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Abstract: Metabolic reprogramming is a key attribute of cancer progression. An altered expression of
pyruvate kinase M2 (PKM2), a phosphotyrosine-binding protein is observed in many human cancers.
PKM2 plays a vital role in metabolic reprogramming, transcription and cell cycle progression and
thus is deliberated as an attractive target in anticancer drug development. The expression of PKM2 is
essential for aerobic glycolysis and cell proliferation, especially in cancer cells, facilitating selective
targeting of PKM2 in cell metabolism for cancer therapeutics. We have screened a virtual library
of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics)
database of Indian medicinal plants to identify potential activators of PKM2. The initial screening
was carried out for the physicochemical properties of the compounds, and then structure-based
molecular docking was performed to select compounds based on their binding affinity towards PKM2.
Subsequently, the ADMET (absorption, distribution, metabolism, excretion and toxicity) properties,
PAINS (Pan-assay interference compounds) patterns, and PASS evaluation were carried out to find
more potent hits against PKM2. Here, Tuberosin was identified from the screening process bearing
appreciable binding affinity toward the PKM2-binding pocket and showed a worthy set of drug-
like properties. Finally, molecular dynamics simulation for 100 ns was performed, which showed
decent stability of the protein-ligand complex and relatival conformational dynamics throughout
the trajectory. The study suggests that modulating PKM2 with natural compounds is an attractive
approach in treating human malignancy after required validation.

Keywords: pyruvate kinase M2; phytoconstituents; tuberosin; virtual screening; molecular dynamics
simulations; principal component analysis; kinase activator; drug discovery

1. Introduction

The difference in metabolism is one of the key attributes distinguished between normal
and cancerous cells [1]. Unlike normal cells, cancer cells metabolize glucose by aerobic
glycolysis following the Warburg effect phenomenon [2]. Pyruvate kinase M2 (PKM2) is
a phosphotyrosine-binding protein that plays a vital role in cancer progression by both
metabolic and non-metabolic pathways [3]. Its altered expression has been observed in
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many human cancers and had a crucial role in metabolic reprogramming, transcription and
cell cycle progression [4,5]. It is involved in the resolution of tumor growth by triggering
gene expression, which is involved in migration, cell proliferation, and apoptosis [6].

PKM2 was found in several cancers and promoted metastasis and proliferation of
cancer cells [7]. Due to its altered expression in cancer cells and critical role in aerobic
glycolysis and cell proliferation, PKM2 is considered an attractive target in anticancer drug
development [5]. It contributes an essential function for tumor metabolism, thus serving as
a promising target for anticancer therapeutics. Therapeutic strategies targeting PKM2 are
believed to be an excellent option for repressing cancer [5,8].

Several activators, inhibitors, and hormones block cell proliferation by targeting
PKM2 [9-12]. Multiple PKM2 activators and inhibitors are in pre-clinical and clinical stud-
ies, which suggests their promising anticancer potential [8]. The relationship of PKM2 with
many external factors influences the metabolic actions of tumor cells in various ways [8].
Studies have identified that shRNA (short hairpin RNA) and miRNA (microRNA) obstruct
the PKM2 expression, which initiates the cell death of tumor cells, reduces metabolic
activity, and decreases tumorigenesis [13]. shARNA hinders the expression of PKM2, the
sensitivity of cancer cells to certain agents or drugs, including docetaxel and cisplatin, that
induces the cell death of cancer tissues and decreases tumorigenesis [14,15].

Drug development strategies targeting PKM2 are predominantly achieved by acti-
vating/down-regulating PKM2, inhibiting its enzymatic activity, and stimulating dimer
activity [11,16]. The binding prototype of the PKM2 activators has been explained by vari-
ous structural studies and high-throughput screening, which might help develop specific
leads [11,12,17-19]. Structure-based computational approaches, such as molecular docking
and molecular dynamics (MD) simulations, can assist in the discovery of novel compounds
targeting PKM2 for therapeutic applications [20-22]. These approaches are predominantly
implemented in the modern drug discovery pipeline to discover potential leads from dif-
ferent compounds libraries, such as PubChem [23], DrugBank [24], ZINC database [25],
IMPPAT (Indian Medicinal Plants, Phytochemistry And Therapeutics) database [26], etc.

