acid elongase (FAE) complex through
a cyclic reaction. In every cycle, the carbon chain length of acyl CoA is extended by two
carbons. The FAE complex is generally composed of β-ketoacyl CoA synthase (KCSs), β-
ketoacyl CoA reductase (KCR) [11], 3-hydroxyacyl CoA dehydratase (HCD) [12], and enoyl
CoA reductase (ECR) [13]. Due of its substrate specificities, KCS is the rate-limiting enzyme
in the FAE [14]. Arabidopsis has 21 KCS genes in its genome. AtKCS2/DAISY and AtKCS20
elongate fatty acids from C20 to C22 and are associated with the regulation of root cork
and the waxy cuticle of the plant [15]. Similarly, AtKCS6/AtCUT1/AtCER6 is involved in
the biosynthesis of VLCFAs with a chain length longer than C24 that localizes in the pollen
epidermis and waxy stems [16]. Another member of the KCS family, AtKCS10/AtFDH,
is a key regulator of epidermal wax synthesis and is expressed in the flower and young
leaf [17]. Several studies have focused on KCS genes and their wide range of functions in
diverse plant species. In the liverwort Marchantia polymorpha, MpFAE2 encodes a KCS that
catalyzes the VLCFA elongation of C18 to C22 [18]. Transgenic Arabidopsis overexpressing
AhKCS1 and AhKCS28 from peanut showed increased VLCFA contents, especially saturated
VLCFAs, in the seeds [19]. In citrus, CsKCS2 and CsKCS11 are actively involved in fruit
cuticle wax accumulation during ripening [20]. In rice, WSL4 is involved in the elongation
of C22 to C24 and beyond, which requires the participation of OsCER2 and regulates the
synthesis of cuticle wax on the leaves [21]. Although KCS genes from many species have
been cloned and characterized, very little is known about the function of the KCS gene
family in halophytes.

Chenopodium quinoa (2n = 4x = 36) is one of the oldest cultivated crops, being domesti-
cated in South America as a staple food more than 7000 years ago. Quinoa is a pseudo-cereal
facultative halophytic crop belonging to the Amaranthaceae family that is tolerant to a
wide range of environmental stresses [22–24]. Because of quinoa’s nutritional importance,
the demand for processed products has substantially increased [25]. Quinoa crops have
an exceptional nutritional balance of protein, carbohydrates, and starch, are a good source
of high-linoleate oil and vitamins, and lack gluten [22]. The importance of quinoa as an
emerging crop is highlighted by the fact that the United Nations (UN) declared 2013 the
“International Year of Quinoa” [26,27]. The results of molecular, cytogenic, and genetic
analyses indicate an allotetraploid mode of origin for quinoa [28,29]. The current tetraploid
quinoa is thought to be a result of the hybridization of ancestral A and B genomes of diploid
species. Salt stress greatly affects plant growth and development. It has been estimated that
50% of arable land will be lost as a result of salinization by 2050 [30]. Quinoa is strongly
tolerant to salt and drought stress, it is considered to be a model halophytic crop [31]. That
can tolerate a high level of salt stress ranging from 150 mM to 750 mM NaCl [32].

In this study, we comprehensively identified the gene encoding KCSs in the
Chenopodium quinoa genome. Then, we analyzed the expression of two homologs of Ara-
bidopsis AtKCS2 (CqKCS2A.1 and CqKCS2B.1) in quinoa seedlings under salt stress. To
reveal the biological function of CqKCS2B.1, we analyzed its subcellular localization and
generated Arabidopsis plants by overexpressing its encoding gene. The results of this study
provide valuable insight into how halophyte quinoa tolerates saline conditions.
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2. Results
2.1. Phylogenetic Analysis of Quinoa CqKCS

We searched for members of the CqKCS gene family in the quinoa genome using se-
quences of 21 KCSs from A. thaliana as the search queries (Supplementary Table S1). We identi-
fied 33 members of the KCS protein family in quinoa. All of them had two conserved domains
of FAE-type KCSs; FAE1_CUT1_RppA and ACP_syn_III_C (Supplementary Figure S1). Anal-
yses of the CqKCS gene family revealed a duplication event, followed by sub-functionalization
and neo-functionalization to generate more complex functions. We identified 16 paralogous
genes in the CqKCS gene family (Supplementary Figure S2). To further elucidate the evolu-
tionary relationships of CqKCS genes, a phylogenetic tree was constructed using the 33 KCSs
(FAE-type) from quinoa and 21 Arabidopsis protein sequences with MEGA11. The KCS
proteins formed seven groups, I–VII. All the groups contained members of the CqKCS family,
but Group V lacked AtKCS.

