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Abstract: L-Asparagine (Asn) has been regarded as one of the most economical molecules for nitrogen
(N) storage and transport in plants due to its relatively high N-to-carbon (C) ratio (2:4) and stability.
Although its internal function has been addressed, the biological role of exogenous Asn in plants
remains elusive. In this study, different concentrations (0.5, 1, 2, or 5 mM) of Asn were added to
the N-deficient hydroponic solution for poplar ‘Nanlin895’. Morphometric analyses showed that
poplar height, biomass, and photosynthesis activities were significantly promoted by Asn treatment
compared with the N-free control. Moreover, the amino acid content, total N and C content, and
nitrate and ammonia content were dramatically altered by Asn treatment. Moreover, exogenous
Asn elicited root growth inhibition, accompanied by complex changes in the transcriptional pattern
of genes and activities of enzymes associated with N and C metabolism. Combined with the plant
phenotype and the physiological and biochemical indexes, our data suggest that poplar is competent
to take up and utilize exogenous Asn dose-dependently. It provides valuable information and insight
on how different forms of N and concentrations of Asn influence poplar root and shoot growth and
function, and roles of Asn engaged in protein homeostasis regulation.

Keywords: asparagine; poplar; amino acids; protein synthesis; biostimulant

1. Introduction

Nitrogen (N) is a crucial element for plant growth and development, and one of
the most critical limiting factors for biomass and yield formation. Hence, the efficient
utilization of N is the most central event for desirable plant growth performance and
productivity [1,2]. Broadly, the source of N utilized by plants in the environment can be
grouped into organic and inorganic. The choice of uptake of these nutrients by plants
depends on plant species and soil abundance of N (nitrate (NO3

−), ammonium (NH4
+),

amino acids, etc.) [3], whereas the utilization of N compounds depends on the N availability
and the capacity of transporters for the uptake, and the endogenous metabolism system for
the subsequent utilization [4–8].

Although the main route of N uptake by plants is realized through inorganic means,
the use of organic N, which can be directly absorbed by plants in the form of amino
acid, has been presented by many researchers [5,9–12]. Impressive results reveal that
amino acids are a very efficacious source of N for plant growth, since the majority of N
in cells is bound up to them [13]. Furthermore, plants’ uptake and utilization of amino
acids as a source of N are more advantageous energetically during assimilation than that
of NO3

− and NH4
+ [14]. Beyond their fertilizing properties, natural amino acids are

nontoxic, biodegradable molecules and are potential chelators for soil remediation [15].
Moreover, amino acids represent one of the major categories of biostimulants, which have
been reported to improve plant vigor, crop yield, quality characteristics, and tolerance
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to biotic and abiotic stresses [16]. Collectively, the interests in the application of amino
acid-based N in agroforestry are increasing because of its environmentally friendly features
and demonstrated capacities to improve plant growth performance [6,17–26]. Despite
a long history being available about the role of amino acids in plants, their effects have
varied depending on the type of amino acid over plant species; therefore, extensive studies
are required to explain the physiological functions and mode of action of individual amino
acids [27].

L-asparagine (Asn) is one of the twenty naturally occurring proteinogenic amino acids
on Earth. It serves as a principal source of N for protein synthesis, especially in plants’
vigorously growing tissues [28,29]. Asn has carboxamide as the side chain’s functional
group, which often plays a key role in the active site of enzymes [30]. Free Asn contains
21.2% N, and it has a relatively high ratio of N to C (2:4) and stability compared to the
other amino acids [31,32]; thus, is commonly considered as a main organic nitrogenous
storage, transport, and partitioning compound in many plant species, in particular when
the supply of soluble carbohydrate is severely reduced [33]. In addition, Asn is crucial in
coordinating general translation, modulating cellular signaling for amino acid homeostasis
and regulating metabolic availability during biological processes [34,35]. Although Asn
is a non-essential amino acid, it has been characterized as an essential exchange factor
that regulates mTOR complex 1 (mTORC1, a central regulator of cell growth and division)
activation, thereby coordinating protein and nucleotide biosynthesis [36].

Asn generally accounts for 24–76% of the xylem N in tree species [37]. The proportion
of Asn in the xylem can be taken as an indicator of plant N status, wherein a decrease in
N availability frequently results in a reduction in Asn and an increase in aspartate [33].
Asn is selectively accumulated in various plant tissues during normal physiological pro-
cesses such as seed germination and leaf senescence, or when plants are placed in the
dark [38] or exposed to a range of abiotic/biotic stresses [33,39–41]. The conversion of Asp
to Asn in plants has been demonstrated to correlate with enhanced disease resistance [42].
Aside from the roles shown above for endogenous Asn, exogenous Asn has been found
to play a part in many biological processes, such as stimulating shooting and minimizing
withering of Rosa centifolia [13], alleviating salt stress in maize [43], altering root growth in
Arabidopsis [44], promoting chlorophyll content, sugar metabolism and proline accumu-
lation in cherry rootstocks [45], inducing somatic embryo formation [46], and improving
Phaseolus vulgaris growth by stimulating cell elongation and division [47]. Furthermore,
exogenous Asn has been reported as a growth regulator that positively improves vegetative
growth, nutrient uptake, and pigment production in garden cress [48]. When combined
with sucrose application, exogenous Asn stimulates additional outgrowth of the collateral
buds in Rosa hybrid [49].