Here we employed a virtual screening approach to find potential binding partners
of PKM2. This study screens a library of phytoconstituents in the IMPPAT database of
compounds from Indian medicinal plants. After collecting compounds based on their
physicochemical properties, molecular docking studies were performed on the selected
compounds for their binding affinities. The high-affinity compounds were further subjected
to interaction analysis followed by their absorption, distribution, metabolism, excretion
and toxicity (ADMET) and PASS evaluation. We identified Tuberosin bearing appreciable
binding affinity toward the PKM2 and a worthy set of drug-like properties. Finally, all-atom
MD simulation studies were performed for 100 ns to evaluate the structural dynamics and
time-evolution of PKM2-Tuberosin interactions and their stability. These data demonstrate
that therapeutic targeting of PKM2 with natural compounds is suitable for targeting cancer
metabolism for therapeutic management.

2. Results and Discussion
2.1. Molecular Docking-Based Virtual Screening

Molecular docking-based virtual screening is a computational approach used in identi-
fying potential leads against predefined targets [22,27]. It was used to find the compounds
with appreciable binding affinities and specific interactions toward PKM2. The dock-
ing output of the ROS5 filtered library of 5875 compounds resulted in identifying several
compounds with an appreciable affinity towards PKM2. The top 10 selected showed
an affinity score from —8.9 kcal/mol to —10.0 kcal/mol (Table 1). The docking result
showed that all the chosen hits showed higher affinity than the reference compound. The
results suggested that the selected phytoconstituents have appreciable binding efficiency
with PKM2, which might be used in developing a potential binding partner of PKM2 for
therapeutic development.
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Table 1. Selected hits, their source and binding affinities, and their ligand efficiency toward PKM2.
Two compounds (PDB IDs: 07T and 10X were taken as references for docking score comparison).

S.No. Compound ID Compound Name Source (Plant) Affinity (kcal/mol) Ligand Efficiency
1. CID:14237667 Lupinisolone C Lupinus albus —10.0 0.29
2. CID:13846202 11-Hydroxytephrosin Amorpha fruticosa —9.4 0.28
3. CID:12305449 Kanjone Pongamia pinnata -9.1 0.36
4. CID:10308017 Gummadiol Gmelina arborea -9.1 0.30
5. CID:108026-27-3  2,3-Dehydrokievitone Vigna radiata -9.0 0.32
6. CID:104940 O-Methylsterigmatocystin Matricaria recutita -89 0.32
7. CID:14630496 Tuberosin Pueraria lobata —-8.9 0.32
8. CID:125848 Alteichin Eichhornia crassipes ~ —8.9 0.31
9. CID:177032 Dihydrooroxylin A Glycyrrhiza glabra —8.9 0.37
10. CID:14237662 Lupinisoflavone H Lupinus albus -89 0.26
6-(3-aminobenzyl)-4-methyl-2-methylsulfinyl-4,6-
11. PDB ID: 07T dihydro-5H-thieno —74 0.27
[2,3':4,5]pyrrolo[2,3-d]pyridazin-5-one
1. PDB ID: 10X 2—(1H'-b(?n.zmudazol-l-ylmethyl)-4H-pyr1d0[1,2- 65 0.30
a]pyrimidin-4-one
2.2. ADMET Properties
The ADMET properties, along with the PAINS patterns of all the selected compounds,
were predicted through the pkCSM and SwissADME web servers. The ADMET properties
of all the compounds are given in Table 2. The results showed that four compounds have
good ADMET properties with no PAINS patterns. Out of 10 compounds, 6 had AMET
toxicity, which needed to be excluded for further analysis. ADMET properties revealed
that four compounds (Lupinisolone C, Gummadiol, 2,3-Dehydrokievitone, and Tuberosin)
share a similar class of ADMET properties without any toxic patterns. Examining the
AMDET properties indicated that these four compounds might potentially be a potent and
safe lead for anticancer drug development.
Table 2. ADMET properties of the selected compounds. GI, gastrointestinal; BBB, blood-brain barrier;
CNS, central nervous system; CYP2D6, Cytochrome P450 2Dé.
Compound Absorption Distribution =~ Metabolism Excretion Toxicity
GI Water BBB/CNS CYP2D6 OCT2 AMES
Absorption Solubility Permeation Inhibitor Substrate
Lupinisolone C High Poor No No No No
11-Hydroxytephrosin High Moderate No No No Yes
Kanjone High Moderate Yes No No Yes
Gummadiol High Soluble No No No No
2,3-Dehydrokievitone High Poor No No No No
O-Methylsterigmatocystin High Moderate Yes No No Yes
Tuberosin High Moderate Yes No No No
Alteichin High Soluble No No No Yes
Dihydrooroxylin A High Moderate Yes No No Yes

