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Abstract: Although graphitic carbon nitride (g-C3N4) has been reported for several decades, it is still
an active material at the present time owing to its amazing properties exhibited in many applications,
including photocatalysis. With the rapid development of characterization techniques, in-depth
exploration has been conducted to reveal and utilize the natural properties of g-C3N4 through
modifications. Among these, the assembly of g-C3N4 with metal oxides is an effective strategy
which can not only improve electron–hole separation efficiency by forming a polymer–inorganic
heterojunction, but also compensate for the redox capabilities of g-C3N4 owing to the varied oxidation
states of metal ions, enhancing its photocatalytic performance. Herein, we summarized the research
progress on the synthesis of g-C3N4 and its coupling with single- or multiple-metal oxides, and
its photocatalytic applications in energy production and environmental protection, including the
splitting of water to hydrogen, the reduction of CO2 to valuable fuels, the degradation of organic
pollutants and the disinfection of bacteria. At the end, challenges and prospects in the synthesis and
photocatalytic application of g-C3N4-based composites are proposed and an outlook is given.

Keywords: graphitic carbon nitride; metal oxides; heterojunctions; synthesis; photocatalytic applica-
tions

1. Introduction

With the development of economies and the growth of populations, pressures on
energy demand and environmental pollution continue to increase all over the world [1–4].
Fossil fuels, which currently account for a large amount of the world’s energy, are increas-
ingly consumed, resulting in negative impacts on the environment through the release of
CO2, which is a serious greenhouse gas. Solar-energy-based photocatalysis is a promis-
ing technology to solve energy and environment problems, and has received extensive
attention recently [5–7]. The synthesis of efficient photocatalysts is a key factor in apply-
ing photocatalytic technology to solve energy and environmental issues, such as water
splitting to produce H2 and O2 [8–12], tail gas treatment (NO, CO2, etc.) [13,14], pollutant
degradation [15–20], etc.

In the photocatalytic process, the electrons of photocatalysts are activated by absorbing
photon energy [21]. Once the electrons have received enough energy, they will be excited
to the valence band (VB), leaving holes at the conduction band (CB). The photogenerated
electron–hole pairs (e−/h+) will then activate the reactants and promote the proceeding
of a reaction [22,23]. In 1972, Fujishima and Honda reported the use of TiO2 electrodes
for photocatalytic water splitting under ultraviolet light, which can be regarded as the
milestone of photocatalytic technology [24]. In 1979, Inoue reported the reduction of CO2
into organic compounds in aqueous solution using TiO2, ZnO, GaP and CdS semicon-
ductors [25]. Since then, the development of efficient semiconductors for photocatalysis
has become a hotspot. Traditional photocatalysts mainly contained inorganic compounds,
including metal oxides [26,27], sulfides [28], nitrides [29] and their composites [30], etc.
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The direct use of such materials was often restricted by their large band gap, which leads
to low utilization efficiency for solar energy. Recently, graphite carbon nitride (g-C3N4)
semiconductors have come into people’s horizons and have become a research focus in
the field of photocatalysis, owing to their abundance, simple synthesis, high visible-light
utilization efficiency and excellent physicochemical stability.

The application of g-C3N4 to photocatalysis was reported in 2009 by Wang et al. [31].
This material received widespread attention in photocatalysis thereafter owing to its poly-
meric properties and good visible-light response [32,33]. The challenge of applying g-C3N4
to photocatalysis mainly lies in its small specific surface area, narrow light response range
and high e−/h+ recombination rate. To this end, many strategies have been proposed
in the literature, such as adjustment of the microstructure [34–36], the doping of het-
eroatoms [37–39], the coupling of semiconductors [11,30,31,40–42], etc. Among these,
coupling with other semiconductors is an attractive strategy, which can not only compen-
sate for the shortcomings of g-C3N4 with their own properties, but also produce synergistic
effects by forming heterojunctions. Both metal-free polymeric materials [43–45] and metal-
containing inorganic materials, such as CdS [46], Fe2O3 [47] Fe3O4 [48], ZnO [49], TiO2 [50],
Bi2WO6 [51] and Ce2(WO4)3 [52], can couple with g-C3N4 and form heterojunctions. In par-
ticular, the coupling of materials with special properties can give the composites interesting
advantages. For example, the coupling of magnetic materials, e.g., g-C3N4/Fe3O4 [53] and
g-C3N4/CoFe2O4 [54], can facilitate the recycling of photocatalysts (as they can be simply
separated by a magnet), in addition to the improving photocatalytic performance.

Among the coupling materials, metal oxides came into the eyes of researchers early,
because of their low-cost, abundance and easy synthesis. Many works on the coupling
of g-C3N4 and metal oxides have been reported and great achievements have been made.
The secular growth of related publications commendably reveals the flourishment of g-
C3N4/metal oxide heterojunction materials in photocatalytic applications (Figure 1). To
date, numerous breakthroughs and advances have been made in the photocatalysis system
based on g-C3N4-based heterojunction materials, but a comprehensive summary still needs
to be further subdivided, especially regarding the g-C3N4/metal oxide composite system.
In this context, it is of great significance to summarize the recent advances in the synthesis
and photocatalytic application of g-C3N4/metal oxide composites to alleviate environmen-
tal pollution and energy shortage. In detail, this work reviewed the recent progress on
(1) the synthesis of g-C3N4 and its coupling with single or double metal oxides; (2) the
photocatalytic applications of the composites in energy production and environmental pro-
tection; and (3) the challenges and prospects of g-C3N4-based heterojunction materials in
photocatalytic applications. This review enables a wide range of researchers to understand
these important areas and prospects, and the challenges and potential of g-C3N4/metal
oxide composites.
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240 °C, 390 °C and 520 °C, respectively, accompanying the release of NH3. However, the 
high price, high toxicity and special transportation limit its wide use. Therefore, inter-
mediate products with low cost, low toxicity and chemical stability, e.g., dicyandiamide 
and melamine, are generally used instead of cyanamide. 

Ge et al. [68] used melamine as precursor to producing g-C3N4 at a temperature of 
500~600 °C. They found that samples prepared at 520 °C showed the best performance for 
the photodegradation of phenol. This indicates that the properties of g-C3N4 depend in-
timately on the synthesis temperature, which promotes the modification of samples in, 
for example, the degree of crystallinity. Additionally, they also found that an increase in 
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In addition to cyanamide and its derivates, other nitrogen-containing organics can 
also be used as precursors to g-C3N4. For example, Schaber et al. found that the thermal 
decomposition of urea in an open reaction vessel can yield g-C3N4, through the trans-
formation of biuret, cyanuric acid, ammelide, ammeline and melamine intermediates 
[71]. Later, Liu et al. used urea as precursor to producing g-C3N4 without adding auxil-

Figure 1. The number of publications on carbon nitride/metal oxide complexes for photocatalytic
applications published in the last 10 years. Literature searched in Web of Science with the keywords:
“carbon nitride” AND “metal oxide complex” AND “photocatalysis”.



Int. J. Mol. Sci. 2022, 23, 12979 3 of 32

2. Synthesis of g-C3N4 and Metal Oxides/g-C3N4 Composites
2.1. Synthesis of g-C3N4

With the in-depth study of g-C3N4 year-by-year, various modification strategies have
been proposed and applied to improve the catalytic properties of g-C3N4 materials, in-
cluding plasma sputtering deposition [55], solvothermal synthesis [56], chemical vapor
deposition [57], thermal condensation [58], etc. The thermal condensation method receives
special attention owning to its convenience, low-cost and time-savings. Nitrogen-rich ma-
terials, such as cyanamide [59], dicyandiamide [60], melamine [61], thiourea [62], urea [63],
ammonium thiocyanate [64] and their mixtures [65], are generally used as the precursors
to g-C3N4. However, this method often results in materials with low surface area and
structural defects, which hinder the exposure of active sites on the surface [66] and act
as the recombination centers of photogenerated electron–hole pairs, thereby reducing the
photocatalytic performance. To solve these problems, it is suggested that the band gap
structure of g-C3N4 be optimized to improve the separation efficiency of photogenerated
e−/h+ pairs, and to adjust the microstructure to increase its specific surface area.