Poplar is a fast-growing woody plant species planted worldwide to produce wood,
biomaterials, and biofuel [50,51]. Although Asn is one of the predominant translocated
forms of organic N in poplar [52], the effect of Asn on poplar growth has rarely been
reported so far. Previously, several studies, including ours [17,53,54], have demonstrated
the ability of poplars to absorb and utilize various types of amino acids. This motivates us
to conduct the present study to evaluate the effects of Asn on the vegetative growth and
the physiological and biochemical traits of poplar plants.

2. Results
2.1. Exogenous Treatment of Asn Has Significant Impacts on Poplar Growth

To explore the modulation effect of exogenous Asn on poplar growth, different concen-
trations of Asn (i.e., 0.5, 1, 2, or 5 mM) were supplemented as a sole N source in the culture
medium for poplar ‘Nanlin895’, in parallel with 0 mM and 3 mM KNO3 serving as the N0
and N+ control, respectively. Impressively, the morphology and the growth parameters of
poplar ‘Nanlin895’ seedlings were significantly affected by Asn treatment (Figure 1 and
Table 1). As seen from Figure 1, Asn treatment strongly influenced the morphophysiolog-
ical traits of poplar ’Nanlin895’. Specifically, in the N0 group, plants underwent growth
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retardation, yellowing, and the easy falling off of mature leaves (Figure 1b). However,
such effects were reversed by the treatment of varied concentrations of Asn (0.5, 1, or
2 mM) (Figure 1c–e), whose addition recorded an increase of seedling height, shoot fresh
weight, leaf numbers, and leaf area by 22–65%, 63–201%, 54–86%, and 23–132%, respectively.
Nonetheless, plants showed a decrease in root length (by 38–54%) and root-to-shoot ratio
(by 49–62%) compared with the N0 control (Table 1). In addition, it was realized that the
increment in Asn supply was inversely proportional to the plant’s growth, in that raising
the concentration of the exogenous Asn to a concentration above 2 mM was observed
to reduce various plant growth parameters, among which the root system in particular
became thinner and darker (Figure 1f). While there were increases in fresh weights in plants
treated with 0.5 and 1 mM Asn, the supply of 2 and 5 mM Asn recorded lower fresh weight
than N0. Taken together, both N+ and Asn supplements had a profound impact on the
morphology of the roots and shoots of poplar ‘Nanlin895’ seedlings, and the effect of Asn
was dose-dependent. This is in accordance with findings reported by Haroun et al. (2010),
which showed that the growth parameters of Phaseoulus vulgaris were induced by 1 mM
Asn, but inhibited by higher concentrations of Asn (i.e., 2 mM, 3 mM, 4 mM, and 5 mM) [47].
Likewise, similar results were found by Jorkesh and Aminifard (2019) in garden cress [48].
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Figure 1. Phenotypical changes of exogenous asparagine (Asn) on poplar ‘Nanlin895’ growth. Plants
were grown in (a) 3 mM KNO3 (N+), (b) N-free hydroponic solutions (N0), (c) 0.1 mM Asn, (d) 0.5 mM
Asn, (e) 2 mM Asn, and (f) 5 mM Asn for two months.

2.2. Asn Affects Photosynthesis of Poplar

As earlier indicated, N strongly influences the photosynthetic rate and is an essential
indicator of plants’ material accumulation [55]. In agreement with this, adding N and Asn
greatly affected poplar photosynthetic and chlorophyll fluorescence parameters (Table 2).
Apart from 5 mM Asn, in all other Asn treatments, there were significant increases in
stomatal conductance (gs), transpiration rate (Tr), and intercellular carbon dioxide concen-
tration (Ci) compared with N0. However, there was an irregular trend in the changes in
the photosynthetic rate (Pn), in which 1 mM Asn treatment recorded the highest Pn and
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5 mM Asn recorded the lowest Pn across all the Asn treatments (Table 2). Nevertheless, the
Pn, gs, Ci, and Tr values of poplar ‘Nanlin895’ seedlings grown under N+ conditions were
remarkably higher than those of the Asn treatments.

Table 1. Physiological effects of exogenous asparagine (Asn) on poplar ‘Nanlin895’ growth.

Treatment Height (cm) Root Length
(cm)

Shoot FW
(g)

Root FW
(g)

Number of
Blades

Leaf Area
(mm2)

Root–Shoot
Ratio

N+ 30.767 ± 2.926 a 16.467 ± 4.563 a 6.115 ± 1.589 a 2.068 ± 0.356 a 14.333 ± 0.577 a 1562.667 ± 483.514 a 0.348 ± 0.083 b

N0 16.275 ± 2.837 de 17.7 ± 3.403 a 1.301 ± 0.599 e 0.845 ± 0.298 b 7 ± 0.816 d 723.267 ± 429.444 b 0.671 ± 0.076 a

0.5 mM Asn 26.8 ± 2.342 b 10.975 ± 3.2 b 3.916 ± 1.236 b 0.943 ± 0.208 b 13 ± 1.826 ab 1676.667 ± 529.802 a 0.255 ± 0.08 b

1 mM Asn 23.333 ± 2.307 bc 9.5 ± 0.5 b 3.016 ± 0.259 bc 0.881 ± 0.052 b 11.333 ± 1.155 bc 1018.5 ± 105.194 ab 0.293 ± 0.022 b

2 mM Asn 19.85 ± 2.029 cd 8.075 ± 2.329 b 2.12 ± 0.345 cd 0.723 ± 0.165 b 10.75 ± 0.5 c 886 ± 542.769 ab 0.339 ± 0.025 b

5 mM Asn 12.533 ± 0.551 e 11.533 ± 1.858 b 1.023 ± 0.207 e 0.319 ± 0.042 c 8.667 ± 0.577 d 511.4 ± 237.216 b 0.32 ± 0.076 b

Physiological parameters were measured in poplar under different asparagine (Asn) treatments. “N+” represents
inorganic N control; “N0” indicates N-free control. Data indicate means ± SD (n ≥ 3). Different letters behind the
values in the same column indicate significant differences between the treatments, tested by one-way ANOVA
followed by Dunken’s test (p < 0.05).

