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Abstract: Fumonisin B1 is a mycotoxin that is structurally analogous to sphinganine and sphingosine
and inhibits the biosynthesis of complex sphingolipids by repressing ceramide synthase. Based on
the connection between FB1 and sphingolipid metabolism, FB1 has been widely used as a tool to
explore the multiple functions of sphingolipids in mammalian and plant cells. The aim of this work
was to determine the effect of sphingolipids on primary root development by exposing Arabidopsis
(Arabidopsis thaliana) seedlings to FB1. We show that FB1 decreases the expression levels of several
PIN-FORMED (PIN) genes and the key stem cell niche (SCN)-defining transcription factor genes
WUSCHEL-LIKE HOMEOBOX5 (WOX5) and PLETHORAs (PLTs), resulting in the loss of quiescent
center (QC) identity and SCN maintenance, as well as stunted root growth. In addition, FB1 induces
cell death at the root apical meristem in a non-cell-type-specific manner. We propose that sphin-
golipids play a key role in primary root growth through the maintenance of the root SCN and the
amelioration of cell death in Arabidopsis.
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1. Introduction

Plant root growth and development depend on the continuous production of cells
in the root apical meristem (RAM), which harbors a stem cell niche (SCN) that supports
continuous postembryonic organogenesis. In Arabidopsis (Arabidopsis thaliana), several
key factors have been identified that are involved in the specification of the SCN and the
transition from cellular proliferation to differentiation, including the two auxin-inducible
AP2-type transcription factors PLETHORA1 (PLT1) and PLT2, as well as the GRAS tran-
scription factors SHORT-ROOT (SCR) and SCARECROW (SHR) [1–3]. PLTs function in a
dose-dependent manner: high PLTs’ concentrations maintain the quiescent center (QC) and
stem cell activity, intermediate concentrations regulate the division and differentiation of
the transit-amplifying cells, and low concentrations allow cell elongation and cell differenti-
ation [4]. The plant hormone auxin also plays major roles in the maintenance of cell division
and the patterning of the root meristem [5–7]. Auxin efflux facilitators PIN-FORMED (PIN)
family proteins generate and stabilize the auxin maximum and gradient, thus guiding
root growth [8]. Being of a sessile nature, plants are continuously exposed to various
environmental stress factors that can affect DNA replication or cause DNA damage [9–12].
Left unrepaired, DNA damage in actively dividing cells disrupts normal cellular functions
and may thus severely affect plant growth and development [11,13–15].

Fumonisin B1 (FB1), an abundant mycotoxin, is the structural analog of the sphin-
golipids sphinganine and sphingosine and perturbs sphingolipid metabolism [16–18]. In
mammals, FB1 inhibits the activity of all six known ceramide synthases, therefore causing a
decrease in long-chain and very-long-chain fatty acid sphingolipid levels [19]. In Arabidop-
sis, FB1 selectively inhibits the ceramide synthases LAG ONE HOMOLOGUE1 (LOH1)
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and LOH3, resulting in a lower very-long-chain fatty acid ceramide and sphingolipids
level [20,21]. FB1 has been widely used as a tool to explore the multiple functions of
sphingolipids in mammals and plants [22–26].

Sphingolipids, enriched in the outer leaflet, comprise an estimated ~40% of the to-
tal lipids in the plant plasma membrane and are essential for eukaryotic life [21,27–29].
FB1-mediated sphingolipid metabolism remodels the membrane structure and influences
numerous processes. Upon FB1 treatment, tobacco (Nicotiana tabacum) BY2 cells showed
a severe drop in growth rate and delayed cell division, which was accompanied by the
formation of endoplasmic reticulum (ER)-derived tubular aggregates as well as inhibited
ER-to-Golgi cargo transport [30]. Sphingolipid metabolism has also been implicated in the
mediation of programmed cell death in plants, as evidenced by sphingolipid biosynthesis
mutants or FB1 treatments [25,31–33].