In the phylogenetic tree, the CqKCS family was separated into seven subfamilies
(Figure 1). In Group I, CqKCSs were grouped with AtKCS3, AtKCS12, AtKCS19, AtKCS7,
and AtKCS21, whose functions are unclear. Group II contained CqKCSs and AtKCS5
and AtKCS6/CER6, which are involved in the synthesis of cuticular wax and pollen
lipids [33,34]. In Group III, CqKCSs were grouped with AtKCS1, AtKCS13, and AtKCS14,
which are involved in wax biosynthesis and signaling to limit regeneration by restricting
pericycle callus formation [35,36]. In Group IV, CqKCSs were grouped with AtKCS2/DAISY
and AtKCS20, which are associated with the biosynthesis of cuticular wax and suberin
monomers [37]. Group V contained CqKCS genes but no AtKCSs, suggesting that these
proteins are specific to quinoa or have substantially different functions from those in
Arabidopsis. Group VI contained CqKCSs and AtKCS4, AtKCS9, AtKCS8, AtKCS16, AtKCS17,
and AtKCS18/FAE1, which are primarily involved in the synthesis of tetracosanoic acid
as a precursor for cuticle wax, suberin, and phospholipids, as well as seed fatty acid
synthesis [38–41]. Group VII contained CqKCSs as well as AtKCS10/AtFDH and AtKCS15,
which are involved in lipid accumulation during pollen stigma interaction and VLCFA
production in epidermal cells [17,42,43]. CqKCS2A.1 and CqKCS2B.1 were grouped with
AtKCS2 and AtKCS20 in the phylogenetic analysis, suggesting that they may have similar
functions. Therefore, we selected CqKCS2A.1 and CqKCS2B.1 for further analyses.

2.2. Expression Pattern of CqKCS2 in C. Quinoa

We conducted RT-qPCR analyses to detect the transcript levels of CqKCS2A.1 and
CqKCS2B.1 in different organs of quinoa. Due to the highly homologous sequences of
CqKCS2A.1 and CqKCS2B.1 (i.e., 95.69%), it was difficult to distinguish between the two
genes with specific RT-qPCR primers (Supplementary Figure S3). Therefore, we detected
the total CqKCS2 transcript level (CqKCS2A.1 and CqKCS2B.1) in different tissues of quinoa
plants (Figure 2a). Transcripts of CqKCS2 were detected in almost all organs, with the
highest levels in roots. We then designed specific semi-RT-PCR primers for these two
genes and confirmed their specificity using 35S::CqKCS2A.1-YFP and 35S::CqKCS2B.1-YFP
vectors as templates (Supplementary Figure S4). The transcript levels of both CqKCS2A.1
and CqKCS2B.1 were high in the roots and young leaves (Supplementary Figure S5).
Considering the high salt tolerance of quinoa, we determined the transcript levels of
these genes in quinoa seedlings under salt stress. For these analyses, 3-day-old quinoa
seedlings were transferred to a solid half-strength Murashige and Skoog medium (1/2 MS)
containing 300 mM NaCl. The total RNA was extracted from seedlings at 0, 1, 3, 6, 12,
and 24 h (Figure 2b) of salt stress treatment. Then, semi-RT-PCR was performed with
CqTUB6 as a reference gene and CqCMO, whose expression is induced by salt stress, as a
positive control [44]. The transcript levels of CqKCS2A.1 and especially CqKCS2B.1 rapidly
accumulated until 3 h of salt stress, and then decreased as the salt treatment extended.
These findings showed that both CqKCS2 genes (CqKCS2A.1 and CqKCS2B.1) are involved
in the response to salt stress. CqKCS2B.1 was selected for further functional analyses
because of its higher expression in response to salt stress.
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Figure 2. Transcript profile of CqKCS2A.1 and CqKCS2B.1. (A) Detection of total CqKCS2 transcript
levels in different tissues of quinoa: 1-month-old plant root, stem, leaves, mature plant leaves, and
inflorescences. (B) Semi-quantitative RT-PCR analyses of CqKCS2A.1 and CqKCS2B.1. Total RNA was
extracted from 3-day-old quinoa seedlings grown in vitro and exposed to 300 mM NaCl for 0, 1, 3, 6,
12, and 24 h. In each case 1 µg total RNA was used as a template.

2.3. Localization of CqKCS2B.1 in the Endoplasmic Reticulum

The VLCFAs are synthesized in the endoplasmic reticulum (ER), suggesting that
CqKCS2B.1 might be localized to this site. To confirm this, the CqKCS2B.1 Coding se-
quence (CDs) sequence was C-terminally fused with YFP (Pro35S::CqKCS2B.1-YFP) and
co-expressed with an ER-specific marker (CD3-959) in tobacco leaves. When the leaves
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were observed under a confocal microscope, the CqKCS2B.1-YFP was merged with the ER-
mCherry signal, and both were localized to a network-like structure. This result confirmed
that CqKCS2B.1 is an ER-localized protein (Figure 3). The ER-localization of CqKCS2A.1
was also investigated by transiently expressing Pro35S::CqKCS2A.1-YFP in tobacco leaves
(Supplementary Figure S6).
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Figure 3. Localization of CqKCS2B.1-YFP in the endoplasmic reticulum. Signals of CqKCS2B.1-YFP
and ER-mCherry were merged in the epidermal cells of Nicotiana leaves. Bar = 10 µm.