Table 2. Photosynthetic parameters of the poplar ‘Nanlin895’ under different asparagine
(Asn) concentrations.

Treatment Pn (µmol
CO2·m−2·s−1)

gs
(mol·m−2·s−1)

Ci
(µmol·mol−1)

Tr (mmol
H2O·m−2·s−1)

N+ 8.095 ± 0.533 a 0.152 ± 0.033 a 320.2 ± 14.306 a 1.468 ± 0.254 a

N0 2.318 ± 0.299 f 0.023 ± 0.001 f 262.5 ± 22.708 c 0.258 ± 0.014 e

0.5 mM Asn 5.225 ± 1.044 c 0.070 ± 0.027 d 287.75 ± 22.248 b 0.726 ± 0.260 d

1 mM Asn 6.103 ± 0.101 b 0.149 ± 0.008 b 316.5 ± 5.196 a 1.375 ± 0.064 b

2 mM Asn 4.673 ± 0.702 d 0.079 ± 0.018 c 314.75 ± 7.411 a 0.846 ± 0.190 c

5 mM Asn 3.428 ± 0.107 e 0.053 ± 0.029 e 256.75 ± 45.339 c 0.383 ± 0.071 e

Pn, Photosynthetic rate; Ci, intercellular CO2 concentration; gs, stomatal conductance; Tr, transpiration rate.
Parameters were measured in poplars grown in the hydroponic solution containing different concentrations of
Asn as a sole N source. “N+” represents inorganic N control; “N0” indicates N-free control. Different letters
behind the values in the same column indicate significant differences between the treatments, tested by one-way
ANOVA followed by Dunken’s test (p < 0.05).

The potential maximum light energy conversion efficiency (Fv/Fm) represents the
original light energy conversion efficiency of PSII [56,57]. In the current study, there was
no significant difference across all the treatments, except for the 2 mM Asn treatment,
which reduced the Fv/Fm compared to N+ (Table 3). The photosystem II activity as
measured by Fv/Fo depicts the potential photosynthetic capacity in the plants, and its
result was consistent with the change of the Fv/Fm. The nonphotochemical quenching
coefficient (NPQ) represents one of the most important mechanisms protecting plants
against photoinhibition [58]. As shown in Table 3, Asn-fed poplars recorded lower values
of NPQ relative to N0 and N+ groups, indicating that Asn inactivates photoprotection
mechanisms. Furthermore, the photochemical quenching coefficient (qP) and the actual
photochemical quantum efficiency (ΦPSII) were remarkably lower in Asn-treated plants
than that of the N0 and N+ control, suggesting that extra Asn limits photosynthetic capacity.

2.3. Exogenous Asn Has a Significant Influence on the Internal N Status and NUE of Poplars

The relative in vivo intensity of N and C metabolism plays an essential role in plant
growth and development. To ascertain the effect of Asn treatment on poplar metabolism,
the content of nitrate, ammonia, total C, total N, C/N ratio, and N use efficiency (NUE)
were determined. In general, nitrate content in the shoots was higher than in the roots
and was increased as Asn applied concentrations rose (Figure 2a). Moreover, in the young
leaves, the treatment of Asn remarkably increased nitrate content; thus, the N+ group
recorded the lowest nitrate content, followed by the N0 control. However, the opposite
trends were observed in the mature leaves: the N0 group recorded the highest nitrate
content, while unpredictable differences were observed in the other treatments. In the
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stems, the N+ control had the highest nitrate content, whereas Asn treatment reduced
nitrate content to the level of the N0 control.

Table 3. Chlorophyll fluorescence parameters of the poplar ‘Nanlin895’ under different asparagine
(Asn) treatments.

Treatment Fv/Fm NPQ Fv’/Fm’ qP ΦPSII Fv/Fo

N+ 0.783 ± 0.008 a 0.936 ± 0.424 ab 0.66 ± 0.02 abc 0.469 ± 0.057 a 0.307 ± 0.01 a 3.652 ± 0.161 a

N0 0.781 ± 0.003 a 1.065 ± 0.053 a 0.635 ± 0.008 c 0.486 ± 0.018 a 0.308 ± 0.01 a 3.606 ± 0.07 a

0.5 mM Asn 0.773 ± 0.008 a 0.569 ± 0.059 bc 0.688 ± 0.02 abc 0.411 ± 0.014 ab 0.283 ± 0.002 bc 3.478 ± 0.436 a

1 mM Asn 0.79 ± 0.008 a 0.482 ± 0.08 bc 0.717 ± 0.017 ab 0.374 ± 0.014 c 0.268 ± 0.007 c 3.798 ± 0.183 a

2 mM Asn 0.741 ± 0.028 b 0.584 ± 0.171 bc 0.648 ± 0.052 bc 0.433 ± 0.053 ab 0.278 ± 0.012 bc 2.918 ± 0.42 b