Lupinisoflavone H High Poor No No No Yes
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2.3. PASS Evaluation

Phytoconstituents retain numerous biological properties, possibly resulting in syn-
ergistic or antagonistic effects [28,29]. Finding safe and effective lead molecules for drug
development needs an assessment of the biological properties of the compound under
study. PASS analysis was performed to explore the plausible biological properties of
the selected compounds. Here, the selected compounds were evaluated based on their
multiple biological properties and confidence level (Table 3). The results showed that
two compounds, Lupinisolone C and Tuberosin, possess antioxidant, anticarcinogenic,
antineoplastic, and kinase binding potential, with considerable Pa values ranging from
0.792 to 0.908. However, Gummadiol and 2,3-dehydrokievitone also exhibit similar proper-
ties but with lower Pa values; hence were eliminated from the study for further study. The
PASS evaluation and the molecular docking study and ADMET properties suggested that
Lupinisolone C and Tuberosin have great potential to explore in anticancer drug discovery
pipeline targeting PKM2 for therapeutic development.

Table 3. Biological and structural properties of the selected compounds predicted through the PASS
webserver Pa (probability of being active) and Pi (probability of being inactive) values signify the
likelihood of activeness of a compound with a particular property.

S. No. Compound ID Molecular Structure Pa Pi Biological Activity
0.908 0.002  Histidine-kinase inhibitor
0.866 0.003  Anticarcinogenic
1. Lupinisolone C 0.851 0.002  MMP9 expression inhibitor
0.847 0.008  TP53 expression enhancer
0.817 0.003  Antioxidant
0.916 0.005  Antineoplastic
0.901 0.011 Membrane integrity agonist
2. Gummadiol 0.695 0.018  Antidyskinetic
0.679 0.030  TP53 expression enhancer
0.644 0.005  Caspase 8 stimulant
0.773 0.014  TP53 expression enhancer
0.755 0.005  Histidine kinase inhibitor
3. 2,3-Dehydrokievitone 0.764 0.017 Antineoplastic
0.746 0.011  Apoptosis agonist
0.698 0.007  MMP9 expression inhibitor
0.886 0.006  HIF1A expression inhibitor
0.841 0.003  Chemopreventive
4. Tuberosin 0.800 0.002  NOS2 expression inhibitor
0.792 0.013  Antineoplastic
0.727 0.021  TP53 expression enhancer