In this section, we mainly focus on the influence of precursors and preparation con-
ditions on the properties of g-C3N4. In the case of precursors, cyanamide is first used to
synthesize g-C3N4. In 2005, Antonietti et al. [67] prepared g-C3N4 via the thermal polymer-
ization of cyanamide. In the process, cyanamide is first self-condensed to dicyandiamide at
150 ◦C, which then transforms to melamine, melem and, finally, g-C3N4 at 240 ◦C, 390 ◦C
and 520 ◦C, respectively, accompanying the release of NH3. However, the high price, high
toxicity and special transportation limit its wide use. Therefore, intermediate products
with low cost, low toxicity and chemical stability, e.g., dicyandiamide and melamine, are
generally used instead of cyanamide.

Ge et al. [68] used melamine as precursor to producing g-C3N4 at a temperature of
500~600 ◦C. They found that samples prepared at 520 ◦C showed the best performance
for the photodegradation of phenol. This indicates that the properties of g-C3N4 depend
intimately on the synthesis temperature, which promotes the modification of samples in,
for example, the degree of crystallinity. Additionally, they also found that an increase in
temperature can introduce nanostructures to the material, due to the exfoliation caused
by the high temperature. This provides a way to control the structure and surface area of
g-C3N4 with secondary thermal treatment, as is widely reported in the literature [69,70].

In addition to cyanamide and its derivates, other nitrogen-containing organics can also
be used as precursors to g-C3N4. For example, Schaber et al. found that the thermal decom-
position of urea in an open reaction vessel can yield g-C3N4, through the transformation of
biuret, cyanuric acid, ammelide, ammeline and melamine intermediates [71]. Later, Liu
et al. used urea as precursor to producing g-C3N4 without adding auxiliary agents, finding
that the obtained material can show excellent activity for the photocatalytic degradation of
methylene blue (MB) [72].

Zhang et al. investigated the reaction mechanism of transforming urea to produce a
g-C3N4 network at high temperature, and found that the oxygen-containing groups of urea
promote the condensation process [73]. In addition to urea, thiourea is also employed to
fabricate g-C3N4, and it was found that the sulfur existing in thiourea changes the tradi-
tional monomer condensation pathway and plays a crucial role in optimizing the structure.
In particular, no signal of sulfur was detected in the X-ray Photoelectron Spectroscopy
(XPS) spectrum (Figure 2), which suggests that the sulfur acts as a medium rather than a
component of the final material. In addition to the types of precursor, the polymerization
temperature also affects the formation process of g-C3N4. The same authors found that
the condensation of thiourea to g-C3N4 is insufficient at 450 ◦C, but could be completed at
500 ◦C. When the temperature continues increasing to 550 ◦C and 600 ◦C, the structure is
optimized. However, the g-C3N4 starts to thermally decompose once the temperature is
raised to 650 ◦C. One of the advantages of using thiourea as precursor is that it can induce
the formation of nanostructured g-C3N4, as the oxygen in the structure gradually escapes at
high temperatures. This further results in the exposure of surface sites and the localization
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of light-induced electrons in the conjugated systems, thereby improving the photocatalytic
performance [74].
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As mentioned above, urea serving as precursor can accelerate the production of large
amounts of gases at high temperatures owing to the presence of oxygen in the structure,
thereby improving the surface area of the product. For this reason, urea is often used
as porogen in the preparation of g-C3N4 to increase the porosity, as well as the nitrogen
content [75]. However, the excess addition of urea would produce a large number of
fragments, which tend to agglomerate during the reaction, reducing the surface free energy
and decreasing the photocatalytic activity. Therefore, the amount of urea added during
synthesis is of great importance and worth being optimized.

For the improvement of surface area, Wu et al. [76] reported that the addition of
NH4Cl additives during the synthesis procedure is also highly efficient, as they can be
decomposed into HCl and NH3 gases during the heat-treatment process, promoting the
delamination and depolymerization of g-C3N4, and thus, improving the surface area.
Moreover, the presence of NH4Cl can lower the temperature of g-C3N4 formation to 400 ◦C
and introduce numerous surface amino groups, which are beneficial to, for example, the
photocatalytic H2 evolution reaction, with a reaction rate twice that of bulk g-C3N4. Similar
cooperative effects are also observed for other multi-component systems, e.g., urea-mixed
imidazole [77], or melamine and urea mixed with thiourea [78].

Pretreatment of the precursor is also an effective way to improve the surface area
of g-C3N4. Sun et al. [79] prepared protonated g-C3N4 using HCl-treated melamine as a
precursor and compared the effects of treatment time on the properties of the material. They
found that the reaction of melamine with HCl changes the crystal structure and vibration
bands of g-C3N4. Compared with g-C3N4 originating from untreated melamine, the mate-
rial obtained from HCl-treated melamine exhibits smaller grain size and a bigger surface
area. Powder X-ray diffraction (XRD) patterns shows that pretreatment with acid changes
the structure of melamine, and shortens the formation process to 1 h (Figure 3a). The
structure of the samples after treatment is similar, except for a slight shift in peak position
due to the formation of nanosheets in the samples, which facilitates the strengthening of
stacking between layers and reduction in the spacing distance [80]. Indeed, scanning elec-
tron microscope (SEM) images show that g-C3N4 obtained from the untreated melamine
exhibited a particle size of 7.5 µm, which is larger than that obtained from HCl-treated
melamine (Figure 3b). This verifies that acid-treated melamine prevents the thermal con-
densation of melamine into large-sized g-C3N4, by releasing HCl and NH3 gases in the
heating process. Similar results are also reported for nitric acid-treated melamine [81] and
sulfuric acid-treated melamine [82]. These results suggest that acid treatment of the pre-
cursor is beneficial to improve the surface area of g-C3N4, by generating cracks during the
heating process. Moreover, the samples obtained from the acid-treated precursor possess
the advantages of rich surface defects, excellent electron–hole separation efficiency and
strong light absorption ability.
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In addition to the acid pretreatment, the hydrothermal treatment of dicyandiamide
also yields g-C3N4 with a high surface area and various surface morphologies, e.g., flower-
like [83–85], hollow spheres [86–88], needle-like and rod-like [89–91], depending on the
solvents. Such materials exhibit more attracting properties than the bulk one, for example:
(1) the lamellar and porous structure is conducive to gas permeation; (2) the large surface
area facilitates the reactant’s adsorption; (3) the special morphology provides the benefit of
widening the visible-light response range and improving the light absorption ability.

As well as the precursor and temperature, the reaction atmosphere is also crucial in
affecting the properties of g-C3N4, through generating carbon and nitrogen vacancies, for
example. Wang et al. [66] fabricated nanorod g-C3N4/metal oxide composites by heating
a copper–melamine supramolecular framework, [Cu(µ-OAc)(µ-OCH3)(MA)](Cu-MA1),
under an argon atmosphere, which shows 94% Rhodamine B (RhB) conversion within
20 min under visible-light irradiation. Niu et al. [92] reported the generation of nitrogen
vacancies by heating g-C3N4 in a hydrogen environment and foresaw the importance of
self-modification and vacancies to completely modify the electronic structure of the layered
g-C3N4 structure. Liang et al. [93] prepared porous g-C3N4 with abundant carbon vacancies
by heating bulk g-C3N4 in a NH3 atmosphere. The obtained material showed a surface
area of 196 m2/g, and exposed additional active edges, which significantly accelerated
the transfer of photoinduced electron–hole pairs through a cross-plane diffusion pathway.
The in-plane pores and wrinkled structures of g-C3N4 greatly enhance mass transfer and
promote the dynamics of photoactivity. Xu et al. [94] reported that g-C3N4 prepared by
pyrolyzing 3-amino-1,2,4-triazole in a CO2 atmosphere shows excellent activity for hy-
drogen production, which was 2.4 and 1.7 times higher than that prepared in air and N2
atmospheres, respectively. This could be because treatment in a CO2 atmosphere causes a
reduction in nitrogen vacancies (Vn) and the formation of NHx groups on the surface of
g-C3N4, generating hydrogen bond interactions between the layers, which facilitate the
transfer of electrons from the heptazine ring to the g-C3N4 layer. Transient photocurrent re-
sponse measurement confirms that the g-C3N4 prepared in a CO2 atmosphere produces the
largest current density under visible-light driving (Figure 4a), which implies improvement
in the separation efficiency of electron–hole pairs. Additionally, electrochemical impedance
spectroscopy (EIS) shows that this sample has a smaller EIS arc radius than the others
(Figure 4b) which confirms again that the g-C3N4 prepared in a CO2 atmosphere has lower
charge transfer resistance and higher charge transfer efficiency.
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Table 1 summarizes the band gap and surface area of g-C3N4 prepared under different
reaction conditions, which shows that the selection of precursors and the proper control of
reaction conditions are effective strategies to optimize the electronic structure and surface
area of g-C3N4.