5 mM Asn 0.793 ± 0.007 a 0.432 ± 0.38 c 0.73 ± 0.043 a 0.372 ± 0.077 c 0.269 ± 0.037 c 3.877 ± 0.155 a

Fv/Fm, potential maximum light energy conversion efficiency; NPQ, nonphotochemical quenching coefficient;
Fv’/Fm’, Effective quantum efficiency; qP, photochemical quenching coefficient; ΦPSII, actual light energy conver-
sion efficiency; Fv/Fo, photosystem II activity. Different letters behind the values in the same column indicate
significant differences between the treatments, tested by one-way ANOVA followed by Dunken’s test (p < 0.05).
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Figure 2. The contents of nitrate (a) and ammonia (b) in various tissues of the poplar ‘Nanlin895’
under different asparagine (Asn) treatments. “N0” indicates N-free; “N+” represents the inorganic
N control. The concentration of Asn applied was 0.5 mM, 1 mM, 2 mM, or 5 mM, as indicated. YL,
young leaves; ML, mature leaves; S, stems; R, roots. Bars indicate means ± SD (n ≥ 3), and different
letters indicate significant differences (p < 0.05) based on Duncan’s test.

Nevertheless, Asn application concentration had an insignificant effect on nitrate
content in the roots. Previously, it has been reported that the supply of high levels of Asn
in Pisum sativum resulted in ammonia production [59]. In accordance with this, poplar
‘Nanlin895’-fed with Asn universally increased ammonium content in the stems, leaves,
and roots (Figure 2b), indicating that exogenous Asn is indeed participating in the internal
N metabolism process.

The effect of Asn treatment over changes in C and N metabolism in the shoots and
roots of poplar ‘Nanlin895’ were shown in Figure 3. In the roots, plant N accumulation
(i.e., total N content) under Asn treatment increased significantly compared to N0 and N+
control. In contrast, in the shoots except for 2 mM Asn, N accumulation was insignificantly
affected by other concentrations of Asn treatment compared with the N+ control (Figure 3a).
Somewhat differently, C accumulation (i.e., total C content) in both shoots and roots was
higher in Asn-treated plants than the N+ control (Figure 3b), implying that Asn also confers
C bonus to plants. The C/N as a whole showed an opposite trend to the plant total N
content (Figure 3c), wherein the highest C/N was observed in the N0 control.
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indicates N-free reference; “N+” represents the inorganic N control. The concentration of Asn applied
was 0.5 mM, 1 mM, and 2 mM as indicated. Bars denote means ± SD (n ≥ 3), and different letters
indicate significant differences (p < 0.05) based on Duncan’s test.

The unprecedented change in plant N content suggests that Asn treatment signifi-
cantly impacts poplar N metabolism. To explicit this effect, the ability of poplar to utilize
N for synthesizing biomass (NUtE) and to absorb N from the soil (NUpE) under different
concentrations of Asn treatment was determined. As shown in Figure 4, among all the
treatments, the highest NUtE was found in 0.5 mM Asn-fed poplars, which was approxi-
mately two times higher than the N+ control. However, as exogenous Asn concentration
increased, NUtE dropped sharply. Treatment with 1 mM Asn and 2 mM Asn reduced NUtE
to 10.4 and 3.8 g dry weight per gram N, respectively (Figure 4a). The changing trend of
NUpE was similar to that of NUtE in poplar ‘Nanlin895’ seedling, in which treatment with
0.5 mM Asn recorded two times higher NUpE than the N+, whereas NUpE of the rest of
the Asn treatment fell below the level of the N0 control (Figure 4b). Taken together, differ-
ent concentrations of exogenous Asn significantly influenced poplar NUE, among which
0.5 mM Asn treatment recorded the highest NUE, whereas ascending concentration of Asn
in poplar ‘Nanlin895’ relatively decreased NUE. Consistently, it has been demonstrated
that higher NUE is observed in plants with low N supply [60].
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Figure 4. Nitrogen utilization efficiency (NUtE) (a) and nitrogen uptake efficiency (NUpE) (b) of
poplar ‘Nanlin895’ under different asparagine (Asn) treatment. “N0” indicates N-free; “N+” rep-
resents the inorganic N control. The concentration of Asn applied was 0.5 mM, 1 mM, and 2 mM
as indicated. Bars denote means ± SD (n ≥ 3), and different letters indicate significant differences
(p < 0.05) based on Duncan’s test.



Int. J. Mol. Sci. 2022, 23, 13126 7 of 16

2.4. Effects of Exogenous Asn on the Contents of Amino Acids

The impact of exogenous Asn as a sole N source on the endogenous amino acids
content in both roots and mature leaves of poplar ‘Nanlin895’ was shown in Figure 5.
Generally, high amounts of Asn, arginine, glutamic acid, alanine, and aspartic acid but
low contents of phosphoserine, glycine, methionine, and tyrosine were detected in all the
samples. Varying the concentration of exogenous Asn dramatically affected the range
of free amino acids in both roots and mature leaves of poplar ‘Nanlin895’. In brief, the
content of the amino acids in the roots was only marginally affected by 0.5 mM Asn, but
further increasing exogenous Asn dose augmented the content of a number of amino acids,
especially the internal Asn, arginine, GABA, and alanine compared with the N+ control.
Intriguingly, 5 mM Asn treatment led to a substantial accumulation of almost all amino
acids, while the N0 control recorded their lowest level (Figure 5a). Overall, the application
of Asn had similar effects on the amino acid content in the mature leaves compared to the
roots, except that in the mature leaves the N+ control recorded the lowest level of all amino
acids, while 0.5 mM Asn treatment enriched the contents of a proportion of the amino acids
examined (Figure 5b).
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Figure 5. Heatmap illustration of the amino acid composition of poplar ‘Nanlin895’ roots (a) and
mature leaves (b) under different asparagine (Asn) treatments. “N0” indicates N-free; “N+” represents
inorganic N control. The concentration of Asn applied was 0.5 mM, 1 mM, 2 mM, and 5 mM as
indicated. The color bar indicates low (green) expression levels to high (red).