2.4. Ectopic Expression of CqKCS2B.1 Promotes Lateral Root Development in Arabidopsis

To further investigate the function of CqKCS2B.1, the Pro35S::CqKCS2B.1-YFP construct
was stably transformed into Arabidopsis (Col-0). A total of 13 transgenic lines were
obtained. Two CqKCS2B.1 overexpressing lines, OE#5 and OE#6, were selected for further
analyses because of their high expression levels of CqKCS2B.1 as detected by Western
blotting with anti-GFP antibodies (Figure 4A).
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Figure 4. Ectopic expression of CqKCS2B.1 increases root elongation and lateral root synthesis.
(A) Protein profiling of CqKCS2B.1 overexpressing lines OE#5 and OE#6, and wild-type (WT). Blot
was probed with anti-β Actin and anti-GFP. (B) Root length and the number of lateral roots in WT
and CqKCS2B.1 OE lines. The image shows OE lines (OE#5 and OE#6) seedlings on vertically oriented
plate of 1/2 MS agar medium. (C,D) Root length and the number of lateral roots of 7-day-old seedlings
of WT and CqKCS2B.1 OE lines (OE#5 and OE#6) at 3 d after transfer to a new 1/2 MS plate. Values
are mean ± SD of 15 independent measurements. Significant differences were detected by ANOVA.
* and ** indicate a significant difference between different transgenic line and WT at p < 0.05. and
p < 0.01, respectively. Scale = 1 cm.
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Under normal conditions, the ectopic expression of CqKCS2B.1 clearly affected root
elongation and lateral root formation (Figure 4B). Compared with the wild-type (WT),
OE#5 and OE#6 showed 21% and 12% greater root length, respectively (Figure 4C), and
formed significantly more lateral roots. (Figure 4D). However, the root hairs’ density was
unaffected (Supplementary Figure S7). These results indicate that CqKCS2B.1 is involved in
the elongation of the primary root and lateral root development.

To explore why lateral root development was enhanced in the CqKCS2B.1 OE lines, we
detected the transcript levels of genes that are known to be involved in the regulation of
lateral root development by RT-qPCR. Total RNA was extracted from the roots of 10-day-old
seedlings of WT and OE#5 and OE#6. The transcript levels of genes associated with auxins,
such as GH3.3 and AUX1, were significantly elevated in the CqKCS2B.1 OE lines compared
with WT (Figure 5). In Arabidopsis, GH3.3 has been reported to encode an IAA-amido
synthase that quickly responds to auxin and is positively correlated with adventitious root
development [45]. AUX1 encodes an auxin influx transporter that is involved in lateral root
development [46]. The enhanced transcript levels of GH3.3 and AUX1 in CqKCS2B.1 OE#5
and OE#6 seedlings suggest that CqKCS2B.1 regulates lateral root formation by affecting
auxin metabolism and transport.
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Figure 5. RT-qPCR analysis of lateral root-associated genes. Analyses were conducted using RNA
extracted from the roots of 10-day-old transgenic plants of CqKCS2B.1 OE#5 and OE#6, and WT
(Col-0). Gene transcript levels were normalized to that of AtACTIN 2 transcript. Values are the
mean ± SD of three repeats. * indicates significant differences (p < 0.05) between transgenic lines and
WT (Student’s t-test).

2.5. CqKCSB.1 Overexpression Alters Composition of Suberin Monomers in Arabidopsis Roots

Arabidopsis KCS2 and KCS20 are involved in the synthesis of the VLCFAs that are
precursors of suberin monomers. To explore the activity of CqKCS2B.1, the chemical
composition of suberin monomers in the roots of WT, OE#5, and OE#6 plants was analyzed
by gas chromatography with flame ionization detection (GC-FID). As shown in Figure 6A,
the total amounts of aliphatic suberin monomers in CqKCS2B.1 OE#5 and OE#6 were
increased by 14.48% and 15.49%, respectively, compared with that in WT. This was mainly
because of a general increase in the contents of all monomers, especially the C22–C24 FA,
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C18:1ω-OH acid, and C18:1 dioic acid (Figure 6C). Further analyses of the roots showed
an increase of up to 9% in C20, 16% in C22, and more than 50% in C24 in the OE lines
compared with WT Col-0 (Figure 6B). These results indicate that CqKCS2B.1 is involved in
the synthesis of C22–C24, the major precursors for suberin monomer production.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 18 
 