Table 1. Surface area and band gap of g-C3N4 synthesized under different preparation conditions.

Precursor Reaction
Conditions Band Gap [eV] Surface Area [m2/g] Ref.

Cyanamide 550 ◦C, 4 h, N2 2.62 10 [95]
Dicyandiamide 550 ◦C, 3 h, air 2.64 40.5 [38]

Melamine 550 ◦C, 3 h, air 2.66 28.2 [38]
Urea 550 ◦C, 3 h, air 2.72 67.1 [38]
Urea 550 ◦C, 2 h, air 2.76 58 [39]

Thiourea 550 ◦C, 2 h, air 2.58 18 [39]
3-amino-1, 2, 4-triazole 550 ◦C, 4 h, CO2 2.05 7.2 [56]

Ammonium thiocyanate 550 ◦C, 2 h, NH3 2.87 46 [55]
Guanidine hydrochlorides 550 ◦C, 3 h, air 2.70 16.08 [58]

Guanidine thiocyanate 550 ◦C, 2 h, N2 2.74 8 [96]
Urea Melamine 520 ◦C, 4 h, air 2.47 39.06 [97]

Imidazole-mixed urea 550 ◦C, 4 h, air 2.26 105.28 [77]
Sulfur-mixed melamine 650 ◦C, 2 h, N2 2.65 26 [98]
Melamine–cyanuric acid 550 ◦C, 10 h, air 2.72 142.8 [99]
H2SO4-treated melamine 600 ◦C, 4 h, Ar 2.69 15.6 [82]

HCl-treated melamine 550 ◦C, 2 h, air 2.66 24.7 [79]
HNO3-treated melamine 550 ◦C, 2 h, air 2.65 59.3 [81]

2.2. Synthesis of Single-Metal Oxide/g-C3N4 Heterojunctions

It is known that a single semiconductor often encounters problems such as low quan-
tum yields, a narrow light absorption spectrum and low e−/h+ separation efficiency in
photocatalysis, due to the contradiction between light absorption capability and e−/h+

recombination rate. Thus, modifications such as heteroatom doping, morphological control
and semiconductor combination are often adopted in order to fully exhibit the photocat-
alytic properties of semiconductors. Metal oxides are one class of semiconductor and their
inorganic characteristics can largely compensate for the shortcomings of polymeric g-C3N4.
For example, the good redox ability of metal oxides can compensate for that of g-C3N4
when conducting redox reactions. Therefore, it would be of great interest to combine
metal oxides with g-C3N4 to form inorganic–polymeric heterojunctions, which produce
synergistic effects not only in the band gaps, but also in redox and other properties.

The construction of heterojunctions requires unequal band levels between the semi-
conductors to create interface band arrangement, which can result in a built-in electric
field to drive the opposite migration of photogenerated electrons and holes, improving
e−/h+ separation efficiency. Type II and Z-scheme are two typical heterojunctions and their
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formation mechanisms are shown in Figure 5. The former requires two coupled semicon-
ductors with an interleaved band structure. Thereby, the photo-generated electrons transfer
from semiconductor 1 to semiconductor 2, and the holes transfer in the opposite direction
(Figure 5a). The electrons accumulated on semiconductor 2 are used for a reduction reaction
and the holes accumulated on semiconductor 1 are used for an oxidation reaction. This
process can separate photo-generated electrons and holes in space, but sacrifices the redox
capacity of the materials. Hence, both the oxidation potential and the reduction potential
of the heterojunction are reduced compared to those of the semiconductor alone.
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A Z−scheme heterojunction requires the components to have staggered energy-band
configurations, with the electron transfer in a zigzag mode. Typically, the photogenerated
electrons at the CB of semiconductor 2 transfer and combine with the holes at the VB of
semiconductor 1. The retained electrons at the CB of semiconductor 1 and holes at the
VB of semiconductor 2 participate in the reduction and oxidation reactions, respectively
(Figure 5b). This charge transfer mode enables the system to have not only improved
charge-separation efficiency, but also stronger redox capability compared to that of the sole
semiconductor.

Among the metal oxides, TiO2 is well known for its first application to photocatalysis.
Generally, it has three polymorphs in nature, including anatase, rutile and brookite [101].
Rutile TiO2, with a band gap of 3.0 eV, has the most stable and compact structure, while
anatase TiO2, with a band gap of 3.2 eV, is better facilitates photocatalysis owing to its good
e−/h+ separation efficiency and high adsorption capacity [102]. In the fabrication of TiO2
and g-C3N4 heterojunctions, Fang et al. [103] prepared an anatase/rutile TiO2/g-C3N4
(A/R/CN) multi-heterostructure using a facile thermoset hybrid method, finding that the
combination of two type II heterostructures (i.e., A/R and R/CN) greatly improved the
separation and transfer efficiency of e−/h+. As a result, the heterostructures showed activity
that was eight and four times higher for the photocatalytic hydrolysis of hydrogen than
g-C3N4 and TiO2 (P25) alone, respectively. Similarly, other TiO2 polymorphs, e.g., brookite
TiO2, can combine with g-C3N4 to prepare heterojunctions with improved photocatalytic
activity [104]. Zhu et al. prepared g-C3N4/TiO2 hybrids via a ball-milling method, finding
that the composites possess a wider light-absorption range and higher photocatalytic
activity than the respective component, with the activity for MB degradation being 3.0 and
1.3 times higher than that of g-C3N4 and TiO2, respectively [105].

In addition to TiO2, the combination of g-C3N4 with other metal oxides is also widely
reported. Liu et al. reported that the coupling of g-C3N4 with ZnO prolongs the lifetime
and separation efficiency of photogenerated e−/h+, therefore improving its photocatalytic
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activity for phenol degradation [106]. Moreover, the introduction of a silicate group to the
ZnO/g-C3N4 composites further improves the lifetime and separation efficiency of e−/h+

pairs, and thereby, the photocatalytic activity. This indicates that the built-in silicate group
in the composites acts as a bridge to link ZnO and g-C3N4, promoting the transfer and
separation efficiency of e−/h+ pairs. Consequently, the electrons and holes have a longer
lifetime to interact with the reactants and contribute to the reaction.

Guo et al. [107] coupled oxygen-deficient molybdenum oxide (MoO3) nanoplates
with g-C3N4 nanoplates using a one-step hydrothermal method, and found that MoO3
particles grew well on the surface of g-C3N4 (Figure 6). MoO3 is a chemically inert semi-
conductor with a large work function, which is suitable to couple with g-C3N4 and form
a Z-scheme heterojunction. Moreover, the oxygen vacancies facilitate the promotion of
plasmon resonance and expand the range of spectral absorption, and their concentrations
can be adjusted via annealing in air. Combined with surface plasmon resonance and the
synergistic effects of Z-scheme heterojunctions, it is expected that the composites will
exhibit efficient performance for photocatalytic reactions, e.g., the H2 evolution reaction.
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PMO/ACN, (b) SEM, (c) TEM, (d) HRTEM images of the PMO/ACN sample and (e) SEM elemental
mapping for the PMO/ACN nanohybrid. Used with permission from [107]. Copyright 2020 Elsevier.

The morphology, structure and contacting patterns are also crucial factors affecting
the electron transfer and photocatalytic activity of g-C3N4. Using seed-induced solvent
heat treatment, 0D nanoparticles, 1D nanowires, 2D nanosheets and 3D mesoporous
crystals can be loaded on the surface of g-C3N4. For example, 3D/2D MnO2/g-C3N4
nanocomposites can be prepared via a calcination process using MnO2 polyhedron and
2D g-C3N4 nanosheets as precursors [108], as shown in Figure 7. The 3D polyhedral
morphology and multi-phase polycrystalline structure of MnO2 are beneficial as they
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strengthen the interaction between MnO2 and g-C3N4, owing to the presence of low-
valence Mn species, graphitic N species and oxygen vacancy. Like the lamellar structure,
materials with other structures can increase the interfacial area and surface area of the
resulting composites. Liu et al. [109] reported that core-shell CeO@g-C3N4 exhibits high
efficiency for the photocatalytic degradation of doxycycline, owing to the high surface
area (82.37 m2/g) and low e−/h+ recombination rate. They also found that shuttle-like
CeO2/g-C3N4 is efficient for the degradation of norfloxacin under visible light using
persulfate as an oxidant, during which the norfloxacin is degraded into small molecules
via gradual shedding of the functional groups.
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The unique properties of metal oxides also give the composites special functions. Ye
et al. [110] loaded magnetic Fe2O3 on g-C3N4 to introduce magnetization to the sample,
which makes it easy to separate from the reaction liquid, and hence, reduces the cost of
the recycling process. Mou et al. [111] used amorphous ZrO2 as a cocatalyst of g-C3N4
for ammonia synthesis to improve its activity. The introduction of ZrO2 not only restrains
the hydrogen generation rate, but also improves the electron transfer rate and the e−/h+

separation efficiency. These results demonstrate that the combination with metal oxide is
efficient in improving the photocatalytic performance of g-C3N4. Tables 2 and 3 summarize
the recent advances in metal oxide/g-C3N4 heterojunctions in photocatalytic applications.