2.4. Interaction Analysis

Two compounds, Lupinisolone C and Tuberosin, were selected for interaction analysis
and it found that both compounds interact with several residues of PKM2 and share a
common interaction pattern. The detailed binding pattern of Lupinisolone C and Tuberosin
with PKM2 is illustrated in Figure 1. The interaction analysis of Lupinisolone C suggested
that it was stabilized by two H-bonds and multiple hydrophobic interactions (Figure 1A).
Lupinisolone C’s interaction was near an ATM-binding site, i.e., Arg120 [12]. At the same
time, Tuberosin was found to interact with the crucial residues of the PKM2 binding pocket,
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including the Serine binding site “Asn70" [11] (Figure 1B). This binding site is crucial for the
PKM2 activity as Serine act as a natural ligand and allosteric activator of PKM2 [11].
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Figure 1. Structural representation of PKM2 in complexed with Lupinisolone C and Tuberosin.
(A) Molecular interactions of Lupinisolone C with PKM2. Protein is shown in rainbow ribbon
representation, where the interacting residues and hydrogen bonding are shown in lines and sticks,
respectively. The middle panel shows the charged surface illustration of the PKM2 binding pocket
occupied by Lupinisolone C. The right panel shows the 2D structural representation of PKM2 residues
and their interaction with Lupinisolone C (B) Molecular interactions of Tuberosin with PKM2. The
left panels show cartoon representations of the interactions. Protein is shown in rainbow ribbon
representation, where the interacting residues and hydrogen bonding are shown in lines and sticks,
respectively. The middle panels show the charged surface illustration of the PKM2 binding pocket
occupied by Tuberosin. The right panel shows 2D structural representation of PKM2 residues and
their interaction with Tuberosin.

Tuberosin was fitted within the binding pocket of PKM2, having various close in-
teractions. The binding of Tuberosin with PKM2 was stabilized by several interactions,
including four H-bonds and a few hydrophobic interactions. Detailed interaction analysis
showed that four H-bonds stabilized the PKM2-Tuberosin complex with Ile65, Met69,
Asn70, and Arg500, two 7-cation binds with Arg43 and Argl06, along with eight van
der Waals interactions (Figure 1B, right panel). The stable binding of Tuberosin to the
Serine binding site might be vital to activate the kinase activity of PKM2 and can raise
Tuberosin as a “competitive activator”. Consequently, it can be suggested that Tuberosin
may enhance the catalytic activity of PKM2 and thus may be a potential lead in developing
anticancer therapeutics.

2.5. Structural Deviations in PKM?2

Before analyses of MD trajectories for the time evolution of different parameters,
total potential energy and time were checked to know whether the systems had reached
equilibrium. These parameters can affect the results of the MD calculations. The results
showed that both the simulated systems reached equilibrium and 100 ns of time (Figure 2).
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These trajectories were compacted and subjected to various systematic and structural
parameters for further analysis.
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Figure 2. Dynamics of PKM2 and its binding with Tuberosin. (A) RMSD plot of PKM2 before and
after Tuberosin binding. (B) RMSF plot of PKM2 and its complex with Tuberosin. Lower panels show
the distribution of parameters as PDF.

The structural movements in a protein are essential for its functional activity inside the
living system [30]. The analysis of RMSD has been convenient for examining the structure
deviation in proteins and protein-ligand complexes [31,32]. The structural deviations of the
PKM2 and PKM2-Tuberosin complexes were examined within the solvent environment
to check their stability and movements during the simulation. The RMSD values of the
backbone of PKM2 and its docked complex with Tuberosin were recorded to examine their
structural deviations, which remained stable during the entire simulation (Figure 2A, upper
panel). The average values of RMSD for PKM2 and PKM2-Tuberosin complex were 0.35 nm
and 0.34 nm with a maximum of 0.48 nm and 0.45 nm at 65 ns and 90 ns, respectively.
A random but negligible fluctuation in the RMSD pattern was seen 30 ns in the case of
both systems of PKM2, possibly due to their initial adjustment. Overall, the distribution
of the RMSD pattern did not show any substantial shifts, which suggested the stability of
PKM2 with a palpable strength of ligand binding during the simulation. The distribution
of RMSD values as a probability distribution function (PDF) also suggested no significant
change in the PKM2 dynamics after the Tuberosin binding (Figure 2A, lower panel).