 

  

Figure 6. Gas chromatographic analysis of aliphatic suberin monomers and endodermal suberin in 

roots of transgenic Arabidopsis and WT (Col-0). (A) Total suberin content in roots of 4-week-old 

CqKCS2B.1 OE#5, OE#6, and WT plants. (B) Distribution of aliphatic monomers of suberin accord-

ing to chain length. (C) GC-MS results grouping fatty acids in WT and OE lines according to chain 

length, saturation status, and presence of ω-OH acid, dioic acid, and 1-alcohol additions. Values are 

mean ± SD. *, ** and *** indicate significant differences between OE lines and WT at p < 0.05, p < 0.01, 

and p < 0.001 respectively (Student’s t-test). 

2.6. Ectopic Expression of CqKCS2B.1 Increases the Salt Stress Tolerance of Arabidopsis  

As described above, CqKCS2B.1 expression was quickly induced under salt stress. 

Therefore, the salt tolerance of CqKCS2B.1 transgenic lines (OE#5 and OE#6) was deter-

mined by comparing their seeds’ germination rate and root growth with that of WT under 

salt stress conditions. For their seed germination assay, seeds of CqKCS2B.1 OE#5, OE#6, 

and WT were sown on ½  MS plates supplemented with NaCl at a range of concentrations 

(0 mM, 50 mM, 100 mM, and 150 mM), and the germination rate was determined after 3 

and 5 days. Almost all the seeds of both OE#5 and OE#6 transgenic lines and WT germi-

nated on ½  MS under normal conditions. Compared with the germination percentage of 

WT seeds, i.e., 43% after 3 days and 72% after 5 days, those of the CqKCS2B.1 OE lines 

were higher in all the salt treatments, even at 150 mM NaCl, i.e., 70% after 3 days and 89% 

after 5 days (Figure 7A–C). To investigate the survival rate of CqKCS2B.1, the 7-day-old 

seedlings were transferred to ½  MS plates containing 200 mM NaCl. The survival rates 

and chlorophyll contents were significantly higher in OE#5 and OE#6 than in WT (Col-0) 

(Figure 8a and Supplementary Figure S8). 

Figure 6. Gas chromatographic analysis of aliphatic suberin monomers and endodermal suberin in
roots of transgenic Arabidopsis and WT (Col-0). (A) Total suberin content in roots of 4-week-old
CqKCS2B.1 OE#5, OE#6, and WT plants. (B) Distribution of aliphatic monomers of suberin according
to chain length. (C) GC-MS results grouping fatty acids in WT and OE lines according to chain
length, saturation status, and presence ofω-OH acid, dioic acid, and 1-alcohol additions. Values are
mean ± SD. *, ** and *** indicate significant differences between OE lines and WT at p < 0.05, p < 0.01,
and p < 0.001 respectively (Student’s t-test).

2.6. Ectopic Expression of CqKCS2B.1 Increases the Salt Stress Tolerance of Arabidopsis

As described above, CqKCS2B.1 expression was quickly induced under salt stress.
Therefore, the salt tolerance of CqKCS2B.1 transgenic lines (OE#5 and OE#6) was deter-
mined by comparing their seeds’ germination rate and root growth with that of WT under
salt stress conditions. For their seed germination assay, seeds of CqKCS2B.1 OE#5, OE#6,
and WT were sown on 1/2 MS plates supplemented with NaCl at a range of concentrations
(0 mM, 50 mM, 100 mM, and 150 mM), and the germination rate was determined after
3 and 5 days. Almost all the seeds of both OE#5 and OE#6 transgenic lines and WT ger-
minated on 1/2 MS under normal conditions. Compared with the germination percentage
of WT seeds, i.e., 43% after 3 days and 72% after 5 days, those of the CqKCS2B.1 OE lines
were higher in all the salt treatments, even at 150 mM NaCl, i.e., 70% after 3 days and 89%
after 5 days (Figure 7A–C). To investigate the survival rate of CqKCS2B.1, the 7-day-old
seedlings were transferred to 1/2 MS plates containing 200 mM NaCl. The survival rates
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and chlorophyll contents were significantly higher in OE#5 and OE#6 than in WT (Col-0)
(Figure 8a and Supplementary Figure S8).
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Figure 7. Seeds’ germination rates of WT and CqKCS2B.1 OE lines under varying degrees of salt
stress. (A) Germinating seeds of WT (Col-0), CqKCS2B.1 OE#5, and OE#6 at 5 d after exposure to light
after treatment with NaCl at t 0 to 150 mM. (B) Seed germination percentage on medium containing
0, 50, 100, and 150 mM NaCl treatment after 3 d in the light. (C) Seed germination percentage on
medium containing 0, 50, 100, and 150 mM NaCl at 5th day in the light. Each value represents the
mean ± SD of 50 independent measurements. Statistical significance was evaluated by ANOVA.