Int. J. Mol. Sci. 2022, 23, 12979 10 of 32

Table 2. Summary of recent advances in photocatalytic degradation using metal oxide/g-C3N4

composites.

Sample Model Reaction Reaction Activity
(mol/g/min) Refs.

CaO/g-C3N4 Degradation of MB 2.6 × 10−5 [112]
SrO2/g-C3N4 Degradation of RhB 4.5 × 10−7 [113]

MnO2/g-C3N4 Degradation of MO 9.4 × 10−7 [108]
ZnO/g-C3N4 Degradation of MO 3.3 × 10−7 [114]

MoO3/g-C3N4 Degradation of MB 9.7 × 10−7 [115]
AgO/g-C3N4 Degradation of RhB 5.2 × 10−6 [116]
CdO/g-C3N4 Degradation of RhB 1.1 × 10−7 [117]
In2O3/g-C3N4 Degradation of RhB 5.2 × 10−10 [118]
SnO2/g-C3N4 Degradation of MO 7.9 × 10−8 [119]
TiO2/g-C3N4 Degradation of RhB 9.3 × 10−9 [120]

Bi2O3/g-C3N4
Degradation of

Amido black 10B dye 3.3 × 10−7 [121]

Nb2O5/g-C3N4
Degradation of

tetracycline 5.3 × 10−7 [122]

CeO2/g-C3N4
Degradation of

Norfloxacin 4.6 × 10−7 [123]

ZnO/NiFe2O4/g-C3N4 Degradation of LVX 1.7 × 10−7 [124]
TiO2/ZnO/g-C3N4 Degradation of MB 4.9 × 10−7 [125]

Fe3O4/BiOBr/g-C3N4 Degradation of TC 8.8 × 10−7 [126]
ZnO/CuO/g-C3N4 Degradation of MB 6.1 × 10−6 [127]

WO3/Fe3O4/g-C3N4
Degradation of

diazinon 6.5 × 10−7 [128]

Ni3(VO4)2/ZnCr2O4/g-C3N4 Degradation of p-CP 4.8 × 10−4 [129]
MO: methyl orange; MB: methylene blue; RhB: rhodamine B; LVX: levofloxacin; TC: tetracycline; p-CP: p-
chlorophenol.

Table 3. Summary of recent advances in photocatalytic hydrogen evolution using metal oxide/g-
C3N4 composites.

Sample Reaction Activity (mol/g/min) Refs.

Al2O3/g-C3N4
Al2O3/g-C3N4: 8.7 × 10−6

g-C3N4: 3.5 × 10−6 [130]

CoO/g-C3N4

CoO/g-C3N4: 8.4 × 10−7

CoO: 4.9 × 10−8

g-C3N4: 8.3 × 10−8
[131]

NiO/g-C3N4
NiO/g-C3N4: 2.5 × 10−7

g-C3N4: 2.7 × 10−9 [132]

Cu2O/g-C3N4
Cu2O/g-C3N4: 4.0 × 10−6

g-C3N4: 2.4 × 10−6 [133]

MgO/g-C3N4
MgO/g-C3N4: 5.0 × 10−6

g-C3N4: 9.7 × 10−7 [134]

FEOX/G-C3N4
FeOx/g-C3N4: 1.8 × 10−5

g-C3N4: 4.3 × 10−6 [110]

2.3. Multiple-Metal Oxide/g-C3N4 Heterojunctions

The achievements in combining single-metal oxide with g-C3N4 have stimulated
researchers to use multiple-metal oxides to upgrade the materials. The construction of
multi-component composites can induce multi-step charge transfer and charge separation,
and hence, better photocatalytic performance could be expected when compared to single
ones. However, more attention should be paid to the matching of the energy-band potential
of each component, so that the photo-generated electrons can transfer at the phase interface,
reaching the goal of constructing heterojunctions.
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Bajiri et al. constructed ternary and double Z-scheme CuO/ZnO/g-C3N4 heterojunc-
tions using a solvothermal method [135], which consisted of g-C3N4 flakes decorated with
small nanoparticles (<5 nm) (Figure 8). It is interesting to find that the gases released
from the solute combustion process build up a porous structure in the material, similar to
the function of porogens. The porous and sheet-like structure increases the capability of
the material to absorb reactants on the surface, thereby improving the photodegradation
efficiency. Indeed, the material exhibits activity of 98% (45 min) and 91% (6 h) for the
degradation of MB and ammonia nitrogen, respectively, under visible-light irradiation.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 12 of 34 
 

 

small nanoparticles (<5 nm) (Figure 8). It is interesting to find that the gases released from 
the solute combustion process build up a porous structure in the material, similar to the 
function of porogens. The porous and sheet-like structure increases the capability of the 
material to absorb reactants on the surface, thereby improving the photodegradation ef-
ficiency. Indeed, the material exhibits activity of 98% (45 min) and 91% (6 h) for the deg-
radation of MB and ammonia nitrogen, respectively, under visible-light irradiation. 

 
Figure 8. (a) Schematic diagram of the charge migration pathway in CuO/ZnO/g−C3N4; SEM im-
ages of (b,c) CuO/ZnO and (d,e) CuO/ZnO/g−C3N4 with different magnifications. Used with per-
mission from [135]. Copyright 2019 Elsevier. 

Jiang et al. [136] found that in addition to acting as photocatalyst, g-C3N4 can be an 
intermediate for charge transfer, by constructing a WO3/g-C3N4/Bi2O3 (WCB) catalyst. 
Compared to the single or binary materials, ternary WCB exhibits moderate surface area 
and the highest photocatalytic activity. This indicates that the high surface area facili-
tated the reaction but was not the key factor determining the reaction. Optical character-
izations from the UV-vis and PL spectra showed that the light absorption edge is 
red-shifted and the e−/h+ recombination rate is inhibited for WCB, when compared to the 
single or binary counterparts, due to the interactions between WO3, g-C3N4 and Bi2O3 
(Figure 9a). Consequently, the WCB exhibits enhanced optical properties and improved 
photocatalytic activity for tetracycline (TC) degradation under visible-light irradiation, 
with TC conversion of 80.2% at 60 min, which is much higher than that of g-C3N4 
(22.1%), WO3 (7.17%) and Bi2O3 (28.6%), and the binary CW (g-C3N4/WO3), CB 
(g-C3N4/Bi2O3) and WB (WO3/Bi2O3) (Figure 9b–f). 

Figure 8. (a) Schematic diagram of the charge migration pathway in CuO/ZnO/g-C3N4; SEM images
of (b,c) CuO/ZnO and (d,e) CuO/ZnO/g-C3N4 with different magnifications. Used with permission
from [135]. Copyright 2019 Elsevier.

Jiang et al. [136] found that in addition to acting as photocatalyst, g-C3N4 can be an
intermediate for charge transfer, by constructing a WO3/g-C3N4/Bi2O3 (WCB) catalyst.
Compared to the single or binary materials, ternary WCB exhibits moderate surface area
and the highest photocatalytic activity. This indicates that the high surface area facilitated
the reaction but was not the key factor determining the reaction. Optical characterizations
from the UV-vis and PL spectra showed that the light absorption edge is red-shifted and
the e−/h+ recombination rate is inhibited for WCB, when compared to the single or binary
counterparts, due to the interactions between WO3, g-C3N4 and Bi2O3 (Figure 9a). Conse-
quently, the WCB exhibits enhanced optical properties and improved photocatalytic activity
for tetracycline (TC) degradation under visible-light irradiation, with TC conversion of
80.2% at 60 min, which is much higher than that of g-C3N4 (22.1%), WO3 (7.17%) and Bi2O3
(28.6%), and the binary CW (g-C3N4/WO3), CB (g-C3N4/Bi2O3) and WB (WO3/Bi2O3)
(Figure 9b–f).