Studying RMSF indicates the flexibility of each residue in a protein [33]. To examine
the residual vibrations in PKM2 before and after Tuberosin binding, the RMSF values of
each residue were recorded (Figure 2B). The average fluctuations in PKM2 and PKM2-
Tuberosin complex were 0.16 nm and 0.14 nm during the simulation. The fluctuations
were observed to be stable and minimized upon Tuberosin binding. The graph suggested
a remarkable constancy of the docked complex of PKM2 and Tuberosin interaction. The
major fluctuations can be observed in the loop and coils, where residues are not involved
in the ligand binding. A little decreased fluctuation was seen in the PKM2 residues after
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the Tuberosin binding signified reduced dynamics in the ligand-binding pocket of PKM2
(Figure 2B, upper panel). The PDF of RMSF distribution also depicted decreased fluctuation
in PKM2 after Tuberosin binding (Figure 2B, lower panel).

The compactness of protein is another measure of computing the stability of protein
molecules [34]. In MD simulations, the compactness measure is characterized as R [35].
It is a useful parameter directly associated with the tertiary structure of a protein and has
been widely employed in examining the compactness of a protein structure [36,37]. The
compactness of PKM2 before and after Tuberosin binding was assessed by investigating the
time evolution of the R¢ values. The average values of Ry for PKM2 and PKM2-Tuberosin
were 2.48 nm and 2.49 nm, respectively (Figure 3A). As suggested by the R, plot, the
compactness of both systems persisted throughout the simulation without any significant
shift (Figure 3A, upper panel). However, a minor increase in the R; values of PKM2 after
Tuberosin binding can be in agreement with the assumption that there was occupancy
of intramolecular space in PKM2 by Tuberosin, which caused an increment of Ry. The
PDF distribution of the Rg values also suggested the proper compactness of PKM2 in the
presence of Tuberosin (Figure 3A, lower panel).

= PKM2
== PKM2-Tuberosin

— PKM?2
== PKM2-Tuberosin

L L L L L 1
2'40 20000 40000 60000 80000 100000 40 60 100
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Figure 3. Structural compactness and folding of PKM2 after Tuberosin binding. (A) The R, distribu-
tion as a function of time. (B) SASA plot of PKM2 as a function of time before and after Tuberosin
binding. The lower panels show the distribution of parameters as a PDE.

SASA of a protein molecule is the surface area that is accessible to its neighbouring
solvent. The SASA analysis has been widely utilized in examining the folding /unfolding of
proteins, thus, their structural stability during the simulation [38]. The effect of Tuberosin
binding on the folding behaviour of PKM2 was examined by calculating SASA values
which showed no manor peaks during the simulation. The average SASA values for PKM2
and PKM2-Tuberosin were 239.34 nm? and 241.23 nm?, respectively. The graph of the
time evolution of SASA values suggested that PKM2 was a stable presence of Tuberosin
(Figure 3B, upper panel). The SASA values distribution showed a similar pattern in both
systems. The PDF distribution of the SASA values suggested a minor increase in the SASA
values of the PKM2-Tuberosin docked complex (Figure 3B, lower panel).
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2.6. Dynamics of Hydrogen Bonds

H-bonds play a vital role in the stability and integrity of protein structures [39]. Exam-
ining the time evolution of formation and breakdown of H-bonds during the simulation
time is useful for assessing the structural integrity and stability of proteins and protein-
ligand complexes [40]. The time evolution of H-bonds was calculated and plotted to
examine the consistency of intramolecular bonds within PKM2. The average number of
H-bonds formed intramolecularly within PKM2 before and after Tuberosin binding were
402 and 399, respectively (Figure 4, left panel). The results suggested no significant change
in the number of H-Bonds within PKM2 when complexed with Tuberosin. A negligible fall
in the number of H-bonds can be correlated with the occupancy of intramolecular space
in PKM2 by Tuberosin. The calculated PDF suggested a fair constancy in intramolecular
H-bonds in PKM2 before and after Tuberosin (Figure 4, right panel).