Next, the physiological status of CqKCS2B.1 OE#5, OE#6, and WT plants were investi-
gated under normal and salt-stressed conditions. All the lines were grown for 2 weeks under
normal conditions and then treated with 150 mM NaCl for 24 h. The malondialdehyde
(MDA) content reached 39.74 nmol/mg in WT under salt treatment, about double the levels
in the CqKCS2B.1 transgenic lines OE#5 and OE#6 (20.7 nmol/mg and 22.01 nmol/mg,
respectively) (Figure 8B). Thus salt stress resulted in increased MDA content in WT plants
compared with OE plants. These findings show that WT is more vulnerable to oxidative
damage caused by salt stress.

Next, the activity of POD, which detoxifies reactive oxygen species (ROS), was deter-
mined as an index of the enzymatic antioxidant capacity of transgenic lines and WT. The
POD activity was sufficiently higher in the CqKCS2B.1 OE#5 and OE#6 lines than in WT
(Figure 8C), indicating that overexpression of CqKCS2B.1 resulted in increased POD activity
and lower ROS levels under salt stress. Proline scavenges ROS produced under salt stress,
allowing the plant to recover more quickly. The proline level was higher in the CqKCS2B.1
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OE transgenic plants than in WT under control conditions, and salt stress increased the
proline content by 2.2-fold in OE#5 and 1.9-fold in OE#6 (Figure 8D). Together, these re-
sults showed that overexpression of CqKCS2B.1 in Arabidopsis results in increased POD
activity and proline content, and decreased MDA content under salt stress, and increased
salt tolerance.
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Figure 8. Phenotypic analyses of CqKCS2B.1 OE transgenic Arabidopsis seedlings under salt stress.
(A) 1-week-old seedlings of WT, OE#5, and OE#6 were treated with 200 mM NaCl until the WT
seedlings were completely dehydrated and then the plants were photographed. Two-week-old plants
were treated with 150 mM NaCl for 24 h before determining (B) MDA content, (C) POD activity, and
(D) proline content. Values are mean ± SD of 20 independent measurements. Statistically significant
differences were detected by ANOVA. * and ** indicate significant differences between transgenic
lines and WT at p < 0.05 and p < 0.01. Scale = 1 cm.

3. Discussion

In plants, VLCFAs are synthesized by the FAE complex consisting of KCS, KCR, PAS2,
and CER10. The KCS enzyme is the first and rate-limiting step in VLCFA biosynthesis
and its substrate is elongated to form VLCFAs [47]. In this study, we identified 33 CqKCS
gene-encoding FAE-type enzymes in quinoa (Supplementary Table S1). The phylogenetic
analyses revealed two homologs of AtKCS2/AtKCS20 in quinoa, CqKCS2A.1 and CqKCS2B.1.
A previous study showed Arabidopsis KCS2 and KCS20 catalyzed the formation of C22–C24
VLCFAs when heterologously expressed in Saccharomyces cerevisiae [48]. Subsequent analy-
sis of Arabidopsis single and double mutants of KCS2 and KCS20 revealed that both genes
are functionally redundant in cuticular wax biosynthesis and the production of C22–C24
VLCFA derivatives in suberin monomers [15]. The overexpression of KCS2 homologs in
Arabidopsis resulted in increased VLCFA production and the significant accumulation of
cuticular wax [49]. Additionally, molecular characterization of Citrus sinensis KCS20 by
ectopic expression in Arabidopsis and yeast indicated that it catalyzes the synthesis of C22
and C24 VLCFAs, similar to KCS2 or KCS20 in Arabidopsis [50]. In our study, overexpression
of CqKCS2B.1 in Arabidopsis also led to increased contents of C22 and C24 VLCFAs and
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their derivatives in suberin monomers, suggesting that the function of KCS2 homologs is
evolutionary and functionally conserved among diverse plant species.

