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Abstract: Irradiation of the tumour site during treatment for cancer with external-beam ionising
radiation results in a complex and dynamic series of effects in both the tumour itself and the normal
tissue which surrounds it. The development of a spectral model of the effect of each exposure
and interaction mode between these tissues would enable label free assessment of the effect of
radiotherapeutic treatment in practice. In this study Fourier transform Infrared microspectroscopic
imaging was employed to analyse an in-vitro model of radiotherapeutic treatment for prostate cancer,
in which a normal cell line (PNT1A) was exposed to low-dose X-ray radiation from the scattered
treatment beam, and also to irradiated cell culture medium (ICCM) from a cancer cell line exposed
to a treatment relevant dose (2 Gy). Various exposure modes were studied and reference was made
to previously acquired data on cellular survival and DNA double strand break damage. Spectral
analysis with manifold methods, linear spectral fitting, non-linear classification and non-linear
regression approaches were found to accurately segregate spectra on irradiation type and provide
a comprehensive set of spectral markers which differentiate on irradiation mode and cell fate. The
study demonstrates that high dose irradiation, low-dose scatter irradiation and radiation-induced
bystander exposure (RIBE) signalling each produce differential effects on the cell which are observable
through spectroscopic analysis.

Keywords: Fourier transform infrared microspectroscopy (FTIRM); out of field effects; t-stochastic
neighbourhood embedding (t-SNE); principal components analysis (PCA); support vector machine (SVM);
extreme gradient boosting regression (XGBR)

1. Introduction

Prostate cancer is the second most common cancer amongst men and the fifth leading
cause of death worldwide due to it being predominantly asymptomatic in early stages,
with a higher prevalence in developed countries [1]. As of 2018 the age-standardised
incidence rate of the disease was 75.8 per 100,000 in Western Europe with a mortality of 10.1
per 100,000 [2].

Treatment is not always necessary for this disease, as in the early stages it progresses
slowly. The exact course of treatment prescribed is dependent on age and overall health.
Should treatment be pursued, the prostate may be surgically removed or the disease treated
with radiotherapy alone, or via radiotherapy accompanied with hormone therapy [3].
External beam radiation (EBR) is the most common type of radiation therapy used for
treatment of prostate cancer.
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During treatment of solid cancers with EBR, cells outside the treatment volume
may experience damage induced by radiation induced bystander effects (RIBE) [4].
Damage may also occur to surrounding healthy tissues outside the treatment field
due to transmission and scattering of radiation in conjunction with RIBE from the
irradiated tumour to the surrounding normal tissue [5]. Radiation induced bystander
effects are currently understood to involve cell to cell signalling through gap-junctional
intercellular communication and the release of soluble factors into the intercellular space,
with downstream effects on DNA damage and mutation, cell survival and cell death in
cells exposed to bystander signals [6,7]. The molecular species involved in the response
include calcium, chemokines, cytokines, and reactive oxygen species together with
exosomes [6]. All of these factors induce stress responses in exposed cells which are
similar in action to inflammatory responses and are differentially expressed in cancer and
normal tissue, with normal tissue being more sensitive to bystander responses overall [6].
It is also known that in terms of dose response the effect saturates at 1 Gy, although
bystander responses are seen in unexposed cells exposed to factors from cells irradiated
at both low and high doses [6]. Ultimately these effects do have a role in modulating the
response to irradiation at the organism level (termed ‘abscopal responses’) through the
release of ‘clastogenic factors’ which include those mentioned above, and are therefore
relevant for cancer therapy [6,7].

The propensity for cells to survive out-of-field irradiation is dependent on their inter-
cellular communication. Cellular radiosensitivity is also an important factor in the response
to out-of-field effects. Previously it has been demonstrated that out-of-field (OF) irradiation
has the potential to have a detrimental effect on the proliferation of normal prostate cells
positioned outside the primary radiation beam when a clinically relevant dose of 2 Gy is
delivered in-field (IF) [5].

In Fourier transform infrared (FTIR) spectroscopy the complete biochemical finger-
print of a biological sample is acquired, where the natural frequency of vibration of the
bonds within the molecules of a sample are excited without extraneous labelling. In bio-
logical or clinical applications, the technique has been shown to provide highly sensitive
phenotyping of the sample [8–10], and has demonstrated many applications in radiobio-
logical and radiation science over the past 15 years. In early studies by Matthews et al.,
Raman spectral signatures of breast [11], lung [11] and prostate [11,12] were analysed post
exposure to 2–50 Gy X-ray photons. Since then, studies have demonstrated a dose de-
pendence to spectral features in X-ray irradiated human mammary epithelial [13], human
neuroblastoma cells [14] and human prostate cancer cells [15], which aligns with research
which has demonstrated the potential of both Raman and FTIR spectroscopy to provide
the opportunity for spectral radiation dosimetry in rapid response applications [16,17].
Importantly for the current research previous studies have also demonstrated the detec-
tion of radiation induced bystander effects from exposure of keratinocytes to gamma ray
photons [18] and from exposure of prostate cancer cells to protons at 1 MeV and 2 MeV [19].
In both cases a degree of characterisation of the bystander response was achieved using the
FTIR spectra of bystander irradiated cells, which the present study moves forward.