Yuan et al. [137] constructed ternary g-C3N4/CeO2/ZnO composites with multiple
heterogeneous interfaces. Binary g-C3N4/CeO2 nanosheets were first prepared via py-
rolysis and exfoliation. Thereafter, spherical ZnO nanoparticles were anchored on the
g-C3N4/CeO2 surface to form a ternary heterojunction structure. Because of the formation
of the type II staggered belt arrangement between the components, the g-C3N4/CeO2/ZnO
shows efficient three-level transfer of electrons and holes, resulting in the effective separa-
tion of photo-excited carriers, as shown in Figure 10.
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Morphology control is also effective in improving the photocatalytic performance
of materials, by enhancing the interactions and enlarging the contact areas of the het-
erogeneous interfaces, which are beneficial to electron transfer and separation (from the
holes). For example, Jiang et al. [138] fabricated g-C3N4, TiO2 and ZnO nanoflakes, and
then, assembled them to form g-C3N4/TiO2/ZnO Z-scheme heterojunctions. A high-
resolution TEM image shows that the TiO2 (101) plane and ZnO (002) plane are stacked
on the g-C3N4 surface to form heterojunctions (Figure 11a–f). The similar morphologies
of g-C3N4/TiO2/ZnO and g-C3N4 indicate that TiO2 and ZnO are uniformly dispersed
on the g-C3N4 surface. The 2D/2D nanosheet/nanosheet structure not only increases the
surface area of the material (g-C3N4: 8.18 m2/g, g-C3N4/TiO2/ZnO: 27.21 m2/g), but
also improves the e−/h+ separation efficiency by facilitating electron transfer through the
abundant interfaces (Figure 11g–i).
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Figure 11. TEM images of (a,b) TiO2 nanosheets, (c,d) g-C3N4 nanosheets and (e,f) g-
C3N4/TiO2/ZnO nanocomposites; (g,i) comparison of the electron transfer routes between the
granule/granule and the nanosheet/nanosheet composites with different heterojunction areas; (h) the
mechanism of facet-coupled ternary nanocomposites for p-TSA degradation under visible light. Used
with permission from [138]. Copyright 2017 Elsevier.
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The formation mechanism of the composites has been explored to reveal how the
heterogeneous interfaces affect the electron transfer process. Liu et al. [139] proposed
a lattice-matching assumption of amorphous materials in the structural hybridization
process and clarified a coordination effect in the unoccupied d orbitals of N atoms of
g-C3N4. Because of the different crystal structures and lattice parameters of metal oxides
(e.g., ZnO) and g-C3N4, lattice matching between them is difficult. Amorphous materials
(e.g., Al2O3) have disordered atomic distribution and unfixed lattice parameters; hence,
they can easily accept the charge of g-C3N4. Therefore, amorphous Al2O3 can be an
intermediary to improving electron transfer efficiency between g-C3N4 and ZnO [140].
As shown in Figure 12a, the lattice fringes of ZnO and Al2O3 are entangled with that of
g-C3N4, which proves that the two components are in close contact. The tight contact
interface provides a step to transfer the induced carrier (Figure 12b). XPS spectra show
that the binding energies of Al atoms in g-C3N4/Al2O3 and g-C3N4/Al2O3/ZnO shifted
to a higher position compared to that of the original Al2O3 (Figure 12c). This indicates
that a chemical force between Al and g-C3N4 is formed, due to the coordination of the
unoccupied 3p or 3d orbital of Al ions with the lone electron pair of N atoms of g-C3N4,
as verified by the shift in the binding energy of N 1s (Figure 12d–f). These results provide
ideas to correct the lattice mismatch between g-C3N4 and metal oxides, and promote the
application of amorphous materials to fabricate heterojunctions.
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Fe3O4 is an attractive material in the synthesis of multi-component heterojunctions,
owing to its good photocatalytic and especially magnetic properties, which promote not
only the reaction activity but also the separation efficiency of catalysts from liquid solutions.
Adil Raza et al. [141] prepared a Fe3O4/TiO2/g-C3N4 composite using a hydrothermal
method, finding that anatase TiO2 and magnetic Fe3O4 can enter the g-C3N4 frame if treated
at 200 ◦C. The composites show efficient activity for RhB and MO degradation under visible-
light irradiation, with degradation conversions of 96.4% and 90%, respectively, which are
3.73 and 2.74 times higher than that of g-C3N4. Amir Mirzaei [142] prepared petal-like
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Fe3O4-ZnO@g-C3N4 composites using an in situ growth method, finding that the hydrolysis
of urea (precursor) produces stable and continuous OH− ions, which can react with zinc
ions and control the growth of nuclei. The coating of g-C3N4 corrodes the surface of Fe3O4-
ZnO and creates pores in the structure, benefiting electron transfer, while the presence of
Fe3O4 not only reduces the e−/h+ recombination rate by accepting useless electrons, but
also improves the separation efficiency of catalysts from solution (via a magnet) owing to
its magnetic properties (Figure 13a). Moreover, the composite is stable and no leaching
of Zn2+ and Fe2+ ions is observed in the reaction of photocatalytic SMX degradation
(Figure 13b,c). This suggests that g-C3N4 acts not only as a semiconductor contributing
to the photocatalytic reaction, but also a protective layer against photo-corrosion of the
Fe-ZnO surface. Similar phenomena are observed for other composites, e.g., Ag2O/g-
C3N4/Fe3O4 [53], ZnO/Fe3O4/g-C3N4 [143] and α-Fe2O3/g-C3N4/ZnO [144].
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In addition to simple metal oxide, compound oxides are also interesting materials in
catalysis, and they usually exhibit different electronic and chemical properties relative to
their parent materials. Many compound metal oxides have been used to couple with g-C3N4
and form heterojunctions. Among them, perovskite oxides with an ABO3 structure attract
much attention owing to their unique physical and chemical properties, such as variable
ion valences, controllable oxygen vacancies, adjustable redox properties and the ability
to accommodate foreign ions [145–147]. The typical perovskite oxide, CaTiO3 (CT), has a
band gap of ~3.5 eV, which means that its photocatalytic activity is limited to ultraviolet
excitation. However, when it is coupled with narrow-band-gap semiconductors such as
g-C3N4 to form binary heterojunctions, the large band gap of CT can efficiently enhance the
photocatalytic activity of g-C3N4 under visible light by promoting the charge-separation
efficiency. Kumar et al. [148] found that the combination of 2D CT nanosheets with g-C3N4
flakes, to form 2D/2D composite nanoflake (CT/CN), greatly increased the BET surface
area to 50.7 m2/g, which is larger than that of CT nanosheets (29.3 m2/g) and g-C3N4
flakes (41.0 m2/g). Hence, more active sites can be exposed on the surface, shortening the
bulk diffusion length and reducing the e−/h+ recombination rate. Ye et al. [149] reported
that the fabrication of 1D CoTiO3 rod–2D g-C3N4 flake Z-scheme heterojunctions (CT-U)
improves not only e−/h+ separation efficiency, but also redox ability. SEM images show
that the CoTiO3 rods are fully wrapped with g-C3N4, forming heterogeneous interfaces
that are beneficial to electron transfer (Figure 14a–d). As a result, CT-U exhibited a reaction
rate of 858 µmol/h/g for the hydrogen evolution reaction, which is about two times higher
than that obtained from g-C3N4.
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The effects of surface morphology on photocatalytic activity are documented by Zhang
et al. [151], who used KNbO3 as a model catalyst and found that its efficiency for the pho-
tocatalytic conversion of methanol to hydrogen depends intimately on the morphology,
with an order of cubic > orthogonal > tetragonal. On this basis, a cubic KNbO3/g-C3N4
composite was synthesized and it exhibited excellent activity for photocatalytic hydrogen
production, owing to the close contact between KNbO3 cubes and g-C3N4 nanosheets,
which forms active heterojunction interfaces and effectively inhibits the e−/h+ recombina-
tion rate in the system [152]. With the same principle, many ABO3/g-C3N4 composites are
prepared and reported in the literature, such as LaFeO3/g-C3N4 [153], g-C3N4/SrTiO3 [154]
and LaMnO3/g-C3N4 [155].