0.4

= PKM2
0 3 L. ™ PKM2-Tuberosin

o3
EO.Q -

0.1p

] ] ]
20000 40000 60000 80000 100000 940 360 380 400 420 440
Time (ps) Number of Intramolecular H-bonds

Figure 4. The dynamics of intramolecular H-bonds in PKM2 (left panel). The probability distribution
of the intramolecular H-bonds in PKM2 (right panel).

Intermolecular H-bonding formed within the PKM2-Tuberosin docked complex makes
the protein-ligand complex stable. The presence of four H-bonds maintained the PKIM2-
Cital docked complex. Hence their time-evolution was examined during the simulation
(Figure 5). The plot indicated that an average of three H-bonds was formed between
Tuberosin and PKM2, which were quite stable during the simulation. The result suggested
that Tuberosin forms up to five H-bonds fluctuated at several places, but up to three H-
bonds were maintained throughout the simulation. The distribution plot also suggested
that three H-bonds were formed within the PKM2-Tuberosin docked complex with the
highest PDF (Figure 5, right panel).
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Figure 5. Time evolution of intermolecular H-bonds formed within 0.35 nm between Tuberosin and
PKM2 (Left panel). The right panel shows the PDF of the intermolecular H-bonds between Tuberosin
and PKM2.
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2.7. PCA and FELs Analyses

Protein conformations play a vital role in their biological function [41]. Exploring
the structural conformations in proteins has been useful in examining their function and
stability during the simulation [42]. PCA has been a useful approach to exploring the
atomic motions in proteins making their conformational projections [43]. The PCA on
all Cx atoms PKM2 was carried out on PC1 and PC2 phase space. The projection of
PKM?2 in apo and ligand-bound states was thrown on a two-dimensional subspace covered
along two PCs, i.e., PC1 and PC2 (Figure 6). In Figure 6, the highly populated dense area
showed a steady state of protein conformation. The recorded projection of PKM2 PCs
contributed to a variance of —6 and 2 on PC1 and —4 and 4 on PC2 (Figure 6, left panel.
At the same time, the contribution of the ligand-bound state of PKM2 PCs to the variance
was —5 and 5 on PC1 and —5 and 2 on PC2 (Figure 6, right panel). The conformational
behaviors of PKM2 before and after Tuberosin binding showed a noteworthy difference
in their stable projections along the PC1 and PC2. The distribution of PKM2-Tuberosin
projections was more concentrated than the free state of PKM2, suggesting the stability of
the docked complex.

6 6
= — PKM2 4
= 4l = PKM2-Tuberosin _ 2
: 25
o -
E -
2 of ;
S o
g T g 2
2 % 0
£ -4 ; -2
-6l l 1 l l l . ' 1 ] 1 ] 1 L
6 4 2 0 2 4 6 0 20000 40000 60000 80000 100000

Projection on EV1 (nm) Time (ps)

Figure 6. Conformational projections of PKM2 in PCA. 2D projections of conformational sampling of
PKM2 and PKM2-Tuberosin (left panel). The time evolution of projections of trajectories on both EVs
(right panel).

Generating FELs and analyzing them is useful for describing the ageing of the protein
folding mechanism [44]. FELs have been utilized in the drug discovery process to examine
the effect of ligand binding on protein folding and structure stability [27]. Here, FELs
were generated to see the global minima and conformational landscape of PKM2 before
and after Tuberosin binding (Figure 7). Deeper blue in the FELs indicated the protein
conformational state with lower energy near the global minimum. The FEL plots indicated
that PKM2 showed a single global minimum confined within a large basin (Figure 7A).
The analysis suggested that the Tuberosin binding to PKM2 slightly disturbed the po-
sition of the phase but within a single stable global minimum (Figure 7B). The results
suggested that the binding of Tuberosin to PKM2 was stable in the simulation course,
which further supported Tuberosin as a potential binding partner of PKM2 for therap-
eutic development.
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Figure 7. The FEL plots for (A) PKM2 and (B) PKM2-Tuberosin complex.