2.5. Impacts of Asn Treatment on the Expression of Genes Involved in N and C Metabolism Pathways

The root system architecture is vital in regulating root foraging response to N
fluctuation [61]. As aforementioned, the application of Asn significantly influenced poplar
‘Nanlin895’ root growth. To explore the underlying molecular basis, quantitative real-time
RT-PCR (qPCR) was implemented to determine the expression levels of key genes involved
in N and C metabolism pathways in the roots of poplar ‘Nanlin895’ fed with different
concentrations of Asn. The results (Figure 6) showed substantial individual variability
within different gene isoforms. In higher plants, glutamine synthetase (GS), the key enzyme
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engaged in N assimilation, is composed of two isoenzymes: the cytoplasmic GS1 (contained
GS1.1, GS1.2, and GS1.3) and the chloroplast GS2 (encoded by a single gene GS2) [31]. Asn
treatment significantly induced the expression level of GS1.1 and GS2 compared with both
N0 and N+ control; however, the induction effect was negatively correlated with the Asn
concentration applied. Similarly, the expression of GS1.3 was slightly induced by Asn
except for a tentative depression by 2 mM Asn treatment. On the contrary, the expression
level of GS1.2 was strongly inhibited by external Asn. Glutamate synthase (GOGAT) is
another key enzyme involved in inorganic N assimilation. It has two forms in plants:
ferredoxin-dependent (Fd-GOGAT) and NADH-dependent (NADH-GOGAT). Asn treat-
ment concentration had a marked impact on the expression of both forms. While 0.5 mM
Asn treatment dramatically increased Fd-GOGAT and NADH-GOGAT transcripts, 5 mM
Asn treatment notably decreased them. Asparagine synthetase (AS) and asparaginase
(ASPG) are the prime enzymes in plants participating in Asn synthesis and degradation,
respectively [28]. The transcripts of AS1 and AS3 were positively induced by the external
Asn, whereas the transcripts of AS2 were selectively induced by 0.5 mM Asn and 2 mM
Asn (to a less extent) compared with the N+ control (Figure 6). Conversely, the expression
of ASPG2 was repressed by 0.5 mM Asn but augmented when Asn concentration rose.
Nevertheless, the expression levels of ASPG1 and ASPG3 were predominantly stimulated
by 0.5 mM Asn but moderately changed among other Asn treatments, except for a decline
under 2 mM Asn treatment. Likewise, nitrate reductase (NR) expression was significantly
increased by different concentrations of Asn apart from 1 mM Asn. The nitrite reductase
(NiR) transcriptional level was slightly influenced by Asn treatment compared with the N+
control. The cell wall invertase (CWINV) and the vacuole invertase (VI) are two sucrose
breakdown enzymes important for primary carbon metabolism [62]. In contrast to the
above N-related genes, the transcripts of CWINV1 were enhanced only by 0.5 mM Asn but
suppressed by other concentrations of Asn treatment, while the transcripts of VI2 were
strikingly induced by Asn treatment.
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Figure 6. Transcriptional changes of genes related to the N and C metabolism pathways in poplar
‘Nanlin895’ roots in response to asparagine (Asn) treatment. NR, nitrate reductase; GS, glutamine
synthase; NADH-GOGAT, nicotinamide adenine dinucleotide-dependent glutamate synthase; Fd-
GOGAT, ferredoxin-dependent glutamate synthase; AS, asparagine synthetase; ASPG, asparaginase;
NiR, nitrite reductase; CWINV, cell wall apoplastic invertase; VI, vacuolar invertase. “N0” indicates
N-free reference; “N+” represents the inorganic N control. The concentration of Asn applied was
0.5 mM, 1 mM, 2 mM, and 5 mM as indicated.