There is a large body of evidence showing that VLCFA or its derivatives act as bioac-
tive signals to mediate various developmental processes [51,52]. For example, VLCFAs or
their derivatives regulate signals that determine the ability of the pericycle to form callus,
and therefore determine the plant organ’s regeneration capacity [36]. Auxin is one of the
key phytohormones that direct the formation of lateral roots from the pericycles [53,54].
Previous studies have shown that VLCFAs are required for polar auxin transport during
plant development and tissue patterning [55], and that MPK14-mediated auxin signaling
influences lateral root growth in Arabidopsis, which is mediated through ERF13-regulated
VLCFA synthesis [56]. In our study, we found that the number of lateral roots was signif-
icantly increased and the transcript levels of auxin-associated genes such as AUX1 and
GH3.3 were dramatically increased in the Arabidopsis CqKCS2B.1 OE transgenic lines. These
results indicate that CqKCS2B.1 increases the contents of VLCFAs, which may function
as signaling molecules to regulate the expression of auxin-associated genes, increase the
metabolism and transport of auxin from the source to sink, and increase lateral roots’
synthesis. Additionally, various studies have shown that VLCFAs regulate plant growth
and development processes, such as cell elongation, through an ethylene-mediated signal
pathway. For example, overexpression of GhKCS13 in Arabidopsis was found to promote
stem cell elongation by regulating the transcript levels of ACO (encoding an enzyme cat-
alyzing ethylene biosynthesis) [57]. Therefore, the increased primary root’s length in the
CqKCS2B.1 OE lines might be caused by the activation of the ethylene signaling pathway
by the increased VLCFAs.

The VLCFAs also regulate tolerance to abiotic stresses in plants. For example, overex-
pression of KCS homologs from several species was found to increase VLCFAs’ content in
plants and enhance tolerance to drought or salt stress [9,58]. Similar results were observed
in our study. That is overexpression of CqKCS2B.1 visibly improved the salt tolerance of
Arabidopsis as indicated by increased seed germination and survival rates. In addition,
compared with WT, the Arabidopsis CqKCS2B.1 OE lines showed significantly increased
POD activity and proline levels and lower MDA contents under salt stress. Previously,
VLCFAs were reported to mediate auxin distribution and regulate the auxin signal, thereby
mediating various physiological processes during adaption to salt stress [56,59]. In our
study, we found that the transcript levels of the auxin-associated genes AUX1 and GH3.3
were significantly increased in Arabidopsis CqKCS2B.1 OE transgenic lines, suggesting that
CqKCS2B.1 improves tolerance to salt stress in Arabidopsis by activating the auxin signal.
Additionally, overexpression of CqKCS2B.1 in Arabidopsis significantly increased the con-
tents of aliphatic suberin monomers in roots. Previous studies have shown that these
monomers play a role in protecting plants against excessive apoplast movement of water
and solutes into the root stele [60]. The increased tolerance might also be due to the increase
in the suberin layer, which reduces the apoplast movement of Na+ ions, with the results
reported by Lokesh et al. [61].

In plants, seed coats provide structural support to protect the embryo and other parts
of the seed from biotic and abiotic environmental stresses [62]. Among the five cell layers
in the seed coat, the lipophilic suberin layer contains primary sealing compounds that
make the seed coats impermeable to water and nutrients. Previously, it was reported that
changes in the suberin layer of the seed coat affect the seed’s viability and germination rate.
For example, compared with WT, a gpat5 mutant that altered the aliphatic composition of
suberin in the seed coat showed a lower germination rate under salt stress [63]. Similarly,
the seed coat permeability of the far1 far4 far5 mutant was significantly increased, which
provides further evidence for the role of suberin as a primary barrier in the seed coat [64].
Compared with seed coats that lack suberin, those containing suberin have higher contents
of C24 VLCFAs and their derivatives [65,66]. In the present study, the germination rates of
the CqKCS2B.1 OE were higher than those of WT under salt stress, probably because of the
increased accumulation of VLCFA in the suberin layer of the seed coat.
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4. Materials and Methods
4.1. Identification of CqKCS Genes

The conserved domains of the AtKCS family were obtained from the PFAM protein
families database (http://pfam.xfam.org/, accessed on 15 January 2021). Then, BLASTp
was used to retrieve the standalone similarity sequence, and the conserved protein domain
was entered into the Chenopodium database ChenopodiumDB (https://www.cbrc.kaust.
edu.sa/chenopodiumdb/index.html, accessed on 15 January 2021). The genomic and
proteomic sequences of C. quinoa were retrieved. The sequences of Arabidopsis KCS proteins
were obtained from The Arabidopsis Information Resource (TAIR) database (https://www.
arabidopsis.org/, accessed on 15 January 2021). A hidden Markov models (HMM) EMBL-
EBI PFAM search was carried out for domain detection, https://www.ebi.ac.uk/Tools/
hmmer/, accessed on 15 January 2021).

The conserved domain of KCS from quinoa was identified using tool at the Con-
served Domain Database (CDD) [67] of the National Center for Biotechnological Infor-
mation (NCBI) (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, accessed on
15 January 2021) [68], whereas, the protein domains were displayed using TBtool [69]. Var-
ious other physicochemical properties of the 33 putative CqKCS proteins were investigated
using Expasy ProtParam (https://www.expasy.org/, accessed on 15 January 2021).