Pre-clinical studies have also taken place on the spectral alterations seen in non-
squamous cell lung [20] and breast [21] cancer xenografts irradiated with 5 and 15 Gy doses
from a 6 MV photon beam. Additional studies with the NSCLC model revealed that a
time course in Raman signatures could be observed which were referenced to signatures
of hypoxia and reoxygenation [21]. Further investigations have observed the relationship
between Raman spectral features and those of the DNA DSB damage response and the
capability to classify radiosensitivity in ex vivo cultured lymphocytes [22,23]. Latterly
Raman spectroscopy has been applied to the detection of radioresistance in an in-vitro
isogenic oesophageal cancer model [24]. Key here was the demonstration that a signature
of radioresistance could be confined to a single Raman band (centred at 977 cm−1), rather
than alterations across the spectrum as seen in other works. This alteration is due to a
biochemical species which remains unidentified.
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Further recent research has also demonstrated that these technologies can be applied
to the detection and monitoring of radiobiological responses in the clinic, in particular
when applied to liquid biopsies from patients undergoing external beam radiotherapeutic
treatment for prostate cancer [25,26]. In this particular context it has been well demonstrated
that in external beam radiotherapy a complex interplay between lethal and sublethal
damage responses occurs in the directly irradiated tissue, together with sublethal low dose
effects owing to scatter and molecular signaling [4,27–30]. Previous work has demonstrated
the potential for Raman and IR spectroscopy to identify both radiobiological effects at high
doses and low dose non-targeted effects [18,19]. In the present study, the potential for FTIR
spectroscopy to identify and quantify mixed lethal and sublethal radiobiological damage
in an in-vitro prostate cancer and normal tissue model was studied.

In this study Fourier transform infrared (FTIR) microspectroscopy (FTIRM) was used
to analyse these effects in a prostate model in vitro, for which radiobiological results have
previously been reported elsewhere [5]. Spectral analysis of an experiment in which a
simulation of intercellular communication between irradiated prostate tumour cells (LNCaP
line) and cells of the surrounding normal prostate tissue (PNT1A line) is conducted, where
communication between the cells is both prohibited and permitted. In the experiment
conducted by Shields et al. [5]. LNCaP cell lines were irradiated with X-ray doses of
2 Gy (labelled as LNCaP IF (in-field) in this instance). The PNT1A cells were then exposed
to the medium from the LNCaP cells with or without a prior exposure to a low dose of
ionising radiation (0.2 Gy) which simulates the effect of direct exposure of the normal tissue
adjacent to tumour in prostate cancer treatment.

The treatment classes therefore allow the comparison of the effect of various exposure
modes to normal tissue (PNT1A cell line). These include (i) direct irradiation at low doses
(labelled as PNT1A OF), (ii) direct irradiation plus exposure to secreted factors from the
tumour (labelled as PNT1A OF ICCM) and (iii) exposure to secreted factors from the
tumour (labelled as PNT1A 0 Gy ICCM), each of which can be compared to the sham-
irradiated control sample (labelled PNT1A 0 Gy). These exposure modes therefore allow
an intercomparison of exposure where intercellular communication via secreted factors
from the tumour to surrounding normal tissue does not occur (PNT1A OF) to where it
does occur when the normal cells adjacent to the tumour lie within the scatter from the
treatment beam and receive both a direct exposure at low doses and exposure to secreted
factors (PNT1A OF ICCM).

In this study, samples prepared in parallel to those used by Shields et al. [5] in the
primary study are used for spectroscopic analysis and modelling to provide the oppor-
tunity to identify spectral features which differentiate on exposure mode. A number of
differentiating spectral features are highlighted which may be associated with the different
exposure modes and may offer direction to future investigation in this area.

2. Results
2.1. Visualisation of Spectra

Figure 1 displays the mean spectra for each of the cell lines by treatment type. Very
slight spectral differences were observed with few distinguishing features to the naked eye.

Visualisation of the principal component scores was conducted with a separate de-
composition applied to spectra from the PNT1A line and the LNCaP line, together with
each of their treated spectra (Figure 2). Here, again it is not possible to visually separate
each of the cell lines, nor their treatment classes using this approach.
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Figure 2. Principal components analysis of (top panel) PNT1A cell line and (bottom panel) LNCaP
cell line spectra. In each panel the left figure displays the cumulative explained variance and the right
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t-SNE decomposition of the spectral data was employed to cluster and visualise the
spectral data such that inter-cluster relationships might reveal spectral encoding of bio-
chemical alterations from each of the irradiation modes. In generating these plots the
perplexity, learning rate and number of iterations were varied and the t-SNE decomposition
was applied separately to the PNT1A spectra and LNCaP spectra, incorporating all irradia-
tion modes for each. We have also observed that spectral processing is key to obtaining
interpretable t-SNE visualisations with FTIR data, as t-SNE appears to be quite sensitive
to the choice of processing employed. Here, we have utilised 2nd order derivatised data
which are subsequently standardised to have mean of zero and standard deviation of 1
using the standard normal variate transformation. A set of representative t-SNE scores
plots from this analysis are provided in Figure 3a,b.
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Figure 3. Representative t-SNE scores plots for (a) PNT1A cells exposed to a range of treatment
modes and (b) LNCaP cells exposed to 2 Gy (IF) and 0 Gy (Control).

2.2. PCA-SVM Modelling

For classification of spectra PCA-SVC was employed, where a brute-force grid-search
approach with three-fold stratified cross-validation was utilised to choose the optimal hyper-
parameters yielding optimal classification of each spectral class. Data was randomly separated
into a training set for model optimisation and a testing set in a 70:30 split. A pipeline was
created which iterated through the data by principal component and by hyperparameter op-
tion to identify the preferred hyperparameters for classification at cross-validation. Optimised
models were then applied to the test set. This approach was applied separately to PNT1A
spectra and LNCaP spectra, with F1-score used as the metric of classification performance,
and models were generated for 20 separate data randomisation epochs.

It was found that the radial basis function kernel with a cost parameter (C) of 1 and a
gamma parameter which was set as 1/(number of features × variance of data) yielded optimal
classification models with a number of principal components in the region of 10, as depicted
in Figure 4a,b. On further examination a feature selection optimisation found that models
utilising scores for principal components from 1 to 5 yielded F1 scores at cross-validation
in excess of 0.97 at both training and testing. Figure 5 depicts the loadings to principal
components 1 to 3.