2.8. MMPBSA Binding Free Energy

The binding free energy of Tuberosin with PKM2 was estimated from the MD tra-
jectory of a 10 ns stable region, i.e., between 40 to 50 ns. The analysis indicated that
Tuberosin shows an appreciable binding affinity with PKM2, i.e., —92.84 & 18.26 k] /mol.
The MMPBSA result supported the observation that Tuberosin binds to PKM2 with an
appreciable binding affinity.

3. Materials and Methods
3.1. Web Resources and Computational Settings

The three-dimensional structure of PKM2 protein was taken from the Protein Data
Bank (PDB ID: 6V76). All hetero atoms, including water and co-crystallized ligands, were
deleted from the downloaded coordinates. The PKM2 structure was preprocessed for
molecular docking-based virtual screening in the Swiss PDB Viewer tool [45] by restoring
missing atoms and minimizing overall energy. The compound library from the IMPPAT
database was downloaded that consisted of ~9000 small molecules, including phytocon-
stituents from Indian medicinal plants. All the compounds were filtered in such a way that
they adhered to Lipinski’s rules [46] (i.e., molecular weight < 500, H-bond donors < 5, H-
bond acceptors < 10, and logP < 5) and have three-dimensional coordinates optimized for
molecular docking study where they left to 5875 in total. A comprehensive computational
approach to drug discovery using different bioinformatics software, such as InstaDock [47],
Discovery Studio Visualizer [48], PyYMOL [49], GROMACS [50], QtGrace [51], etc., were
employed for molecular docking, visualization, and simulation studies.

3.2. Molecular Docking-Based Virtual Screening

Molecular docking-based virtual screening was performed to filter out the compounds
based on their binding affinity towards PKM2. The docking was performed using InstaDock
software using a blind search space for all the ligands. The grid was set to 96 A, 75 A,
and 69 A for X, Y, and Z coordinates. The grid centre was chosen at —15.342, —29.605,
and —9.474 for the X, Y, and Z-axis, respectively. The grid was big enough to cover the
entire protein so that each could move and find its promising binding sites. The grid
spacing was fixed to 1 A with default docking parameters. The docking score of each
compound towards PKM2 was estimated and analyzed through InstaDock. The output of
the screening process was filtered out based on the docking score. For further interaction
analysis, all possible docked conformers of each ligand were split through the ‘Splitter’
program of InstaDock.
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3.3. ADMET Prediction

The filtered compounds from the docking results were subjected to filtering out based
on their ADMET properties. The prediction of ADMET properties along with PAINS
(Pan-assay interference compounds) evaluation were carried out using the pkCSM [52] and
SwissADME [53]. Compounds with well ADMET properties were taken and then filtered
for any PAINS patterns [54]. PAINS filter helps us to avoid compounds having specific
patterns with a higher tendency to bind to multiple targets. The ADMET evaluation helps
find compounds with drug-like physicochemical and pharmacokinetic properties, which
reduces their chances of failure in clinical trials [55].

3.4. PASS Analysis

PASS is the ‘prediction of activity spectra for biologically active substances” where
the biological activities of a chemical compound can be predicted through its chemical
structure. PASS analysis through the PASS web server helps select compounds with
desired biological properties [56]. PASS evaluation predicts possible biological properties
for a compound based on structure-activity relationships. It provides a list of probable
properties for a compound on the ratio of Pa (probability of being active) and Pi (probability
of being inactive). A higher Pa value signifies a higher likelihood of the activeness of that
compound with a particular property. The Pa value was set to the cut of >7 for higher
statistical significance.

3.5. Interaction Analysis

The interaction analysis of the docked protein-ligand complexes was performed to
explore various interactions formed during their binding. The binding poses and all possi-
ble interactions were explored through the PyMOL and Discovery Studio Visualizer [57].
The interactions formed within 3.5 A within the protein-ligand complex were labelled in
the PyMOL. The type of interactions and the participating residual and atomic coordinates
were explored through Discovery Studio Visualizer. Here, only compounds with specific
interactions towards the critical residues of PKM2, including the active and binding sites,
were selected for further analyses. The binding of known PKM2 binding partners was
referred to compare docking outputs.