2.6. Impacts of Asn Treatment on Enzymes Involved in N Metabolism

The enzymes involved in N metabolism pathways play fundamental roles during
plant growth and development. To elucidate the biochemical effects of exogenous Asn at the
enzyme level on poplar ‘Nanlin895’, the activities of key enzymes including GS, GOGAT,
Aspartate aminotransferase (AspAT), and glutamate dehydrogenase (GDH) involved in
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N metabolism were analyzed in poplar roots. The AS and ASPG were omitted because
reliable measurement of their enzyme activities was recalcitrant due to the presence of
natural inhibitors and cross-reactions [63]. The enzyme activity assay results (Figure 7)
showed that the application of Asn as a sole N source substantially altered the activities
of the above enzymes. However, their regulatory responses varied with the change in
Asn concentrations. While 0.5 mM Asn treatment significantly increased the activities of
all four enzymes in poplar roots, 5 mM Asn treatment decreased their activities, though
not to a marked degree compared with the N+ control. Among all of the four enzymes,
GOGAT activity was most sensitive to Asn treatment, which was increased by more than
10 times (1 mM Asn treatment) than the N+ control, and its changing trend was consistent
with the change in corresponding transcripts in 0.5 mM and 5 mM Asn-treated plants. In
contrast, GS activity was less affected by Asn treatment, although strong inductions of
GS1.1, GS1.3, and GS2 mRNA expression by 0.5 mM Asn and inhibition of GS2 by 5 mM
Asn treatment were observed. The change in GDH activity was inversely correlated with
Asn concentration, and the highest activity was found in 0.5 mM Asn-treated poplars,
while the lowest activity was found in 5 mM Asn-treated poplars. Asn treatment increased
AspAT activity; however, the change in AspAT activity was somewhat irrelevant to Asn
treatment concentration.
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Figure 7. Effects of exogenous asparagine (Asn) on the activities of enzymes involved in N metabolism
pathways in poplar ‘Nanlin895’ roots. GS, glutamine synthase; GOGAT, glutamate synthase; GDH,
glutamate dehydrogenase; AspAT, aspartate aminotransferase. “N0” indicates N-free; “N+” repre-
sents the inorganic N control. The concentration of Asn applied was 0.5 mM, 1 mM, 2 mM, and 5 mM.
Bars indicate means ± SD (n ≥ 3), and different letters indicate significant differences (p < 0.05) based
on Duncan’s test.

3. Discussion

Plant growth is correlated with increased synthetic demands, which require a constant
supply of amino acids to support protein synthesis and matrix production. Amino acids
are environmentally friendly molecules, and their uptake and utilization as an N source by
plants is energetically more advantageous than inorganic N (including NO3

− and NH4
+

or N2) since it circumvents the mineralization pathway [14]. However, different types
and concentrations of amino acids have a huge difference in their intake and utilization
efficiency [17,54], which makes the effects of amino acids on plant growth vary. Asn
serves as a principal amino acid for protein synthesis, transporting, and storing N in plant
cells [64]. Asn-C is enriched in aspartate, malate, fumarate, and citrate, and Asn-N is
enriched in aspartate, glutamate, proline, serine, and alanine [65]. Earlier works conducted
in Arabidopsis and lettuce showed impressive growth results when Asn was used as a sole
N source [66,67]. Moreover, the supply of Asn resulted in an improvement in relative water
content, an increase in photosynthetic pigments, and a decrease in electrolyte leakage from
cellular membranes, as well as a reduction in leaf proline content and activities of key
oxidative relevant enzymes in salt-stressed maize plants [43]. Our prior study showed
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that exogenous glutamine as a single N source could promote poplar growth [53]. Given
that Asn and glutamine are structurally similar since they both contain amide groups in
their respective side chains, we therefore applied different concentration of Asn to poplar
‘Nanlin895’ to explore its effects on poplar biomass and its potential mode of action. In
general, our study uncovers the nutritional effects and biochemical basis of exogenous
Asn on poplars. It provides experimental evidence on the capacity of Asn to support
poplar growth. Specifically, careful observation and comparison of plant phenotypes and
physiological and biochemical analysis revealed that poplar ‘Nanlin895’ grew sturdily in
Asn culture solution, which indirectly confirmed that Asn was indeed taken up and utilized
by poplar. That notwithstanding, when Asn was added to the N-free nutrient solution, the
N deficiency stress impacts on poplar (seen in N0 control) were relieved. Among all the
concentrations of Asn applied, poplar ‘Nanlin895’ grew best at 0.5 mM Asn, as reflected by
the seedlings’ height, biomass, and photosynthetic rate. Adding 1 mM Asn did not further
improve poplar growth, but resulted in a low photosynthetic rate and a low conversion rate
of maximized potential light energy. When exogenous Asn concentration was increased
to the level of above 2 mM, it caused a high N stress response and the seedlings’ growth
rate began to drop. This resultantly led to shortness in height, yellow and black roots,
and a reduction in biomass and photosynthetic rate of poplar ‘Nanlin895’ seedlings. In
conclusion, physiological reactions of poplar ‘Nanlin895’ seedlings to different levels of Asn
were divergent based on parameters examined. Our study corroborates the dose-dependent
effects of Asn on plants’ growth [47,48].

NUE basically depends on plants’ efficient uptake and use of N to increase
biomass [68,69]. Earlier on, it had been demonstrated that the application of phenylalanine
improved NUE in Populus X canescens [17], and the supply of glutamine (0.5 mM) increased
NUE in poplar ‘Nanlin895’ [53]. Accordingly, we found that poplar ‘Nanlin895’ feeding
with 0.5 mM Asn had higher NUtE and NUpE than the N+ control. Nevertheless, increased
concentration of Asn was inversely related to the NUtE and NUpE ascribed to N wastage,
which led to the overreading of N input and a decline in N utilization. By contrast, adding
0.5 mM Asn may sustain the optimum N/C ratio (Figure 3) and amino acid homeostasis
for the effective absorption, utilization, and efficient N transformation within plants. Col-
lectively, under the current experiment conditions, 0.5 mM Asn was the optimal treatment
concentration for poplar ‘Nanlin895’ growth. Although Asn application is not essential for
poplar, our results demonstrate that the combination of fertilization and biostimulation
effect of Asn can be aligned with the effective use of conventional inorganic N.