As well as perovskite oxides, spinel oxides with an AB2O4 structure are also promising
materials in catalysis [156,157]. Compared to ABO3 perovskites, AB2O4 spinels have a
narrower band gap and stronger responses to visible light. Moreover, the AB2O4 spinels
can accommodate transitional metals at both the A- and B-sites; thus, the metals at both
the A- and B-sites can contribute to the reactions. For example, Chang et al. [158] reported
that Z-scheme NiCo2O4/g-C3N4 heterojunctions exhibit not only a larger surface area
(141.7 m2/g) than g-C3N4 (89.2 m2/g) and NiCo2O4 (98.8 m2/g), but also higher photo-
activity for water splitting than Co3O4/g-C3N4 and NiO/g-C3N4, owing to their abundant
active sites and good photoelectric properties.

Some spinel oxides (e.g., CuFe2O4) also have magnetic properties, exhibiting the
advantages of easy separation. In the research of Yao et al. [150], they constructed a type
II CuFe2O4@g-C3N4 heterojunction, in which the CuFe2O4 and g-C3N4 are intertwined
to form a three-dimensional hybrid structure that is beneficial to electron transfer. As a
result, the material shows improved e−/h+ separation efficiency and photocatalytic activity
compared to the respective g-C3N4, CuFe2O4 and g-C3N4/CuFe2O4 mixtures. Moreover,
the material exhibits good easy-to-separate magnetism owing to its magnetic properties
(Figure 14e), and thus, can be well recycled in the reaction.

3. Applications of g-C3N4-Based Photocatalysts

Its promising optical and physicochemical properties enable g-C3N4, utilizing sun-
light, to solve the problems of environmental pollution and energy crises, while avoiding
secondary pollution. In the following, we briefly introduce the application of g-C3N4-based
materials in photocatalysis [159–162], including water splitting to generate H2 and O2, the
degradation of pollutants, CO2 reduction and bacterial disinfection.
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3.1. Photocatalytic Water Splitting for H2

Because of the decreasing storage of fossil fuels and their negative impacts on the
environment (releasing CO2 for example), the use of green and renewable hydrogen fuels
attracts much attention from scientists. The photocatalytic splitting of water is an ideal
way to generate hydrogen and has become a hot topic in recent years. Figure 15 presents a
simplified diagram of splitting water into hydrogen and oxygen over g-C3N4 under light
irradiation. First, g-C3N4 is excited by photons to generate electrons, which then jump to
the CB, leaving holes at the VB. The photogenerated e− and h+ flow to the surface of g-C3N4,
reducing and oxidizing the adsorbed water to hydrogen and oxygen, respectively. However,
the generated e−/h+ will rapidly recombine each other due to the Coulombic attraction,
losing activity. The improvement in the separation efficiency of the photogenerated e−/h+

pairs, thus, is a challenging topic in the field of g-C3N4 photocatalysis.
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Figure 15. Scheme of photocatalytic water splitting into H2 and O2 over g-C3N4 under light irradiation.

To achieve this, the coupling of g-C3N4 with metal oxide is a solution, which can
separate e−/h+ pairs in space by forming an opposite flow of e− and h+ (for type II
heterojunctions), or by inducing the recombination of unused e− and h+ (for Z-Scheme
heterojunctions), as reported in the literature [163,164]. Shi et al. [165] reported the in situ
synthesis of MoO3/g-C3N4, via co-pyrolysis of MoS2 and melamine, for photocatalytic
water splitting to hydrogen, finding that the activity of g-C3N4 was significantly enhanced
with the increase in MoO3 content. It is possible that the use of layered MoS2 as a precursor
not only improves the dispersion of MoO3 on g-C3N4, but also enhances the interactions
between them. Li et al. [166] synthesized W18O49/g-C3N4 composites by roasting a g-C3N4-
impregnated ammonium tungstate solution. The loading of W18O49 greatly improves
the surface area (by about five times) and exhibits excellent activity for a photocatalytic
hydrogen evolution reaction, with a reaction rate of 912.3 µmol·g−1·h−1, which is 9.7 times
higher than that of g-C3N4.

The coupling of g-C3N4 with two metal oxides could be more interesting when com-
pared to that with single-metal oxide, as multiple heterojunctions can be established,
exhibiting rich optical properties, and hence, better photocatalytic activities. This is ob-
served in many studies [167–169]. For example, Wang et al. [170] found that Fe2O3@MnO2
core-shell g-C3N4 ternary composites can form double heterojunctions, which provide
abundant channels for electrons transfer, exhibit enhanced optical properties and allow
the two half-reactions (the production of hydrogen and oxygen) to occur on the opposite
surfaces of the semiconductor (Figure 16a–c); this results in improved activity for both
hydrogen and oxygen production, with an optimal reaction rate of 124 µmol·h−1 and
60 µmol·h−1, respectively (Figure 16d).
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Figure 16. (a) PL spectra and (b) photocurrent response of C3N4 and Fe2O3@MnO2/C3N4 samples;
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3.2. Photocatalytic Reduction of CO2 to Renewable Hydrocarbon Fuels

With increasing global warming, it is critical to find effective ways to deal with
greenhouse gases. Carbon dioxide (CO2) is not only a typical greenhouse gas but also
a valuable C1 resource. Hence, utilizing solar energy to reduce CO2 into higher-value
chemicals shows great advantages in solving the problems of both global warming and
energy crises. In the past few years, g-C3N4 has been employed as a photocatalyst for CO2
reduction owing to its high CB potential, which can activate CO2 by donating electrons to
the unoccupied orbits of CO2. The photocatalytic CO2 reduction involves a proton-assisted
multi-electron process, as shown in Equations (1)–(5) below [171]. From the viewpoint of
thermodynamics, CO2 is gradually reduced to HCOOH, CO, HCHO, CH3OH and CH4 by
receiving multiple (2, 2, 4, 6 and 8) electrons and protons, accompanying the increase in
reduction potential. This means that the photocatalyst used to reduce CO2 should have
strong redox capability in order to supply sufficient driving force for the reaction.

CO2 + 2H+ + 2e− → HCOOH
E0

redox = −0.61V (vs. NHE at pH 7)
(1)

CO2 + 2H+ + 2e− → CO + H2O
E0

redox = −0.53V (vs. NHE at pH 7)
(2)

CO2 + 4H+ + 4e− → HCHO + H2O
E0

redox = −0.48V (vs. NHE at pH 7)
(3)

CO2 + 6H+ + 6e− → CH3OH + H2O
E0

redox = −0.38V (vs. NHE at pH 7)
(4)

CO2 + 8H+ + 8e− → CH4 + 2H2O
E0

redox = −0.24V (vs. NHE at pH 7)
(5)
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ZnO can absorb CO2 and has a CB potential (ECB) of −0.44 eV, which is more negative
than the reduction potential of CO2. Therefore, the combination of ZnO and g-C3N4 would
benefit the CO2 reduction reaction. Indeed, it is found that although the deposition of
ZnO has negligible effects on the light absorption capacity and surface area of g-C3N4,
the ZnO/g-C3N4 composite shows better photocatalytic activity for CO2 reduction than
individual ZnO and g-C3N4, due to the formation of heterojunctions that facilitate the sepa-
ration of e−/h+ pairs [172]. The CO2 conversion rate obtained from ZnO/g-C3N4 reaches
45.6 µmol/g/h, which is 4.9 times and 6.4 times higher than that obtained from g-C3N4 and
P25, respectively. Additionally, based on the fact that the zeta potential of ZnO is positive
and that of g-C3N4 is negative, Nie et al. [173] constructed a ZnO/g-C3N4 composite using
an electrostatic self-assembly method, as shown in Figure 17a,b. The combination of them
induces synergistic effects that are conducive to photocatalytic reactions, in which the ZnO
microsphere prevents falling g-C3N4 nano flakes from gathering, and the g-C3N4 improves
light utilization efficiency through the multi-scattering effect (Figure 17c).
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In addition to ZnO, many other metal oxides can couple with g-C3N4 and contribute
to the CO2 reduction reaction. For example, Bhosale et al. [174] employed a wet chemical
method to couple FeWO4 with g-C3N4, forming a Z-scheme g-C3N4/FeWO4 photocatalyst;
it showed good activity for the reduction of CO2 to CO without any medium, with a CO
production rate of 6 µmol/g/h, which is 6 and 15 times higher than that of individual
g-C3N4 and FeWO4.