2.3. CLS Spectral Fitting

The results of the CLS fitting of the each individual cell class are depicted in Figure 6a,b.
The broad agreement between the CLS fit and the mean spectra for each class is excellent
with the deviation in the case of the PNT1A spectrum in the region of 0.2% and the deviation
in the case of the LNCaP spectrum in the region of 0.5%.
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Figure 6. Examples of (i) fitting of mean spectra and (ii) CLS regression coefficients for (a) PNT1A
and (b) LNCaP cell lines in which non-zero regression coefficients were observed (i) PNT1A and
(ii) LNCaP cell lines in the fingerprint region using CLS regression. All regression coefficients have
been normalised to the sham-irradiated (0 Gy) control for each cell line.
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The statistical significance between the CLS regression coefficients was assessed using
Welch’s ANOVA [31] with the Games-Howell approach [32] used for post hoc pair-wise
comparison between the distribution of coefficients by molecule and treatment class. The
results of these tests are reported in Tables 1–4, with non-significant p-values highlighted in
red. The threshold for significance adopted here was p < 0.001.

Table 1. Results of testing via Welch’s ANOVA on CLS coefficients from fitting of PNT1A cell spectra.

F p-Value Molecule

3246 <0.001 Actin

3836 <0.001 Cytochrome C

4143 <0.001 Glycogen

418 <0.001 IL8

2352 <0.001 Phosphatidyl-choline

1531 <0.001 Phosphatidyl-inositol

1006 <0.001 RNA

336 <0.001 TGF-β2

1092 <0.001 Vitamin-C

2657 <0.001 Vitamin-E

Table 2. Results of post hoc pairwise testing with the Games-Howell approach on CLS coefficients
from fitting of PNT1A cell spectra. Column A and B of the table identify the paired classes which are
compared for each molecule, with SE denoting the standard error on the mean and T the t-statistic.
Non-significant p-values at the level of p < 0.001 are highlighted in red.

A B SE T p-Value Molecule

PNT1A 0 Gy PNT1A 0 Gy ICCM 1.964 × 10−3 −2.4 0.074 Actin

PNT1A 0 Gy PNT1A OF 1.713 × 10−3 32.4 <0.001 Actin

PNT1A 0 Gy PNT1A OF ICCM 1.630 × 10−3 −30.2 <0.001 Actin

PNT1A 0 Gy PNT1A 0 Gy ICCM 3.004 × 10−2 6.4 <0.001 Cytochrome C

PNT1A 0 Gy PNT1A OF 2.772 × 10−2 −20.9 <0.001 Cytochrome C

PNT1A 0 Gy PNT1A OF ICCM 2.255 × 10−2 42.9 <0.001 Cytochrome C

PNT1A 0 Gy PNT1A 0 Gy ICCM 5.284 × 10−3 35.9 <0.001 Glycogen

PNT1A 0 Gy PNT1A OF 7.196 × 10−3 −73.6 <0.001 Glycogen

PNT1A 0 Gy PNT1A OF ICCM 5.642 × 10−3 1.0 0.757 Glycogen

PNT1A 0 Gy PNT1A 0 Gy ICCM 2.950 × 10−2 −0.2 0.997 IL8

PNT1A 0 Gy PNT1A OF 2.188 × 10−2 −16.9 <0.001 IL8

PNT1A 0 Gy PNT1A OF ICCM 3.463 × 10−2 −33.0 <0.001 IL8

PNT1A 0 Gy PNT1A 0 Gy ICCM 4.661 × 10−3 −16.7 <0.001 Phosphatidyl-choline

PNT1A 0 Gy PNT1A OF 3.810 × 10−3 37.9 <0.001 Phosphatidyl-choline

PNT1A 0 Gy PNT1A OF ICCM 3.966 × 10−3 −17.7 <0.001 Phosphatidyl-choline

PNT1A 0 Gy PNT1A 0 Gy ICCM 4.236 × 10−3 51.3 <0.001 Phosphatidyl-inositol

PNT1A 0 Gy PNT1A OF 7.814 × 10−3 −34.7 <0.001 Phosphatidyl-inositol

PNT1A 0 Gy PNT1A OF ICCM 5.190 × 10−3 18.6 <0.001 Phosphatidyl-inositol

PNT1A 0 Gy PNT1A 0 Gy ICCM 1.706 × 10−3 51.5 <0.001 RNA

PNT1A 0 Gy PNT1A OF 1.721 × 10−3 12.1 <0.001 RNA
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Table 2. Cont.

A B SE T p-Value Molecule

PNT1A 0 Gy PNT1A OF ICCM 1.933 × 10−3 23.5 <0.001 RNA

PNT1A 0 Gy PNT1A 0 Gy ICCM 1.507 × 10−3 11.5 <0.001 TGF-β2

PNT1A 0 Gy PNT1A OF 1.429 × 10−3 −15.3 <0.001 TGF-β2

PNT1A 0 Gy PNT1A OF ICCM 1.486 × 10−3 −5.6 <0.001 TGF-β2

PNT1A 0 Gy PNT1A 0 Gy ICCM 4.315 × 10−2 −23.6 <0.001 Vitamin-C

PNT1A 0 Gy PNT1A OF 2.655 × 10−2 −33.8 <0.001 Vitamin-C

PNT1A 0 Gy PNT1A OF ICCM 2.770 × 10−2 17.5 <0.001 Vitamin-C

PNT1A 0 Gy PNT1A 0 Gy ICCM 7.249 × 10−3 23.2 <0.001 Vitamin-E

PNT1A 0 Gy PNT1A OF 7.169 × 10−3 −45.8 <0.001 Vitamin-E

PNT1A 0 Gy PNT1A OF ICCM 9.688 × 10−3 43.5 <0.001 Vitamin-E

Table 3. Results of testing via Welch’s ANOVA on CLS coefficients from fitting of LNCaP cell spectra.