It has been known that N content significantly affects the level of free amino acids in
plants [70,71]. The feeding of Asn [U-14C] to rice seedlings resulted in the predominant label-
ing of glutamine, Asn, and glutamic acid in the shoots, as well as Asn and γ-Aminobutyric
acid (GABA) in the roots [72]. Accordingly, in our study, the application of Asn as a sole N
source in the hydroponic nutrient solution dramatically influenced the content of asparatic
acid, glutamate, alanine, GABA, arginine, and endogenous Asn in both roots and mature
leaves of poplar ‘Nanlin895’ (Figure 5). In particular, the contents of the amino acids
Asn, arginine, and GABA, which are involved in environmental response [41,73,74], were
profoundly enhanced in poplar, showing a positive changing trend in proportion to Asn
application dose. This result indicates that the exogenous application of Asn is actually
utilized by poplar, and it promotes the transformation of amino acids within the plant.
However, a high negative correlation between amino acid accumulation (Figure 5) and root
growth (i.e., root biomass and length) (Figure 1), along with an increase in Asn applied
dose, was found. Meanwhile, it was also observed that the enzymes associated with N
metabolism—GS, GOGAT, GDH, and AspAT—were increased by 0.5 mM Asn treatment
but declined by 5 mM Asn. Previously, it was reported that the primary use of Asn in
mammalian cells is in protein synthesis [75]. Consistently, a [14C] labeling study found
that Asn was used for protein synthesis on a quantitatively significant scale in plants [76].
Given that the presence of Asn in large excess is a good marker of protein synthesis and
breakdown [77], it is therefore reasonable to assume that the accumulation of amino acids
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observed in our study in poplar roots in response to high concentration of exogenous
Asn (5 mM) is relevant to protein catabolism. In agreement with this possibility, it has
been shown that Asn accumulation suppresses the well-studied eukaryotic translation
initiation factor-2 alpha (eIF2α) kinase GCN (general control nonderepressible) and reduces
the activating transcription factor 4 (ATF4), thereby impeding protein synthesis and cell
growth, whereas Asn dissipation activates GCN and increases ATF4, and hence supports
the translation of protein and maintains cell growth [75].

Overall, in our study, the root morphology of poplar ‘Nanlin895’ was greatly affected
by Asn, implying that the root was the main site where Asn regulation took effect under
the current experimental conditions. Our results indicate that Asn may function not
only as a metabolism but also as a signaling/regulatory candidate as a part of the plant
adaptation process, activating multiple responses related to N assimilation [39]. The
possible mode of action of Asn is illustrated in Figure 8. It can be proposed that under high
doses of Asn treatment, protein degradation rather than protein synthesis occurs in poplar
‘Nanlin895’; that is, an overdose of Asn (5 mM) disrupts protein synthesis probably through
the GCN2/ATF4 pathway, followed by amino acid accumulation, a reduction in enzyme
activity of GDH and GOGAT, and in turn, poplar growth (root length and biomass in
particular) depression, whereas the application of an appropriate level of Asn (i.e., 0.5 mM)
may facilitate nascent protein synthesis as a result of poplar growth promotion. As the
transcriptional change of GCN2/ATF4 pathway genes was only marginal by qPCR analysis,
we deduce that Asn regulation occurs at the post-translation level, and phosphorylation of
eukaryotic translation initiation factors is likely engaged in this process [75,76,78].
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Figure 8. Schematic model of Asn dose-dependent effects on poplar roots. Gln, glutamine; Glu,
glutamic acid; Asp, aspartic acid; α-KG, α-ketoglutarate. GS, glutamine synthase; GOGAT, glutamate
synthase; AS, asparagine synthetase; ASPG, asparaginase; GDH, glutamate dehydrogenase; AspAT,
aspartate aminotransferase; GCN, general control nonderepressible; ATF, activating transcription
factor. The up arrow indicates induction and the down arrow indicates depression. The box stands
for the enzyme.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Plantlets of poplar ‘Nanlin895’ (Populus deltoides × P. euramericana) clones that had been
tissue-cultured in 1/2 MS medium for one month were used throughout the experiment,
unless otherwise indicated. All seedlings were initially kept in pure water to get rid of
internal N for 10 days, then treated with inorganic-N (KNO3) or various concentrations
of Asn-N in the N-free 1/2 MS nutrient solution. There were six groups of treatments in
total: the standard inorganic-N control (3 mM KNO3; N+), the N-free control (0 mM N; N0),
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0.5 mM Asn, 1 mM Asn, 2 mM Asn, and 5 mM Asn. The nutrient solution was refreshed
twice a week for two months. Poplar seedlings were kept in disposable plastic water cups
for the hydroponic treatment, one seedling per cup. Each cup contained 250 mL nutrient
solution fixed with a black foam board. Each treatment included at least six individual
plants. The whole experiment was repeated three times. The seedlings were grown under
24 ◦C light/22 ◦C dark, 5000 Lux light intensity for 16 hours with 40–60% humidity. At
the end of the treatment, tissues from young leaves (YL), mature leaves (ML), stems (S),
and roots (R) were collected, snap-frozen in liquid nitrogen, and stored at −80 ◦C for
further analysis.