3.3. Photocatalytic Degradation of Pollutants

With the rapid development of the economy, various toxic pollutants emitted from
industrial plants have been discharged to the environment and have seriously destroyed
the ecological system. The removal of pollutants and the remediation of the environment
have thus become essential topics and have attracted broad attention in recent years. Pho-
tocatalysis is a prospective technology for pollutant removal, and is able to mineralize
organic pollutants into CO2 and H2O by producing oxidizing intermediates (such as •O2

−,
•OH and h+). Depending on the properties of the pollutants, three reaction types can be
classified: (1) the removal of organic pollutants in aqueous solution, such as dye [166,175]
and antibiotic degradation [176]; (2) the removal of heavy-metal cations in aqueous so-
lution, such as the reduction of chromium (VI) [177]; and (3) the removal of organic or
inorganic pollutants in gas phase, such as the degradation of ortho-dichlorobenzene [178],
acetaldehyde [179] and nitric oxide [180].

The Fenton advanced oxidation process (with an Fe2+ and H2O2 system) is a traditional
technology used to treat industrial wastewater, but it is limited to a narrow pH range (<3)
and causes secondary pollution due to the production of iron sludge. For this reason, it is
proposed that a photocatalyst should be used instead of Fe2+, to activate H2O2 into •OH
radicals under light irradiation conditions, which can be achieved in a wide pH range
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without producing secondary pollutants. Hence, it is a green route to removing organic
pollutants in aqueous solution and has good prospects for industrial use.

In this respect, Xu et al. [181] recently reported that the LFO@CN photocatalyst
is highly efficient for the oxidative degradation of RhB with H2O2 under visible-light
irradiation, with 98% conversion obtained within 25 min, and the material can be recycled
for four cycles with no appreciable deactivation. Moreover, when applying a ternary
LaFe0.5Co0.5O3/Ag/g-C3N4 heterojunction that consists of a redox part LaFe0.5Co0.5O3
(LFCO), photo part g-C3N4 and plasmonic part (Ag), for the degradation of tetracycline
hydrochloride (TC), in the presence of H2O2 and light irradiation, the system exhibits good
activity due to a photo-Fenton effect induced in the reaction, as shown in Figure 18 [182].
In this system, H2O2 is first activated into •OH radicals and OH− anions over the LFCO,
and the OH− anions subsequently react with holes (h+) produced at the VB band of LFCO
to form more •OH radicals. Hence, H2O2 can be fully utilized to oxidize TC in the reaction.
Meanwhile, the O2 dissolved in the solution can react with the electrons (e−) generated
at the CB band of g-C3N4 and form •O2

−, which is also a strong oxidant that is able to
oxidize TC into CO2 and H2O. These results support that g-C3N4-based catalysts have good
chemical stability and can be an effective substitute for Fenton catalysts in environmental
purification.
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In addition to the direct addition of H2O2, the photocatalytic in situ generation
of H2O2 in the reaction for pollutant oxidation, which is a more promising way but a
more challenging topic, is also possible. For example, Xu et al. reported that ternary
g-C3N4/Co3O4/Ag2O heterojunctions can accelerate the mineralization of RhB due to
the presence of H2O2 in situ, produced from O2 reduction [183]. Through studying the
catalytic behavior of the composites in the electrochemical oxygen reduction reaction (ORR),
they found that the average number of electrons transferred in the reaction is 2.07, which
indicates that the two-electron O2 reduction process is the dominant step in the reaction.

The morphology of metal oxide, the interface interaction between metal oxide and
g-C3N4 and the method of coupling metal oxide with g-C3N4 are also crucial factors
affecting the photocatalytic performance of g-C3N4 for pollutant removal. For instance, the
coupling of cubic CeO2 (3~10 nm) with g-C3N4 using a hydrothermal method can greatly
improve the activity of g-C3N4 for methyl orange degradation, with the reaction rate
reaching 1.27 min−1, which is 7.8 times higher than that of g-C3N4 alone (0.16 min−1) [184].
The hybridization of NiO with g-C3N4 causes a red shift in the UV absorption edge and
boosts the ability of light response; hence, it exhibits improved activity for methylene blue
degradation, which is about 2.3 times higher than that of g-C3N4 [185]. Similar phenomena
are also observed for other materials, e.g., TiO2-In2O3@g-C3N4 [186].

The heavy-metal ions produced in electroplating, metallurgy, printing and dyeing,
medicine and other industries cause serious damage to the ecological environment. Cr(VI)
is a typical heavy metal in wastewater and its removal receives wide attention. The
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photocatalytic reduction of Cr(VI) to Cr(III) is an efficient way to treat Cr(VI)-containing
wastewater, due to its simple process, energy savings, high efficiency and lower levels
of secondary pollution [187]. It has been reported that the in situ self-assembly of g-
C3N4/WO3 in different organic acid media can lead to various surface morphologies and
catalytic activities for Cr(VI) removal, as the number of carboxyl groups in organic acid
greatly affects the shape and performance of g-C3N4/WO3. Its synthesis in ethanedioic
acid medium, which contains two carboxyl groups, yields a disc shape and has the best
activity for nitroaromatic reduction (Figure 19a,b). Furthermore, the material has good
stability for the reaction, with no appreciable activity loss within four cycles, as shown in
Figure 19c [188].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 23 of 34 
 

 

improve the activity of g-C3N4 for methyl orange degradation, with the reaction rate 
reaching 1.27 min−1, which is 7.8 times higher than that of g-C3N4 alone (0.16 min−1) [184]. 
The hybridization of NiO with g-C3N4 causes a red shift in the UV absorption edge and 
boosts the ability of light response; hence, it exhibits improved activity for methylene 
blue degradation, which is about 2.3 times higher than that of g-C3N4 [185]. Similar 
phenomena are also observed for other materials, e.g., TiO2-In2O3@g-C3N4 [186]. 

The heavy-metal ions produced in electroplating, metallurgy, printing and dyeing, 
medicine and other industries cause serious damage to the ecological environment. 
Cr(VI) is a typical heavy metal in wastewater and its removal receives wide attention. 
The photocatalytic reduction of Cr(VI) to Cr(III) is an efficient way to treat 
Cr(VI)-containing wastewater, due to its simple process, energy savings, high efficiency 
and lower levels of secondary pollution [187]. It has been reported that the in situ 
self-assembly of g-C3N4/WO3 in different organic acid media can lead to various surface 
morphologies and catalytic activities for Cr(VI) removal, as the number of carboxyl 
groups in organic acid greatly affects the shape and performance of g-C3N4/WO3. Its 
synthesis in ethanedioic acid medium, which contains two carboxyl groups, yields a disc 
shape and has the best activity for nitroaromatic reduction (Figure 19a,b). Furthermore, 
the material has good stability for the reaction, with no appreciable activity loss within 
four cycles, as shown in Figure 19c [188]. 

 
Figure 19. (a) The mechanism of organic acid inducing the growth of WO3 with different shapes 
and the photocatalytic process occurring over g−C3N4/WO3; (b) photocatalytic activity of different 
samples; and (c) recycle stability for the reduction of Cr(VI) and (m) cyclic experiments of 
W−EA−CN for photoreduction of Cr(VI). Used with permission from [188]. Copyright 2012 Royal 
Society of Chemistry. 

Bi2WO6 is a promising semiconductor that can couple with g-C3N4 and form a het-
erojunction for the photocatalytic treatment of Cr(VI)-containing wastewater. Song et al. 
[189] found that a C3N4/Bi2WO6 composite prepared using a hydrothermal method ex-
hibits a surface area up to 46.3 m2/g and shows a rate constant of 0.0414 min−1 for the 
photocatalytic reduction of Cr(VI), as the high surface area of the catalyst facilitates not 
only the reactant’s adsorption, but also the visible-light absorption. 

Photocatalysis is also effective for removing gas-phase pollutants and receives great 
interest from scientists. It is known that air pollution is a big problem for the environ-
ment, and causes serious harm to the human body and ecological systems by forming 
acid rain, chemical smog, particulate matter, etc. Hence, seeking an effective and feasible 
technology for its removal is a challenging topic. Photocatalysis provides a way to re-
move air pollutants (e.g., NOx) by installing catalysts either inside the exhaust pipe or 
on the road surface [1]. As a typical photocatalyst, g-C3N4-based materials are also 
widely investigated in this aspect. Zhu et al. reported that g-C3N4 is active in NO remov-
al via thermal catalysis, and proposed that the N atoms of g-C3N4, with a lone electron 
pair, serve as the active site of NO by donating electrons to weaken the N-O bond order 

Figure 19. (a) The mechanism of organic acid inducing the growth of WO3 with different shapes
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for photoreduction of Cr(VI). Used with permission from [188]. Copyright 2012 Royal Society of
Chemistry.