F p-Value Molecule

1167 <0.001 Actin

1180 <0.001 Cytochrome C

3938 <0.001 Glycogen

106 <0.001 IL8

272 <0.001 Phosphatidyl-choline

7020 <0.001 Phosphatidyl-inositol

389 <0.001 RNA

1 <0.001 TGF-β2

5246 <0.001 Vitamin-C

5833 <0.001 Vitamin-E

Table 4. Results of post hoc pairwise testing with the Games-Howell approach on CLS coefficients
from fitting of LNCaP cell spectra. Column A and B of the table identify the paired classes which are
compared for each molecule, with SE denoting the standard error on the mean and T the t-statistic.

A B SE T p-Value Molecule

LNCaP 0 Gy LNCaP IF 0.004 34.2 <0.001 Actin

LNCaP 0 Gy LNCaP IF 0.112 −34.4 <0.001 Cytochrome C

LNCaP 0 Gy LNCaP IF 0.052 −62.8 <0.001 Glycogen

LNCaP 0 Gy LNCaP IF 0.064 10.3 <0.001 IL8

LNCaP 0 Gy LNCaP IF 0.006 −16.5 <0.001 Phosphatidyl-choline

LNCaP 0 Gy LNCaP IF 0.034 −83.8 <0.001 Phosphatidyl-inositol

LNCaP 0 Gy LNCaP IF 0.004 19.7 <0.001 RNA

LNCaP 0 Gy LNCaP IF 0.004 −1.1 <0.001 TGF-β2

LNCaP 0 Gy LNCaP IF 1.348 −72.4 <0.001 Vitamin-C

LNCaP 0 Gy LNCaP IF 0.135 −76.4 <0.001 Vitamin-E

2.4. XGBoost Regression against Cell Volume

XGBoost regression utilised the data in Table 5 as the target variable, which is taken
from Shields et al. [5]. After the implementation of grid-search cross validation it was
found that the optimal XGBoost regression model for IR spectra of the PNT1A cell line
against cell volume utilised a number of individual trees in the regression ensemble 5 and
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a maximal tree depth of 5. The optimised model randomly sampled 50% of input spectra
and 10% of the spectral features, with a learning rate (eta) of 0.01. An example of the
association between the IR spectral data and cell volume is shown in Figure 7a, with the
features selected by the algorithm across all of the independent epochs shown in Figure 7b.

Table 5. Colony volume measurements of PNT1A cell cultures (n = 3) from Shields et al (unpublished
data) [5].

Irradiation Volume Average (µm3) Std Dev

0 Gy 699,592 105,269

Out of field (OF) 345,629 192,621

0 Gy + ICCM 514,930 83,311

Out of field + ICCM (OF + ICCM) 1,062,630 254,959
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3. Discussion

Beginning with the visualisation of spectra using graphing of t-SNE scores, for each of
the experimental examples studied here the t-SNE scores plots deliver a set of interesting
messages. In the case of the LNCaP cell line a clear differentiation between the spectra of
the control and directly irradiated sample is provided. However, in the case of the PNT1A
cell line the clustering is less pronounced which is suggestive of a number of features. In
particular it is clear that there is strong spectral heterogeneity both within and outside each
spectral class, suggesting strong variability in response to indirect or untargeted irradiation
modes. While there is some separation of spectra from the control class from each of the
other classes there is no distinct order amongst the spectra of the out-of-field irradiated and
bystander irradiated classes. It is therefore not possible to draw conclusions on the basis of
relative cluster position regarding the relative effect of each exposure mode on the PNT1A
cell spectra. However, subclasses of cell spectra do appear to emerge from the bystander
irradiated control, out of field irradiated and out of field irradiated sample which may be
associated with the stage in the cell cycle at which cells were exposed.

The high classification rates observed using PCA-SVM with the PNT1A cell line and
LNCaP lines suggest that the PC loadings may offer a means to identify spectral features
which discriminate between the treatment classes and between targeted and non-targeted
irradiation effects. For interpretation purposes we have depicted the loadings to principal
components 1 to 3 in Figure 5 for the sake of brevity. The loadings to these PCs account for
68% of the variance in the case of the PNT1A cell line and 87% in the case of the LNCaP cell
line. In the interpretation of the loadings here vibrational assignments listed in our earlier
work are utilised [33].

In the case of the PNT1A cell line loadings to vibrational modes of nucleic acid (ν C-O in
the region of 1044 cm−1 and ν C-O of RNA in the region of 1112 cm−1; ν as -C=O DNA, RNA in
the region of 1696 and 1716), carbohydrate (νC-O in the region of 1202 cm−1; O-H deformation
in the region of 1220 cm−1; ν O-H in the region from 3300 to 3488 cm−1), and protein (Amide II
in the region of 1532 cm−1; Amide I 1654 cm−1) predominate, with some loadings to vibrations
of methyl terminals (−CH2 and−CH3 νs and νas from 2840 to 2968 cm−1).

In the case of the PNT1A cell line the positions of the loadings in LV2 to the Amide II
β-sheet (in the region of 1524 cm−1) and Amide I vibrations (1626 cm−1 and 1658 cm−1)
appear to have shifted downwards by between 4 cm−1 and 6 cm−1. Likewise the positions
of the vibrations of methyl terminals in LV1 (2840 cm−1 to 2968 cm−1), LV2 (2956 cm−1) and
LV3 (2846 cm−1 to 2968 cm−1) are shifted by between 4 cm−1 and 10 cm−1, again towards
lower vibrational frequencies. Each of these features suggests a weakening of structural
strength within protein and lipid associated with cell signalling and cell death mechanisms
owing to low dose irradiation.