Recent studies have identified several mutants exhibiting a dwarf stature that has
been attributed to altered sphingolipid profiles. The inhibition of lateral root emergence by
reduced sphingolipid levels was correlated with the selective aggregation of the plasma
membrane-localized auxin carriers AUXIN RESISTANT1 (AUX1) and PIN1 in the cy-
tosol [20]. PASTICCINO2, a very-long-chain hydroxy fatty acyl-CoA dehydratase, in-
teracted with cyclin-dependent kinase A, which is involved in the regulation of cell divi-
sion [34]. The disruption of sphingolipid metabolism by FB1 treatment or mutants indicated
that sphingolipids participate in root development [20,34–36]. The overexpression of the
ceramide synthase gene LOH2 also resulted in changed sphingolipid profiles and dwarf
plants [37]. However, the precise mechanism by which sphingolipids regulate plant root
development remains unclear.

Here, we used FB1 as a tool to explore the precise mechanism of action by which
sphingolipids influence primary root development. We discovered that FB1 arrests primary
root growth by reducing the expression of several auxin efflux facilitator PIN genes and the
key stem cell niche-defining transcription factor genes WOX5 and PLTs. Furthermore, FB1
induced cell death emergence in the RAM in a non-cell-type-specific manner.

2. Results
2.1. FB1 Inhibits Arabidopsis Primary Root Development

To assess the effect of FB1 in controlling primary root development, we monitored the
growth rate of Arabidopsis primary roots after short-term FB1 exposure by transferring
wild-type seedlings at four days after germination (4 DAG) to medium containing various
FB1 concentrations, followed by incubation for three days. We observed that primary
root elongation is strongly inhibited by FB1 concentrations of 1 µM and higher compared
to untreated seedlings (Figure 1A,B). The root growth rate was comparable in seedlings
treated with 1 or 2.5 µM FB1 during the first day, but the primary root nearly stopped
elongating on the second day onward after being treated with 2.5 µM FB1. We also observed
a more severe inhibitory effect on root elongation and an almost complete cessation of
growth upon treatment with 5 µM FB1 (Figure 1A,B). Consistent with previous results [20],
seedlings also showed a global inhibition of growth after transferring germinated seeds
to FB1-containing medium for long-term exposure (Figure 1C,D). Thereafter, to minimize
possible artifacts induced by prolonged FB1 exposure at the cellular level, we performed
short-term treatments (16 h) with 2.5 µM FB1 for root development assays.
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5 μM FB1 for 3 days. The white arrowhead indicates the growth length of seedlings after transfer to 

FB1 medium for one day. Scale bar, 1 cm. (B) Primary root growth of wild-type seedlings after trans-

fer to FB1 for 3 days in (A). Data are means ± standard deviation (SD) (n = 15–20). (C) Representative 

images of Arabidopsis seedlings grown in the presence of various concentrations (0, 0.5, or 1 μM) 

of FB1 for 7 days. Scale bar, 1 cm. (D) Primary root length of wild-type seedlings grown in FB1 for 

7 days in (C). Data are means ± SD (n = 15–20). Asterisk (*) denotes significant difference relative to 

the seedlings without FB1, as determined by t-test; p < 0.01. 
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Figure 1. FB1 represses primary root growth. (A) Phenotypes of 4-DAG wild-type seedlings trans-
ferred onto half-strength MS medium (0) or half-strength MS medium containing 0.25, 0.5, 1, 2.5, or
5 µM FB1 for 3 days. The white arrowhead indicates the growth length of seedlings after transfer to
FB1 medium for one day. Scale bar, 1 cm. (B) Primary root growth of wild-type seedlings after transfer
to FB1 for 3 days in (A). Data are means ± standard deviation (SD) (n = 15–20). (C) Representative
images of Arabidopsis seedlings grown in the presence of various concentrations (0, 0.5, or 1 µM)
of FB1 for 7 days. Scale bar, 1 cm. (D) Primary root length of wild-type seedlings grown in FB1 for
7 days in (C). Data are means ± SD (n = 15–20). Asterisk (*) denotes significant difference relative to
the seedlings without FB1, as determined by t-test; p < 0.01.