4.2. Phylogenetic Analysis

The KCS sequences identified from quinoa (C. quinoa) and A. thaliana were aligned
using Clustal X in MSA (Multiple Sequence Alignment Version 2.0) [70]. A preliminary phy-
logenetic tree was constructed using MEGA 11 (Molecular Evolutionary Genetic Analysis
version 11) with the neighbor-joining method [71]. The bootstrap analysis was performed
with 1000 replicates, the Poisson model, and pairwise deletion to statistically assess each
node. The tree was visualized using Interactive Tree Of Life (itol) (https://itol.embl.de/,
accessed on 23 March 2022) [72].

4.3. Gene Duplication Analysis

The evolutionary rates, Ka (non-synonymous substitution rate) and Ks (synonymous
substitution rate), were estimated using the Ka/Ks calculation tool (http://services.cbu.
uib.no/tools/kaks, accessed on 23 March 2022). Duplicated gene pairs were illustrated in
Circos using TBtool.

4.4. Plant Materials and Growth Conditions

The white quinoa seeds Q75 (CM639) were acquired from Shandong Provincial
Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University,
Jinan 250014, China. The quinoa seeds were surface sterilized by NaClO and stratified on
Murashige and Skoog (1/2 MS) and grown for 3 days, and for tissues analysis, the plant was
transferred to soil. However, the Arabidopsis seeds were surface sterilized and germinated
on 1/2 MS for 10 days and then grown on the soil at 24 ◦C day/22 ◦C night, 16 h light/8 h
dark, whereas for phenotypic analyses of transgenic CqKCS2B.1 lines in comparison to
wild-type (Col-0), the seeds were stratified on 1/2 MS plates. The root length and number
of lateral roots were investigated after 10 days. The root length and number of lateral roots
were measured using ImageJ software [73].

The tobacco (Nicotiana benthamiana) seeds were sown in soil and were grown at 25 ◦C
for 16 h day/8 h night. The plants were grown until the leaves were expanded enough
(normally 6 leaves) and suitable for injection.

4.5. RNA Extraction, RT-PCR and RT-qPCR Analysis

The CqKCS2 relative expression among different tissues of the quinoa plant was
studied. Total RNA was extracted from 1-month-old quinoa plant roots, stems, and young
leaves, as well as from mature leaves and inflorescences of quinoa using RNA Easy Fast
plant Tissue kit (TIANGEN BIOTECH, Beijing, China), and the cDNAs were synthesized

http://pfam.xfam.org/
https://www.cbrc.kaust.edu.sa/chenopodiumdb/index.html
https://www.cbrc.kaust.edu.sa/chenopodiumdb/index.html
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https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
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using Superscript™ III Reverse Transcriptase kit (Invitrogen, Waltham, MA, USA), whereas,
for the lateral roots, associated auxin genes’ relative expression of 10-day-old transgenic
CqKCS2B.1 OE lines and WT (Col-0) seedlings’ root tissues were used to carry out RT-qPCR.
The total RNA was extracted and cDNA was synthesized. RT-qPCR analysis was conducted
separately for the different tissues of the quinoa plant and the lateral roots associated with
Arabidopsis genes. The RT-qPCR was performed using a 2× QuantiTect SYBR Green
PCR mix (TIANGEN BIOTECH, Beijing, China) and light cycler® 96 SW 1.1 real-time PCR
system (Roche, Basel, Switzerland). The relative gene transcript level was measured as
2−∆∆Ct [74].

However, the expression of CqKCS2A.1 (AUR62006329-RA) and CqKCS2B.1 (AUR62026367-
RA) under 300 mM salt stress was analyzed by semi RT-PCR. The gene-specific primers
were synthesized for CqTUB6 (AUR62018378-RA) and used as a reference gene, whereas,
CqCMO (AUR62043230-RA) was used as a salt stress response gene [44]. All the primers
used in this study are listed in (Supplementary Table S2).

4.6. Subcellular Localization of CqKCS2B.1

The Pro35S::CqKCS2B.1-YFP and Pro35S::CqKCS2B.1-YFP were constructed to determine
the subcellular localization of CqKCS2B.1 and CqKCS2B.1 proteins, respectively. The full-length
coding regions of CqKCS2A.1 (AUR62006329-RA) and CqKCS2B.1 (AUR62026367-RA) were
amplified from the cDNA of quinoa roots and then induced into the pFGC-eYFP vector
digested with BamHI to C-terminally fused YFP using a 2x Seamless Cloning Mix (Biomed,
Beijing, China). The positive clones were identified and recombinant plasmids were
sequenced to avoid the error from base pair mismatch in the PCR step. The construct was
co-expressed with the endoplasmic reticulum localized marker CD3-959 (ER-mCherry) [75]
in Nicotiana benthamiana leaves [76]. The signals of YFP and mCherry were obtained using
confocal laser scanning microscopy (Leica, TCS SP8 MP) with the excitation/emission
wavelengths: YFP (514/535–580 nm) and mCherry (561/590–620 nm).