The picture is similar for the loadings in respect of the direct irradiation of the LNCaP
cell line, with loadings to the stretching vibrations of C-O, and O-H bonds of both nucleic
acid and carbohydrate evident, together with loadings to Amide I, Amide II and Amide
A of protein, and stretching vibrations of methyl terminals of both protein and lipid. An
interesting feature in this instance is that the loadings, in general, remain at their normal
positions with the exception of those for both the νs vibrations of −CH2 (in the region of
2856 cm−1) and νs, νas vibrations of −CH3 (at 2932 cm−1 and 2964 cm−1). In the latter
instance these vibrational modes appear to be shifted towards higher vibrational frequen-
cies by between 4 cm−1 and 12 cm−1, which is generally associated with the strengthening
of the vibration. This suggests a spectral signature which potentially differentiates cells
on exposure mode, with a weakening of the vibrational strength of protein and lipid seen
in response to indirect (bystander) irradiation with a strengthening of the vibrations of
methyl moieties in protein and lipid in response to direct irradiation. While this is an
interesting feature which has not previously been observed it is difficult, in the absence of
parallel biochemical assays, to ascribe any potential biological origin for this signal, and
this remains an opportunity for further investigation.



Int. J. Mol. Sci. 2022, 23, 12986 12 of 20

Despite the existence of these interesting spectral features they do not provide clarity
in relation to the spectral changes which differentiate on mode of indirect irradiation or
direct irradiation. In this case, CLS analysis can play a role by highlighting molecular
spectral species which are associated with each exposure mode. Within the results of CLS
analysis it is apparent that that statistically significant differences in CLS fitting coefficients
were observed between the majority of the treatment classes for the PNT1A and LNCaP
cell lines against the control sample.

As a reminder of the structure of the reference primary experiment, for the PNT1A
cell line several exposure modes were investigated; these are (i) a direct irradiation to
0.2 Gy (PNT1A OF), (ii) direct irradiation to 0.2 Gy together with exposure to intercellular
molecular communication from the tumour cells (PNT1A OF ICCM) and (iii) exposure
to intercellular molecular communication from the tumour cells (PNT1A 0 Gy ICCM). A
reference sham-irradiated control sample (PNT1A 0 Gy) was also prepared. In the original
experiment Shields et al. noted a number of important reference results:

1. A reduction in colony volume between the PNT1A cells exposed to 0.2 Gy (PNT1A OF)
and in unirradiated cells exposed to secreted factors from the tumour cells (PNT1A
0 Gy ICCM) when compared to cells irradiated with a low dose prior to exposure to
secreted factors from the tumour (PNT1A OF ICCM);

2. An increase in DNA double strand break (DSB) damage foci (γH2AX fluorescence
measured via confocal microscopy) for all exposure modes, with the exposure of
PNT1A cells to both a dose of 0.2 Gy and secreted factors from the tumour cells
(PNT1A OF ICCM) producing a statistically significant increase in damage relative to
the other exposure modes.

As per the conclusions of Shields et al. [5] we suspect that the increase in colony
volume (and increase in cell survival observed by Shields) in the PNT1A OF ICCM cells is
a signature of the adaptive response, whereby PNT1A cells have adapted their response
to exposure to RIBE factors through a priming out-of-field dose, as observed in previous
work [34]. In the PNT1A OF ICCM sample the CLS results in Figure 6a(ii) depict an
increase in the spectral contribution of actin (protein) but a reduction in that associated
with RNA. These results are broadly in alignment with the results of Shields et al. which
observed an increase in DNA damage in this sample, which would be associated with a
reduction in transcription during DNA repair. Coupled with this is the observation of a
substantial decrease in the signal from cytochrome C which is a sensor of radiation-induced
bystander exposure (RIBE) and is released from the mitochondria of cells undergoing
radiation-induced apoptosis [35–37]. The loss of cytochrome C signal in this sample sug-
gests a reduction in apoptosis which agrees with the increase in colony volume observed
by Shields et al. Further evidence for this effect is seen in terms of the lack of change
in the signal from lipid (phosphatidylcholine and phosphatidylinositol) and the reduc-
tion in the signal from vitamin C and E, both of which are antioxidants which scavenge
reactive oxygen species [29]. Overall the spectral data supports the view expressed in
Shields et al. that direct irradiation followed by exposure to secreted factors from cells
directly irradiated to high doses nearby results in an adaptive response with improved sens-
ing of DNA damage and repair, leading to an increase in cell volume which is associated
with cellular proliferation. These effects are summarised within Table 6.

In the PNT1A cells directly irradiated with a 0.2 Gy dose (PNT1A OF) a reduction in
cell volume and an increase in DNA DSB damage foci relative to the sham-irradiated control
was seen by Shields et al. In Figure 6a(ii) the CLS fitting results a reduction in actin (protein),
coupled with an elevation in glycogen, TGF-β, cytochrome C and IL8 was observed.
Additionally, an elevation of the signal from phosphatidylinositol (a membrane lipid more
commonly directed towards the cytosol) coupled with a reduction in the signal from
phosphatidylcholine suggest that these features signify an increase in radiation induced
apoptosis (protein coagulation and membrane blebbing), aligning with the observations of
Shields et al. Similarly, in the PNT1A control cells exposed to secreted factors from directly
irradiated cells (PNT1A 0 Gy ICCM) a reduction in cell survival was seen, though through
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secreted bystander factors as opposed to direct irradiation, and no increase in DNA damage
was observed. Here, we see no change to the signal from actin (protein) or cytochrome
C but a depletion of RNA and TGF-β, an increase in signal from phosphatidylcholine
coupled to a decrease in that from phosphatidylinositol, and a reduction in signal from
TGF-β, glycogen and vitamin E. Interestingly we also see an increase in the signal from IL8.
It is known that TGF-β is a mediator of ROS signalling and DNA damage [38,39], while
IL8 is a downstream product of the NF-κB pathway in directly and indirectly irradiated
cells [37,40,41]. It may be the case that these observations lead to a picture of bystander
signalling in this cell line which is not primarily ROS driven, but rather driven by cytokine
elevation associated with extracellular signalling. These features are also summarised
within Table 6.