2.2. Transcriptome Analysis in Response to FB1 Treatment

For an in-depth investigation of the underlying molecular basis of FB1 effects, we per-
formed transcriptome deep sequencing (RNA-seq) to identify differentially expressed genes
(DEGs) between control and FB1-treated seedlings based on three biological replicates.
We identified 5955 DEGs in response to FB1, with 3201 upregulated and 2754 downregu-
lated genes (Figure 2A). A Gene Ontology (GO) term enrichment analysis of these DEGs,
based on the biological process category, revealed a significant enrichment for the terms’
response to hypoxia, organonitrogen compound, root morphogenesis, oxidative stress,
and phytohormone response, most of which are related to stress conditions (Figure 2B and
Supplemental Table S1). Remarkably, the genes associated with root morphogenesis included
the auxin efflux facilitator gene PIN3. These results were in line with phenotypic alterations of
primary root growth in Figure 1 and previously reported data in response to FB1 [20].

2.3. FB1 Alters PIN and PLT Expression Levels in the Roots

In Arabidopsis root development, auxin forms a local gradient at the root tip that
is generated by the auxin efflux facilitators PINs and regulates pattern formation and
the orientation and extent of cell division [8,38,39]. The identification of DEGs enriched
for the GO category of root morphogenesis prompted us to investigate whether the re-
duced primary root length was related to auxin efflux transporter genes. To this end, we
determined the localization and expression of PINs upon FB1 treatment. As shown in
Figure 3, green fluorescent protein (GFP) fluorescence derived from the reporter constructs
PIN1pro:PIN1-GFP, PIN2pro:PIN2-GFP, PIN3pro:PIN3-GFP, and PIN4pro:PIN4-GFP was
lower after treatment with 2.5 µM FB1 for 16 h.



Int. J. Mol. Sci. 2022, 23, 12925 4 of 11Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 12 
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seedlings. The horizontal line indicates the significance threshold for DEGs (p < 0.05). Upregulated 

and downregulated genes are shown with blue and red dots, respectively. (B) Enriched GO terms 
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0.585 (i.e., 935 genes). ShinyGo v0.61 software was used for the GO enrichment analysis. 
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Figure 2. Whole-transcriptome analysis following FB1 exposure. (A) Volcano plot showing dif-
ferentially expressed genes (DEGs) in wild-type seedlings treated with 2.5 µM FB1 compared to
control seedlings. The horizontal line indicates the significance threshold for DEGs (p < 0.05). Up-
regulated and downregulated genes are shown with blue and red dots, respectively. (B) Enriched
GO terms among DEGs. GO functional analysis of DEGs upon treatment with 2.5 µM FB1 with a
|Log2FC| > 0.585 (i.e., 935 genes). ShinyGo v0.61 software was used for the GO enrichment analysis.
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means ± SD. Asterisk (*) denotes significant difference relative to seedlings without FB1, as deter-
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sition of the asymmetric cell divisions in the stem cell area of the root through the modu-
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script, together with E2Fa, was highly induced by FB1 (Supplemental Figure S2). WEE1, 

one key cell cycle regulatory kinase that controls plant growth by arresting dividing cells 

Figure 3. FB1 affects the abundance of PINs and PLTs. The localization pattern and quantification of
fluorescence intensity (green) of PINs and stem cell niche markers treated with 2.5 µM FB1 for 0 and
16 h, respectively. The root tips were stained with propidium iodide (PI) (red). (A) PIN1pro:PIN1-
GFP. (B) PIN2pro:PIN2-GFP. (C) PIN3pro:PIN3-GFP. (D) PIN4pro:PIN4-GFP. (E) SCRpro:H2B-YFP.
(F) SHRpro:SHR-GFP. (G) PLT1pro:PLT1-GFP. (H) PLT2pro:PLT2-GFP. Data are means ± SD. Asterisk
(*) denotes significant difference relative to seedlings without FB1, as determined by t-test; p < 0.01.
Scale bars, 50 µm.
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In Arabidopsis, two main pathways regulate the activity of the RAM: the auxin-
inducible PLT1/PLT2 pathway and the SHR/SCR pathway [1,4,40,41]. PLT1 and PLT2, whose
expression is strongly correlated with auxin gradients in the RAM, provide longitudinal
information [4]. The SHR/SCR pathway provides positional information along the radial
axis [40,41]. As shown in Figure 3, the accumulation pattern of PLT1 and PLT2, measured by
the fluorescence of PLT1pro:PLT1-YFP and PLT2pro:PLT2-YFP reporter constructs, decreased
by 25–40% upon FB1 treatment. By contrast, the abundance and localization of SHR and
SCR were not affected by FB1, as indicated by the SCRpro:H2B-YFP and SHRpro:SHR-GFP
reporter lines.