4.2. Analysis of Growth, Gas Exchange, and Chlorophyll Fluorescence Characteristics

Growth parameters including plant height, root length, and fresh shoot weight, as well
as fresh root weight, were measured before harvest. LI-6400 Portable photosynthesis system
(LI-COR, Lincoln, NE, USA) was used to measure the net photosynthetic rate (Pn, µmol
CO2·m−2·s−1), intercellular carbon dioxide concentration (Ci, µmol·mol−1), stomatal con-
ductance (Gs, mol H2O·m−2·s−1), and transpiration rate (Tr, mmol H2O·m−2·s−1). During
the measurement, environmental conditions were set at 800 µmol·m−2·s−1 of light intensity
and 400 µL·L−1 of carbon dioxide. The nonphotochemical quenching coefficient (NPQ),
photochemical quenching coefficient (qP), the actual photochemical quantum efficiency
of PSII (ΦPSII), the potential maximum light energy conversion efficiency (Fv/Fm), and
photosystem II activity (Fv/Fo) were measured using chlorophyll fluorescence imaging
system (CF Imager, Nanjing, China).

4.3. Determination of Activities of Enzymes Involved in N Metabolism

The activities of key enzymes—including nitrate reductase (NR, EC 1.6.6.1), glutamine
synthetase (GS, EC 6.3.1.2), glutamate synthase (GOGAT, EC 1.4.7.1), aspartate amino-
transferase (AspAT, EC 2.6.1.1), and glutamate dehydrogenase (GDH, EC 1.4.1.2)—that are
involved in plant N metabolism pathways [68] were analyzed in poplar ‘Nanlin895’ leaves,
stems, and shoots following methods described in earlier studies [69,79,80].

4.4. Measurement of the Content of Free Amino Acids, NH4
+, NO3

− and NUE

The free amino acids were extracted by sulfosalicylic acid according to previous
methods [81], and the content of free amino acids was determined by the automatic
amino acid analyzer (S-433D, Sykam GmbH, Eresing, Germany) following the operation
instruction. The ammonium and nitrate content was determined by the modified ninhydrin
colorimetric criteria [82] and Patterson and colleagues’ method [83], respectively. Nitrogen
use efficiency was calculated according to previously reported equation: NUtE = biomass
DW/N supply, NUpE = total nitrogen content/N supply [84].

4.5. Analysis of Transcript Levels of Genes Involved in N Metabolism

Quantitative RT-PCR was employed to analyze the expression levels of nitrate re-
ductase (NR), nitrite reductase (NiR), asparagine synthetase (AS), asparaginase (ASPG),
glutamine synthase (GS), glutamate synthase (GOGAT), cell wall apoplastic invertase
(CWINV1), and vacuolar invertase (VI2) genes in the leaves, stem, and roots of poplar. To-
tal RNA was extracted by using RNAprep Pure Polysaccharide Polyphenol Plant Total RNA
Extraction Kit (TIANGEN, Beijing, China). The purity and concentration of the extracted
RNA were checked by the Microvolume Spectrophotometer (Colibri LB 915, Bad Wildbad,
Germany) and then verified through agarose gel electrophoresis. Reverse transcription kit
(PrimeScriptTM RT reagent Kit with gDNA Eraser, Takara, Japan) was used to synthesize
the first strand of cDNA. Gene-specific primers (Supplement Table S1) were designed by
Primer3 (http://primer3.ut.ee/, accessed on 21 February 2022). Quantification of gene
amplification was performed on the real-time fluorescent quantitative PCR instrument
(Applied Biosystems StepOneTM, Beijing, China) with the fluorescent agent AG SYBR
Green Pro Taq HS premixed qPCR kit (Accurate Biology, Changsha, China).

http://primer3.ut.ee/
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4.6. Statistical Analysis of Data

Analysis of variance (ANOVA) was performed for all data using IBM SPSS Statistics
21 statistical software. The standard errors were based on the pooled error term from the
ANOVA table. Differences were considered statistically significant when the p-value of the
ANOVA F-test was less than 0.05.

5. Conclusions

Asn is a multipurpose amino acid participating in various biological processes, includ-
ing plant development and adaptation to environmental stresses. Our study found that
the application of exogenous Asn significantly increased the biomass of poplar ‘Nanlin895’
compared to the N-free control by improving the growth status of N starvation. To the
best of our knowledge, this is the first research of exogenous application of Asn as a sole N
source conducted on poplars. It reveals that Asn, when supplied at an appropriate rate, is
conducive to the growth fitness of poplar. Although there was no match for the growth
promotion effect of Asn as against the N+ control, it was, however, clear that relative to
the N-free plants, application of Asn dramatically alleviated poplar ‘Nanlin895’ seedlings
from N deficiency stress. In consistency with previous findings, it can be concluded that
the concentrations and forms of N influence poplar growth and performance, including
biomass partitioning and root morphology such as root length and root biomass [85].

Our research provides essential information on Asn for effective biomass allocation in
poplars. It is reasonable to infer that (1) poplars are competent at using Asn as a sole N
source to support their growth, as indicated by the growth parameters and photosynthesis
activities of poplar ‘Nanlin895’ plantlets fed with Asn; (2) the feeding of Asn at a proper
concentration leads to root morphology alteration, as a result of increasing/decreasing
nutrient and possibly water absorption; (3) the exogenous application of Asn induces the
transcript levels of key genes and activity of enzymes involved in N and C metabolism
pathway, promotes ammonium assimilation, mitigates N metabolic disturbance resulting
from N stress, and advances N absorption and utilization in both roots and the above-
ground tissues; (4) Asn might play a critical role in regulating protein homeostasis, and in
turn, plant growth and stress response.
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