Table 6. Summary of spectral changes observed by exposure mode.

Sample Exposure Mode Protein Carbohydrate RNA Lipid Cytokine Antioxidants Cytochrome C DNA
Damage

Cell
Survival

PNT1A OF Low dose Decrease Increase No
change Increase Increase No change Increase Increase Increase

PNT1A OF
ICCM

Low dose plus
exposure to

secreted factors
Increase No change Decrease No

change No change Decrease Decrease Increase Increase

PNTT1A
ICCM

Exposure to
secreted factors

No
change Decrease Decrease Increase No change Decrease No change No change Decrease

LNCAP 2
Gy

Exposure to
high doses Decrease Increase Decrease Increase Decrease Increase Increase Increase Not

measured

Finally, Figure 6b(ii) depicts the results of CLS fitting analysis on LNCaP cells which
were directly irradiated with high doses (LNCaP IF–irradiated with a dose of 2 Gy) versus
their sham irradiated control. Here, we see a depletion of the signal from actin (protein),
RNA and IL8 with a significant increase in signal from lipid (phosphatidylcholine and
phosphatidylinositol), antioxidants (vitamin C and vitamin D) and cytochrome C. In the
work of Shields et al. a significant increase in DNA DSB damage was seen in the directly
irradiated LNCaP cells, although cell survival was not measured. Taken with the results
seen within the PNT1A cell line these observations allow a picture to be constructed of
the spectral changes occurring with differential exposure mode, which are summarized in
Table 6. The overall picture emerging from the CLS analysis in Figure 6 and summarised in
Table 6 is the complexity of the molecular events connecting to cell fate by exposure mode.
It is clear that the cellular spectral biomarkers of each exposure mode are each distinct,
though their association with observed DNA damage and ultimate cell fate are intricate,
and are beyond the potential of the CLS analysis presented here. It must be noted that some
of these changes may be cell line dependent and therefore may not be seen consistently
across all experiments.

While the results of t-SNE, PCA-SVM and CLS analysis provide insights into the spec-
tral features which originate in differential molecular effects that are associated with various
modes of exposure of PNT1A cells, the identification of spectral features associated with cell
fate (i.e., proliferation and survival) across exposure modes requires alternative approaches.
The results of XGBoost regression of cell spectra against cell volume (representing a proxy
for cell survival) are shown in Figure 7. Within Figure 7b the most frequently selected
features are those that lie in the region from 1134 cm−1 to 1152 cm−1 which are generally
associated with the ν C-O vibrations in carbohydrate. The remainder of the features which
are most commonly selected by the models across each independent epoch are those in
the region from 998 to 1016 cm−1 which are again associated with stretching of the C-O
moiety in carbohydrate, and those from 3320 to 3568 cm−1 which are associated with the
stretching vibration in the O-H groups of carbohydrate. Taken in their totality this suggests
that the spectral features associated with carbohydrate moieties such as C-O and O-H may
be considered as a spectral marker of cell proliferation as measured by cell volume.
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This study has, for the first time, analysed spectral changes which are seen in an in-vitro
model of prostate cancer treatment, where direct exposure of both the tumour and normal
tissue which surrounds it results in complex interactions which are both intercellularly
and extracellularly mediated and can both positively and adversely impact upon cell
survival. Our results indicate that these effects can be differentiated in terms of the mode
of action, i.e., whether the irradiation is at high or low doses, and whether there is a low
dose exposure together with an exposure to extracellularly generated secreted factors. It
must be acknowledged that no single spectral marker is available which differentiates
each mode of action of the exposure, but rather there are a series of spectral responses
which may characterise the mode of action. Of course the use of a 2D model employed
here does not encapsulate the increased complexity which would be observed in out-
of-field abscopal effects observed ex vivo or in vivo, despite the congruence between
some bystander effects observed in vitro and in vivo [42,43]. In particular the lack of a
complete immune response in our model system is a significant limitation which can only
be overcome by the spectroscopic analysis of animal models and in vivo human samples [7].
However, the observations in this paper may allow further development of spectral models
differentiating radiobiological responses in normal tissue and irradiated tumour towards
clinical application.

4. Materials and Methods
4.1. Sample Preparation and Characteristics
4.1.1. Cell Culture, Irradiation, Exposure to Irradiated Cell Culture Medium (ICCM) and
Parallel Biological Assays

Samples were prepared as part of a previous study in which DNA damage and cell
survival were interrogated in prostate cancer (LNCaP) and normal prostate (PNT1A) cell
lines irradiated in vitro [5]. The following briefly describes the cell culture, treatment,
irradiation and parallel biological analyses conducted in that study.

Both the LNCaP and PNT1A cell lines were cultured using RPMI media (Sigma-
Aldrich®, Wicklow, Ireland) which contained 10% foetal bovine serum (Sigma-Aldrich).
The cells were maintained in an incubator at 37 ◦C with the humidity set at 95% and 5% CO2
and were transferred to T-25 culture flasks (Sarstedt Ltd., Wexford, Ireland) for irradiation.
Three technical replicates of each of the cell lines were treated with each irradiation and
experimental treatment as outlined here.