The RETINOBLASTOMA-RELATED (RBR) protein has been found to define the
position of the asymmetric cell divisions in the stem cell area of the root through the
modulation of the cell cycle regulator E2Fa [42]. We observed that the abundance of RBR
transcript, together with E2Fa, was highly induced by FB1 (Supplemental Figure S2). WEE1,
one key cell cycle regulatory kinase that controls plant growth by arresting dividing cells
in the G2-phase of the cell cycle in response to stress [43], was slightly induced by FB1
(Supplemental Figure S2). Next, we investigated the cell cycle progression by the expression
of cell cycle-related proteins. Among these tested genes, the expression of the Histone H4
gene, which is usually used as a marker of S phase cells, was obviously decreased upon
FB1 treatment (Supplemental Figure S2).

2.4. FB1 Induced Cell Death in the Root Meristem

Interestingly, we detected evidence of cell death for several root meristem cells upon
FB1 treatment, as evidenced by propidium iodide staining (PI), which stains the cell wall
and dead cells (Figure 4). To investigate the occurrence of cell death in greater detail, we
stained the roots of seedlings with PI following treatment with FB1 for different durations
and at various concentrations. We detected no PI-stained cells in the root meristem after
growth in the presence of 1 µM FB1 for three days (Supplemental Figure S1). Dead cells
appeared in the RAM of 20% of seedlings after growth with 2.5 µM FB1 for one day; the
number of dead cells increased with a longer incubation (Figure 4A and Supplemental
Figure S1). In addition, higher doses of FB1 produced more dead cells covering a larger
root area in the meristem (Figure 4). Cells from the QC remained alive, but the expression
of the QC marker WOX5pro:ERGFP (encoding ER-localized GFP) was strongly inhibited in
the presence of FB1 (Figure 4D). The number of the primary root meristem was significantly
smaller upon 1 µM FB1 treatment for three days (Figure 4E). After a longer FB1 exposure,
we observed no death cells in the RAM and the QC cells divided (Figure 5).

The cell death phenotype in the meristem induced by FB1 may be corrected with the
constitutive activation of DNA damage responses. To test this hypothesis, we measured
the expression of the DNA damage response genes ETHYLENE RESPONSE FACTOR115
(ERF115), RADIATION SENSITIVE51 (RAD51), BREAST CANCER SUSCEPTIBILITY1
(BRCA1), and POLY(ADP-RIBOSE) POLYMERASE1 (PARP1) by reverse transcription quan-
titative PCR (RT-qPCR). ERF115 activity is needed when stem cells are damaged [44].
RAD51 and BRCA1 encode two DNA repair regulators that are involved in the repair of
double-stranded DNA breaks, and the expression of PARP2 is induced by ionizing radiation
and radiomimetic drugs [45–47]. As shown in Figure 4F, the expression levels of all four
genes were elevated after exposure to FB1.
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Figure 4. FB1 induces cell death in the root apical meristem. The root tips were stained with PI (red).
(A) to (C) Confocal images of wild-type seedlings treated with FB1 at different concentrations (0,
2.5, or 5 µM) for (A) 1 day, (B) 2 days or (C) 3 days. (D) Fluorescence pattern of WOX5pro:ERGFP
(green) in wild-type root tips treated with 2.5 µM FB1 for 0, 1, or 2 days. (E) Root meristem cell
number of wild-type seedlings treated with 1 µM FB1 for 3 days. (F) Relative transcript levels of DNA
damage response genes in wild-type seedlings treated with 2.5 µM FB1 for 0 or 16 h, as determined
by RT-qPCR analysis. Data are means ± SD. Asterisk (*) denotes significant difference relative to
seedlings without FB1, as determined by t-test; p < 0.01. Scale bars, 50 µm.
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Figure 5. FB1 induces QC cells divided. (A,B) Expression pattern of WOX5::ERGFP (green) in wild-
type seedling. (C,D) Expression pattern of WOX5::ERGFP (green) in wild-type seedling grown in
half-strength MS containing 0.5 µM FB1 for 9 days. The root tips were stained with PI (red). The
arrowhead in (A,C) indicates the QC cells. Bars = 25 µm.
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3. Discussion