4.7. Generation of CqKCS2B.1 Overexpression Lines in Arabidopsis

The above-mentioned Pro35S::CqKCS2B.1-YFP construct was introduced into Ara-
bidopsis wild-type (Col-0) by Agrobacterium tumefaciens GV3101-mediated transforma-
tion [77]. At least 13 positive T1 transgenic lines were obtained from the transformed
seeds under the screening of the herbicide Basta. Subsequently, total protein was extracted
from seedlings of transgenic CqKCS2B.1 OE lines by using the immunoprecipitation buffer
containing 100 mM Tris-HCl (pH 7.5), 75 mM NaCl, 1 mM EDTA, 0.1% Triton X-100, and
1% protease inhibitor cocktails at 4 ◦C. The amounts of total protein were then quantified
via Bradford’s assay before Western blotting (anti-GFP) [78–80]. According to the relatively
higher expression level of CqKCS2B.1-YFP protein, two lines (OE#5 and OE#6) were selected
and T2 homozygous generation was obtained for further investigation.

4.8. Determination of Salt Tolerance of WT and CqKCS2B.1 OE Lines

We determined the seed germination rate, root growth, and number of lateral roots in
CqKCS2B.1 OE transgenic plants and WT under salt stress. For the germination assay of
CqKCS2B.1 transgenic lines OE#5, OE#6, and WT (Col-0), 80 seeds per plate were sown on
1/2 MS medium supplemented with varying concentrations of NaCl (0, 50 mM, 100 mM,
and 150 mM). The seeds were incubated for 5 days in total, and the germination rate was
recorded after 3 days and 5 days in the light. The resistance of CqKCS2B.1 transgenic
OE lines and WT to dehydration under salt stress was determined. For these analyses,
1-week-old seedlings were transferred to 1/2 MS plates supplemented with 200 mM NaCl.

For analyses of other parameters in CqKCS2B.1 OE and WT plants under salt stress,
plants of CqKCS2B.1 OE#5, OE#6, and WT (Col-0) were grown for 2 weeks on 1/2 MS plates
and then treated with 0 and 150 mM NaCl for 24 h. The MDA content, POD activity, and
proline content were determined using corresponding detection kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China) according to the manufacturer’s instructions.
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All data shown are the mean of three repeated experiments. In addition, 14-day-old WT
and CqKCS2B.1 transgenic lines were used to analyze the total chlorophyll content under
normal conditions. A total of 0.2 g of fresh plant tissue was mixed with 80% acetone,
and the absorption was measured using a spectrophotometer at 663.2 and 646.8 nm [81].
Differences between OE lines and WT were considered significant at p < 0.05.

Chlorophyll “a” (g/mL) = 12.25 × A663.2 − 2.79 × A646.8

Chlorophyll “b” (g/mL) = 21.50 × A646.8 − 5.1 × A663.2

Total Chlorophyll (mL) = 7.15 × A663.2 + 18.71 × A646.8

4.9. Suberin Content Analysis in Plant Root

The root suberin content of a four-week-old plant was determined following the
instructions of the Jenkin and Molina [82] procedure. The plants were carefully removed
from the soil, mechanical damages were avoided by removing shoots from the roots, and
then carefully washed. The suberin aliphatic content was analyzed using the four steps
followed by data analysis. In the first step, tissue dilapidation was performed in which the
solvent-soluble lipids were removed. The second step was depolymerization wherein the
tissue was depolymerized into its component lipids’ monomers by the sodium methoxide
catalysis methanolysis. The solvent fraction was washed with saline, the aqueous phase was
removed, Na2SO4 was added, and samples were transferred to the small glass tube. The
third step comprises of preparation of derivatives and transferring them for GC analysis.

4.10. Statistical Analysis

Three replications were conducted for each experiment in a completely randomized
design. Data processing and chart drawing were performed using GraphPad prism 8.
Data were analyzed using ANOVA and the student’s t-test. Significant differences were
indicated by p < 0.05. GraphPad Prism 8 was used for statistical computations.

5. Conclusions

We identified KCS-encoding genes from C. quinoa. of these genes, the two homologs
of AtKCS2, namely CqKCS2A.1 and CqKCS2B.1, showed increased expression in quinoa
seedlings under salt stress. Transgenic Arabidopsis ectopically expressing the ER-localized
CqKCS2B.1 showed significantly increased synthesis of VLCFAs and their derivatives in
roots. The upregulation of auxin-associated genes including GH3.3 and AUX1 in the
transgenic lines was related to increased root length and more lateral roots. Together, these
findings indicate that CqKCS2B.1 regulates VLCFAs’ production to increase lateral root
development and enhance tolerance to salt stress.
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