Bi2WO6 is a promising semiconductor that can couple with g-C3N4 and form a hetero-
junction for the photocatalytic treatment of Cr(VI)-containing wastewater. Song et al. [189]
found that a C3N4/Bi2WO6 composite prepared using a hydrothermal method exhibits a
surface area up to 46.3 m2/g and shows a rate constant of 0.0414 min−1 for the photocat-
alytic reduction of Cr(VI), as the high surface area of the catalyst facilitates not only the
reactant’s adsorption, but also the visible-light absorption.

Photocatalysis is also effective for removing gas-phase pollutants and receives great
interest from scientists. It is known that air pollution is a big problem for the environment,
and causes serious harm to the human body and ecological systems by forming acid rain,
chemical smog, particulate matter, etc. Hence, seeking an effective and feasible technology
for its removal is a challenging topic. Photocatalysis provides a way to remove air pollutants
(e.g., NOx) by installing catalysts either inside the exhaust pipe or on the road surface [1].
As a typical photocatalyst, g-C3N4-based materials are also widely investigated in this
aspect. Zhu et al. reported that g-C3N4 is active in NO removal via thermal catalysis, and
proposed that the N atoms of g-C3N4, with a lone electron pair, serve as the active site of
NO by donating electrons to weaken the N-O bond order [190]. This lays the foundation or
using photocatalysis for NO removal, as electrons can be effectively excited from g-C3N4
under light irradiation.

However, it is known that the surface area of g-C3N4 prepared using the thermal
condensation method is small, which grfieatly limits the light absorption capacity, the
e−/h+ separation efficiency and other physicochemical properties; thus, many strategies
have been adopted to overcome this problem. For example, Sano et al. [191] reported
that pretreating melamine with NaOH solution before the condensation process favors the
hydrolysis of unstable domains and the generation of mesopores in the structure of g-C3N4,
leading to an increase in surface area from 7.7 m2/g to 65 m2/g, and the NO oxidation
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activity is accordingly increased 8.6 times. Duan et al. [180] found that flower-like g-C3N4
prepared using the self-assembly method can notably improve photocatalytic activity for
NO oxidation compared to bulk g-C3N4, owing to the enlargement of the BET surface
area, the formation of nitrogen vacancies, the condensation of π–π layer stacking, and
the improvement in e−/h+ separation efficiency. The alternation of the precursor, e.g.,
urea [192] and guanidine hydrochloride [193] is also efficient in preparing g-C3N4 with a
large surface area and improving photocatalytic performance.

3.4. Sterilization and Disinfection

In addition to the above applications, photocatalysis is also widely applied to inacti-
vate pathogens in surface water owing to its broad compatibility, long durability, anti-drug
resistance and thorough sterilization [194]. Bacteria, such as salmonella, staphylococcus
aureus and bacillus anthracis, are commonly used as model pathogens to evaluate photocat-
alytic disinfection efficiency. Since the first work of Matsunaga et al. [195] on photochemical
sterilization in 1985, this technique has rapidly developed and receives great interest from
scientists. The principle of photocatalytic sterilization is to excite and separate the e−/h+

pairs via illumination; the photoinduced electrons and/or holes then inactivate the bacteria
by directly or indirectly inflicting oxidative damage on their organs (through the formation
of •O2

−, •OH, etc.). Hence, the disinfection efficiency of materials closely depends on the
properties that influence the generation and separation of e−/h+ pairs, e.g., the surface area,
the band gap and the surface morphology, as reported for other photocatalytic processes.

In the case of g-C3N4, Huang et al. [196] found that mesoporous g-C3N4 synthesized
using the hard template method can inactivate most of the bacteria (e.g., E. coli K-12) within
4 h, owing to its large surface area, which allows more active sites exposed on the surface to
produce h+ for bacterial disinfection. To support that the inactivation of bacteria is caused
by photocatalysis, Xu et al. [197] conducted a dark contrasting experiment using a porous
g-C3N4 nanosheet (PCNS) as the photocatalyst and E. coli as the model bacteria; they found
that the adsorption of E. coli on PCNS reaches equilibrium within 1 h and about 85.5% of
E. coli survive after 4 h, while nearly 100% of E. coli are killed by PCNS within 4 h under
visible-light irradiation (Figure 20a). This demonstrates that the PCNS has little toxic effect
on E. coli and the disinfection is mainly caused by the electrons or holes induced from
PCNS under light irradiation. Figure 20b–g display the morphology of E. coli before and
after photocatalytic disinfection, observed from TEM images, showing that the bacterial
cells are tightly bound to PCNS and the outer membrane is partially damaged after 4 h of
irradiation.
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In addition to bacterial infection, viral outbreaks, including SARS, bird flu, Ebola
and the recent COVID-19, are also important events related to human health, and they
are generally more resistant than bacteria to conventional disinfection due to their small
size. Thus, the inactivation of viruses normally requires strong oxidative agents. g-C3N4-
based materials have good photocatalytic reactivity to produce strong oxidative agents,
e.g., •O2

− and •OH; hence, they are potential photocatalysts for virus inactivation. It has
been reported that phage MS2 can be completely inactivated by g-C3N4 under visible-light
irradiation within 360 min [198], and the main active species for the reaction are •O2

−

and •OH. Figure 21 shows that the phage MS2 in contact with g-C3N4 maintains integrity
before irradiation, and its structure is severely damaged after 6 h of visible-light irradiation.
The loss of protein triggers the leakage and rapid destruction of internal components, and
ultimately leads to the death of the virus without regrowth.
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4. Summary and Outlook

We provide an overview of the synthesis and photocatalytic applications of g-C3N4
and its coupling with single- or multi-metal oxides. Currently, the improvement in the
photocatalytic performance of g-C3N4 mainly focuses on three aspects: (1) enhancing the
adsorption capacity for target reactants, (2) broadening the absorption range to visible light,
and (3) improving the e−/h+ pair separation efficiency. Generally, coupling with metal
oxide can almost accomplish these three aspects, by increasing the surface area, narrowing
the band gap and forming heterojunctions, for example.

Coupling metal oxide semiconductors with suitable energy levels is a promising strat-
egy to improve the activity of g-C3N4 for photocatalytic reactions, by forming type II or
Z-scheme heterojunctions, which facilitate the separation, and hence, the utilization of
e−/h+ pairs. Moreover, the alterable valence of transition metals enables the composites
to exhibit redox properties that benefit the proceeding of reactions undergoing electron
transfer steps. Hence, the coupling of metal oxide semiconductors can widen the applica-
tions of g-C3N4 and may result in synergistic effects (e.g., photo-redox) that facilitate the
proceeding of complex reactions.
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However, because metal oxides are easy to sinter and reduce with g-C3N4 (which
can be regarded as a type of reducing agent) at high temperature, developing a suitable
method to obtain desirable effects on the composites is of great importance. This can be
related to (1) the surface morphology, such as surface area and pore size, which affects,
for example, the ability to absorb light, the spatial separation efficiency of e−/h+ pairs
and the capability to adsorb the reactant; (2) the interface interaction, which influences
the mobility of electrons and/or holes between g-C3N4 and the metal oxide, either for
the formation of the newly balanced band gap (for type II heterojunctions) or for the
recombination of unused electrons and holes (for Z-Scheme heterojunctions); or (3) the
type of heterojunction (type II or Z-Scheme) formed, which depends on the properties of
metal oxide, such as the Fermi level, the band level or the band gap, and the semiconductor
type (p- or n-type). Hence, it is essential to consider the preparation method, the properties
of the metal oxide and the integrating degree between g-C3N4 and the metal oxide, to
obtain the best synergistic effect and fully exhibit the photocatalytic performance of the
g-C3N4/metal oxide composites.

Photocatalytic applications of g-C3N4 and g-C3N4/metal oxide composites for energy
synthesis and environmental protection have been widely reported for gas-, liquid- and
gas–liquid-phase reactions. Because of the redox capability of metal oxides, redox and
photocatalytic processes can simultaneously occur in the reaction, and a synergistic effect
may be induced between them, for instance, the photo-Fenton reaction process. This
improves the reaction rate while making the reaction process complex. Hence, the reaction
process deserves further exploration and investigation in order to reveal and understand
the photocatalytic mechanism, such as the manners of charge transfer, the internal force-
field adjustment, the electron interaction between g-C3N4 and the metal oxide, etc. The
collaboration of advanced characterizations and theoretic simulation calculations would be
useful in this respect and could be a development tendency in photocatalysis in future.
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