Sphingolipids not only function as structural components of membranes but also act
as bioactive molecules involved in signal transduction and cell regulation in all eukaryotic
cells [21,27,29]. However, little is known about the function of sphingolipids during plant
root development. FB1 is a mycotoxin from Fusarium moniliforme that inhibits ceramide
synthases and disturbs sphingolipid metabolism [20,22,48,49]. FB1 has been widely used
as a tool to explore the multiple functions of sphingolipids in mammals and plants [22–26].
Sphingolipid metabolism disturbed by the application of 2.5 µM FB1 for 16 h was identical
to that induced by a 9-day treatment with 0.5 µM FB1 [20]. Inspired by these studies,
FB1 was chosen as a tool to explore the precise mechanism of action of sphingolipids in
primary root development. The results obtained in this study indicated that FB1 repressed
Arabidopsis primary root growth in a dose-dependent manner (Figure 1).

In Arabidopsis, auxin gradients are central to the identity of the QC and the SCN in the
root meristem. Treatment with FB1 decreased the expression of the auxin output reporter
DR5:GUS (where the β-GLUCURONIDASE [GUS] reporter gene is driven by the synthetic
DR5 promoter), mainly resulting from impaired PIN auxin transporters (Figure 3) [20]. In
Arabidopsis, the auxin-inducible PLT1/PLT2 pathway and the SHR/SCR pathway are the
two main pathways responsible for root SCN maintenance [4]. The reduced expression of
PLT1 and PLT2 by FB1 demonstrated that disturbed sphingolipid homeostasis may regulate
the expression of the SCN-defining transcription factor PLT genes (Figure 3). WOX5 is an
important regulator that is specifically expressed in root QC cells to regulate the activity
of distal SCNs [50]. Upon short-term treatment with FB1, WOX5 expression was strongly
repressed (Figure 4D). Under normal conditions, a low QC proliferation rate maintains the
root structure and meristem function [10,44,50]. Longer FB1 treatment induced cell division
in the QC (Figure 5). The RBR protein, which defines the position of the asymmetric cell
divisions in the stem cell area of the root through the modulation of the cell cycle regulator
E2Fa [42], was much higher by FB1 (Supplemental Figure S2). WEE1, which controls plant
growth by arresting dividing cells in the G2-phase of the cell cycle in response to stress [43],
was also slightly induced by FB1. The expression of the Histone H4 gene, used as a marker
of S phase cells, was obviously decreased upon FB1 treatment (Supplemental Figure S2),
indicating that the cell cycle progression was disturbed. From the data above, we conclude
that sphingolipids may play an important role in maintaining the identity of the QC and
stem cell activity.

As sessile organisms that are unable to escape from environmental hazards, plants
utilize multiple pathways to cope with environmental stresses that can negatively affect
DNA replication or cause DNA damage [10,11,51–54]. With its particular sensitivity to DNA
damage induced by environmental stresses, the SCN has been shown to undergo cell death,
thus protecting the genomic integrity and RAM activity to survive from severe stress [9].
Cell death triggered by γ irradiation, X-rays, or radiomimetic drugs such as bleomycin
and zeocin in the root stem initial cells is cell-type-specific, with the stele stem cells (SSCs)
being especially prone to entering the cell death program [9,44,55]. In most cases, chilling
stress induces cell death in columella stem cell daughters [56]. Actinomycin D-induced cell
death prefers the SSCs and stele cells in the RAM [57]. As opposed to the cell-type-specific
cell death described above, we observed that FB1 induced cell death in the RAM in a
non-cell-type-specific manner. Higher doses of FB1 caused more dead cells in the meristem
(Figure 4). Regeneration programs are activated by DNA damage-induced cell death, after
which QC cells divide in response to the activation of ERF115 [44]. The divided QC cells
and induced expression of ERF115 by FB1 suggest that the ERF115-dependent activation of
QC cell division may take place in response to FB1. Therefore, further experiments will be
necessary to elucidate the precise mechanism of FB1-induced cell death in the RAM.
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4. Materials and Methods
4.1. Plant Materials and Growth Conditions

The wild-type was represented by ecotype Columbia-0 (Col-0), and the transgenic lines
were as follows: PIN1pro:PIN1-GFP [58], PIN2pro:PIN2-GFP [59], PIN3pro:PIN3-GFP [60],
and PIN4pro:PIN4-GFP [8]; SCRpro:H2B-YFP [61]; SHRpro:SHR-GFP [62]; PLT1pro:PLT1-GFP
and PLT2pro:PLT2-GFP [63]; WOX5pro:ERGFP [8].