3.6. MD Simulations

It is important to analyze the stability of the protein-ligand complex in MD simulations.
The all-atom MD simulation studies were carried out by the GROMACS version 5.1.2 [58].
The structural coordinates of the PKM2 and PKM2-Tuberosin complexes were prepared
from the docking study for the starting point for our MD simulation setup. Protonate3D
was used for protonation and to optimize hydrogen bonding. The GROMOS force field
embedded in GROMACS was utilized for both simulations. The SPC solvent model was
used for solvation purposes. The topology PKM2 was generated by the GROMACS, while
the Tuberosin topology was generated through an external server named PRODRG [59].
The systems were neutralized using sufficient sodium and chloride ions at 0.15 M using
the gmx genion module of the GROMACS. Equilibration of both systems was performed in
two stages, i.e., NVT and NPT. In the NVT ensemble, the systems were heated gradually
to 300 K for 1000 ps. At that time, in the NPT ensemble, the systems allowed the solvent
molecules to relax for 1000 ps, removing any restraints from the systems. The pressure of 1
bar was preserved by the Berendsen Barostat method. The LINCS algorithm controlled the
bond length between the protein-ligand complexes, whereas the SETTLE restrained water.
Energy minimization was performed using the 1500 steps of the steepest descent algorithm.
Finally, both the equilibrated systems were subjected to simulation for 100 ns maintaining
supplied temperature and pressure for MD production. The time evolution data of MD
trajectories were analyzed through the GROMACS package.
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3.7. Principal Component Analysis and Free Energy Landscapes

Principal component analysis (PCA) is a convenient approach for exploring the con-
formational sampling of proteins [20]. The MD trajectories of PKM2 and PKM2-Tuberosin
were examined to study their principal motions through PCA. The PCA was performed
through the essential dynamics (ED) method by diagonalizing the first two eigenvectors
(EVs) of the covariance matrix [60]. Further, free energy landscapes (FELs) for PKM2 and
PKM2-Tuberosin complex were generated to examine their stability and folding dynamics.
FELs were generated via a conformational sampling approach, which helps understand the
conformational stability PKM2 and PKM2-Tuberosin complex during the simulation.

3.8. MM-PBSA Calculations

The binding of Tuberosin with PKM2 was further evaluated by calculating the binding
affinity of the docked complex using the MM-PBSA approach [61]. The g_mmpbsa package
of GROMACS was utilized to perform the MM-PBSA analysis [62]. The trajectory from a
stable region, i.e., between 40 to 50 ns, was used for the calculation.

4. Conclusions

This study proposed Tuberosin as a potential lead for drug development targeting
PKM2. The molecular docking approach explored the binding pattern of Tuberosin with
PKM2. It was found that Tuberosin was docked well with PKM2 and showed appreciable
binding affinity by forming the H-bonds with Ile65, Met69, Asn70, and Arg500. Apart
from the H-bonds, Tuberosin maintained several Van der Waals interactions. Tuberosin
possesses a set of drug-like properties and anticancer potential. Consequently, an all-atom
MD simulation on PKM2 and PKM2-Tuberosin docked complex was carried out for 100 ns
to determine their dynamics and stability. The MD analyses by exploring the time evolution
of RMSD, RMSF, Ry, SASA, and intra/intermolecular H-bonds suggested that PKM2 and
PKM2-Tuberosin complex reached equilibrium by 40 ns and showed stability throughout
the simulation trajectories. The PCA and FEL analyses examined the conformational
movements and folding mechanism. It was found that the PKM2-Tuberosin complex was
more stable than the free form of PKM2. In brief, this study could deliver an effective
platform in developing potential leads of therapeutic potential against cancer, targeting
PKM2. However, this work is based on multiple in-silico methods following state-of-the-art
drug discovery approaches, which need further evaluation in experimental settings.
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