Both LNCaP and PNT1A cells were irradiated simultaneously with the LNCaP cells
irradiated in-field and the PNT1A cells kept at least 1cm from the field edge to simulate
out-of-field (OF) scatter effects to normal cells. A total of 2 Gy was delivered to the LNCaP
cell samples in-field (IF), with parallel LNCaP and PNT1A cell samples sham-irradiated
(0 Gy). The dose delivered was validated using Gafchromic EBT3 film (Ashland Inc.,
Bridgewater, NJ, USA).

Subsequent to the irradiation, irradiated cell culture medium (ICCM) was harvested
from irradiated LNCaP cells one hour after irradiation and used to expose both a sham-
irradiated and out-of field irradiated PNT1A sample. This approach was used to simulate
intercellular communication from irradiated prostate lesions to surrounding normal tissue.
ICCM was harvested at this time point as this is standard procedure in our laboratory
for preparation of ICCM. Early work by Mothersill and Seymour (1997) investigated the
effect of time post irradiation of medium transfer and showed no significant difference in
clonogenic survival between 1 and 60 h post irradiation [44].

Reference radiobiological measurements included measurements of clonogenic sur-
vival and DNA double strand breaks (as γH2AX mean fold increase and number of γH2AX
foci). Here, clonogenic survival was measured using a GelCountTM automated colony
counter (Oxford Optronics, Oxford, UK), with measurements of cell volume acquired using
this instrument.
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4.1.2. FTIR Spectral Acquisition and Pre-Processing

Cells of each sample were deposited onto calcium fluoride slides using methodologies
detailed elsewhere [26]. Spectra were acquired in transmission mode using a Perkin Elmer
Spotlight 400 imaging spectrometer within which the detector (mercury cadmium telluride) was
cooled with liquid nitrogen. Spectral images were acquired using a 6.25 µm × 6.25 µm pixel
size and a spectral resolution of 4 cm−1 over the range 720–4000 cm−1 with 128 scans per pixel.
All data pre-processing steps were implemented in Python (v 3.9.12) using the OCTAVVS library
for pre-processing [45]. Firstly, individual spectra were extracted from the images with outliers
removed using Rosner’s test applied to the PC scores of spectra within a given class. The number
of spectra in each class was down-sampled by a factor of 2 to improve computational efficiency.
Subsequently spectra were corrected for atmospheric contributions and then scattering effects
using the resonant-Mie scattering correction [46]. Spectra were smoothed using a Savitsky-Golay
algorithm with an order of 5 and window of 15 points. Spectra were then truncated to the
800 cm−1 to 4000 cm−1 region. Finally, any residual baseline was removed using a concave
rubber band algorithm and spectra were vector normalised. In totality these procedures resulted
in a dataset of ~12,000 spectra for analysis.

4.2. Chemometrics and Machine Learning

All chemometric and machine learning approaches used in the study were written
in Python 3.9.12 with scikit-learn (v. 0.21.3). All data visualisation utilised the matplotlib
(v. 3.5.1) and seaborn (v. 0.11.2) packages. Statistical analysis utilised the pingouin package
(v. 0.5.2) [47]. All classification algorithms utilised the F1 score as the metric of perfor-
mance [48]. The following sections detail each of the methodologies which were employed.

4.2.1. Principal Components Analysis

Principal components analysis (PCA) is a widely used dimensionality reduction
method for large datasets. In the context of the current work PCA should be considered a
dimensionality reduction technique which preserves the global structure of the data matrix,
X, through mapping of the data from a high-dimensional space to a lower dimensional
space via removal of the covariance in the dataset, while preserving as much ‘variability’
(i.e., statistical information) as possible [49].

X = T.S.PT (1)

The lower dimensional space formed by the new variables or principal components
matrix, PT, removes the covariance between variables in the original data space with the
reduction being performed by solving an eigenvalue-eigenvector problem on the covariance
matrix of the data in its original space [26] as per Equation (1) (where T is the matrix of
principal components scores and S is the diagonal eigenvalue matrix. Within biophotonics
PCA has become one of the first options for recourse for researchers as the principal
components can be readily interpreted via providing loadings which may be related to the
original spectral variables.

4.2.2. Support Vector Machine

A support vector machine (SVM) is a statistical learning algorithm that is applied to
supervised machine learning [50]. These methods are used for classification, regression,
and outlier detection [51]. It is a non-parametric approach which is characterized by an
efficient hyperplane searching technique which identifies the optimal separating hyperplane
between the classes [52], where the hyperplane itself is located at the position of the support
vectors which lie on the edge of the class distributions [51,52]. If we let (x1, y1), (x2, y2), . . . ,
(xm, ym), are training data vectors x with class labels y where xi ∈ Rd denotes vectors in a
d-dimensional feature space and yi ∈ {−1, +1} is a class label [52], the SVM in its linear form
finds the optimal separating margin by solving the following optimization task:

Minimize
{

1
2 |w|2 + C ∑m

i=1 εi

}
, εi ≥ 0
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Subject to
yi

(
wTxi + b

)
≥ 1− εi, i = 1, 2, . . . .m (2)

where C is a penalty value, εi are positive slack variables, w is a vector normal to the
separating hyperplane, and b is a scalar quantity.

If linear separation is not possible, it can be combined with a ‘kernel’ trick that imple-
ments a non-linear mapping to a feature space in which the linear separating hyperplane
is identified [52]. The kernel technique enables higher dimensional, non-linear models to
be developed [52], and is computationally efficient for datasets with high dimensionality
through the use of a kernel function, K(x, z) = 〈φ(x)·φ(z)〉 [53], which computes the sepa-
rating hyperplane without carrying out a mapping to feature space [54]. Commonly used
kernels include the radial basis function and polynomial kernels.

4.2.3. t-SNE

t-SNE (t-distributed Stochastic Neighbour Embedding) is a novel nonlinear dimensional-
ity reduction algorithm [55] which, unlike PCA which preserves the global structure of the
original data, maintains the local structure of the data within the new ‘embedding’ space.