Seeds from the Arabidopsis (Arabidopsis thaliana) Columbia-0 (Col-0) accession were
used as experimental materials. Seeds were surface-sterilized for 10 min with NaClO,
washed five times with sterilized water, plated on half-strength Murashige and Skoog (MS)
medium (containing 1% [w/v] sucrose and 1% [w/v] agar, pH 5.8) in the dark for 2–4 d,
and then transferred to a standard plant incubator at 22 ◦C with a 16-h-light/8-h-dark
photoperiod [64].

4.2. Chemical Treatments and Root Growth Analysis

For chemical treatments, 4-DAG (days after germination) seedlings were moved to
fresh half-strength MS plates containing FB1 at the indicated concentrations and placed
vertically for various time points for short-time treatment, or seeds were germinated on
the half-strength MS plates containing FB1 at the indicated concentrations for long-term
treatment. The same stock solution of FB1 was used throughout. For the quantification
of root growth, seedlings were scanned with a root scanner, and then the root length was
measured using ImageJ 1.52p (http://imageJ.nih.gov/ij).

4.3. Confocal Microscopy

Propidium iodide (PI) staining was performed as previously described [10]. For
confocal microscopy, fluorescence in roots was detected using a Zeiss LSM980 laser scanning
microscope (ZEISS, Oberkochen, Germany). The PI signal was visualized using 561 nm as
the excitation wavelength and 591 to 635 nm as the emission wavelengths. GFP fluorescence
was detected using 488 nm as the excitation wavelength and 510 to 530 nm as the emission
wavelengths. YFP fluorescence was detected using 514 nm as the excitation wavelength
and 530 to 600 nm as the emission wavelengths. Images and fluorescence intensities were
processed using Zen 2012.

4.4. Reverse Transcription Quantitative PCR Analyses

For the reverse transcription quantitative PCR (RT-qPCR) analysis, total RNA was
extracted from the roots of 7-day-old seedlings treated without or with 2.5 µM FB1 for
16 h using the RNeasy plant mini kit (QIAGEN, Hilden, Germany). RNA was treated
with DNaseI and reverse-transcribed using a PrimeScript RT reagent kit (Takara, Kusatsu,
Japan). After the RT reaction, the complementary DNA (cDNA) template was subjected to
PCR in a 20-µL reaction using the SYBR Premix (Vazyme Biotech Co., Ltd., Nanjing, China)
on an Applied Biosystems 7500 Real-Time PCR System. Three replicates were performed.
Three reference genes, including ACTIN2 (At3g18780), ACTIN7(At5g09810), and UBQ5
(At3g62250), were analyzed to determine the suitable reference gene. The overall stability
of the tested reference genes was measured by calculating the gene expression stability
(M-value). ACTIN7 had the best M-value and was therefore selected as a reference gene
for normalization. Data presented are averages from three biological replicates ± standard
deviation (SD). The primer sets are listed in Supplementary Table S2.

5. Conclusions

Few studies have focused on the role of sphingolipids in plant root development. Our
findings enrich the understanding of sphingolipid functions during root development. We
demonstrated that FB1, a useful tool for exploring the multiple functions of sphingolipids,
affected primary root growth by reducing the expression levels and patterns of SCN-
defining transcription factor genes. In addition, FB1 induced cell death in the RAM in a
non-cell-type-specific manner. Given the interconnections between auxin, PLTs, PINs, the

http://imageJ.nih.gov/ij
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ERF115-mediated cascade, and the DNA damage response, it is noteworthy to identify
key components of the root SCN response to stress. Therefore, it would be interesting to
identify genes involved in sphingolipid metabolism with functions in root development,
especially via the regulation of stem cell niche-defining transcription factor genes and DNA
damage response genes.

Supplementary Materials: The following supporting information can be downloaded at: https:
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