The method in which t-SNE operates is by converting the high-dimensional Euclidean
distance between data points, xi and xj in a Cartesian coordinate system, into a conditional
probability pi|j . The probability density distribution of the neighbouring data points to
xi are assumed as a Gaussian function centered at xi with a variance σi such that the
probability of xj to be selected as the neighbour of xi is given as [55]:

pj|i =

exp
(
− ‖xi−xj‖2

2σ2
i

)
∑k 6=i exp

(
− ‖xi−xk‖2

2σ2
i

) (3)

However, pj|i is not equal to pi|j, which causes SNE to be predisposed to outliers, such as
xi having a very small value for pj|i which causes its embedded location to become irrelevant.
The similarity of data points xi and xj are calculated as the joint probability [55,56]:

pij =
pj|i + pi|j

2N
(4)

Points within the embedding space are grouped according to their pairwise conditional
probability [55,56]:

qij =

(
1 + ‖yi − yj‖2

)−1

∑k 6=i

(
1 + ‖yk − yl‖

2
)−1 (5)

This highlights the main function of t-SNE, which is to arrange the n points within a
dataset in a low-dimensional space such that the difference between qij and pij is minimized
using the Kullback–Leibler divergence.

t-SNE decomposition has previously been used to cluster and visualise Raman spectra
from single neural pluripotent stem cells at various stages of differentiation and cell lines
of various lineages exposed to various different chemotherapeutic agents [57,58]. As an
approach to the decomposition of large multi-variate datasets t-SNE preserves local data
structures at the expense of global structure, in comparison with PCA which attempts to
preserve global data structure [56]. However, as t-SNE is an iterative process it cannot be
employed to decompose a dataset into a stable set of reduced features for application to
held out testing datasets within supervised machine learning.

Kobak et al. have investigated approaches to allow the preservation of both global
and local structure using t-SNE with transcriptomics data [56]. To obtain meaningful
visualisation of data t-SNE has various hyperparameters which must be tuned, including
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learning rate, perplexity, exaggeration and number of iterations. The number of iterations
is generally set such that the visualisation evolves to a stable configuration. The learning
rate on the other hand is recommended by Kobak et al. [56] to be set to the number of data
points divided by 12. Care must be taken here to take account of the lack of harmonisation
between t-SNE learning rates within different algorithms as they can differ by as much as
a factor of 4. Kobak et al. also recommend setting large perplexity values of ~1% of the
total number of data points for smaller datasets or a default value of 30 for smaller datasets.
Their final recommendation is to use an exaggeration factor of 4 to allow separation of
scores of classes into compact groups. In the present work we have tuned this parameter to
provide a balance between cluster size and separation.

4.2.4. Extreme-Gradient-Boosted Regression (XGBR)

XGBR is a form of gradient boosted decision tree regression which provides the means
to improve model performance and execution time through implementing a gradient
descent approach to optimise model complexity (number of decision tree leaves and
branches) together with boosting to provide a consensus, low uncertainty prediction of
regression target across multiple models [59]. While the algorithm has received significant
attention in the computational literature it has received little attention in this regard in the
bio-spectroscopy literature, where traditional chemometric regression approaches such
as partial least squares regression are preferred [60–63]. Here, XGBR is used to perform
regression of the PNT1A cell line spectra against data on the cell volume measured as part
of the reference work [5]. The original data is reproduced in Table 5 for reference purposes.

This regression approach has the added value of allowing the identification of spectral
regions of interest which maximise the regression performance, or in this case, variables
which are associated with cell survival post exposure within the context of the irradiation
approach for the PNT1A cell lines as described earlier.

For the optimisation of the XGBoost models the data was split into a training set
and test set in a 70:30 split. XGBoost regression models hyperparameters were optimised
via grid search cross-validation within scikit-learn over 20 separate epochs of data ran-
domisation and those hyperparameters providing a minimised root mean squared error of
prediction (RMSEP) on the held out test set were retained. The best set of spectral features
was also output together with the frequency with which they were selected across all
randomisation epochs.

4.2.5. Classic Least Squares Spectral Fitting (CLS)

Classic least squares fitting is a powerful approach to the decomposition of spectra into
components and fit coefficients for known constituents of chemical mixtures or samples.
Previously we have used this approach for the elucidation of the relative changes in concen-
trations of biochemical species within cells and liquid biopsies in the context of identifying
molecular markers of radiation induced toxicity. Briefly the approach decomposes a matrix
of spectra, X, into the concentration, c, of a set of constituent molecular spectra, R, with
ε representing a matrix of fitting residuals:

X = c.R + ε (6)

In the present work this approach to spectral decomposition was used for the purposes
of elucidation of the main spectral variants post exposure to ionising radiation and secreted
factors in the context of the experiment. Within the fitting procedure all fitting coefficients
were constrained to positive values.

For this exercise a total of 31 reference spectra were utilised, which included spec-
tra of nucleic acids (DNA, RNA), protein (actin, keratin, ubiquitin, histone), glycopro-
tein (apolipiprotein-E3, apoliprotein-E4), lipid (phosphatidylcholine, phosphatidylinositol,
phosphatidylethanolamine, phosphatidylserine, ceramide), carbohydrate (glycogen), nu-
cleoside (ATP), cytokines (IL1, IL6, IL8), antioxidants (catalase, cysteine, glutathione (in
both oxidised and reduced forms), vitamin C, vitamin E, tryptophan, β-carotene) and vari-
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ous signalling molecules of radiobiological importance (cytochrome-C, TGF-β1, TGF-β2,
TNF-α, protein-kinase K). For all spectra processing was conducted in OCTAVVS before
CLS regression [45]. All reference molecules were purchased from Sigma-Aldrich and their
spectra were acquired as described elsewhere [10].
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