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Abstract: Atherosclerosis is a chronic inflammatory disease, in which the immune system has a
prominent role in its development and progression. Inflammation-induced endothelial dysfunction
results in an increased permeability to lipoproteins and their subendothelial accumulation, leukocyte
recruitment, and platelets activation. Recruited monocytes differentiate into macrophages which
develop pro- or anti-inflammatory properties according to their microenvironment. Atheroma pro-
gression or healing is determined by the balance between these functional phenotypes. Macrophages
and smooth muscle cells secrete inflammatory cytokines including interleukins IL-1β, IL-12, and IL-6.
Within the arterial wall, low-density lipoprotein cholesterol undergoes an oxidation. Additionally,
triglyceride-rich lipoproteins and remnant lipoproteins exert pro-inflammatory effects. Macrophages
catabolize the oxidized lipoproteins and coalesce into a lipid-rich necrotic core, encapsulated by a
collagen fibrous cap, leading to the formation of fibro-atheroma. In the conditions of chronic inflam-
mation, macrophages exert a catabolic effect on the fibrous cap, resulting in a thin-cap fibro-atheroma
which makes the plaque vulnerable. However, their morphology may change over time, shifting from
high-risk lesions to more stable calcified plaques. In addition to conventional cardiovascular risk
factors, an exposure to acute and chronic psychological stress may increase the risk of cardiovascular
disease through inflammation mediated by an increased sympathetic output which results in the
release of inflammatory cytokines. Inflammation is also the link between ageing and cardiovascular
disease through increased clones of leukocytes in peripheral blood. Anti-inflammatory interventions
specifically blocking the cytokine pathways reduce the risk of myocardial infarction and stroke,
although they increase the risk of infections.

Keywords: atherosclerosis; inflammation; coronary artery disease; stroke; cerebral artery aneurysm;
coronary atherosclerotic plaque

1. Introduction

Over the last two decades, clinical and experimental studies have shown that atheroscle-
rosis is a low-grade, sterile, inflammatory disease [1,2]. Systemic and local inflammation
have a central role in the development and progression of cardiovascular disease (CVD),
from endothelial dysfunction to clinical syndromes [3–6]. Inflammatory biomarkers have
been shown to predict CVD, independently of traditional risk factors [7–9]. Several acute
and chronic conditions, including the traditional risk factors, psychological stress, au-
toimmune disease, microbial and viral infections, and ageing, can activate endothelial
damage and dysfunction (Table 1) [10–24]. In turn, this promotes a vascular low-grade
inflammatory response, leading to the progression of atherosclerosis [25]. Hence, in-
flammation is a common mechanism linking traditional and emerging CV risk factors
to the development of atherosclerosis, leading to CAD, large artery thrombotic stroke,
and cerebral aneurysms [1,26–29]. All phases of atherosclerosis, from retention of athero-
genic lipoproteins within the arterial wall, to plaque development and rupture, involve
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a complex network, including innate and adaptive immune systems, bone marrow, and
spleen, which modulate the pro-inflammatory and anti-inflammatory activities of protein
mediators, such as cytokines, and immune cells such as leukocytes, macrophages, and
lymphocytes [30]. The role of inflammation in the atherosclerosis is confirmed by the effects
of statins in reducing the CV risk. Several studies have shown that most beneficial effects
of statins are due to the reduction in vascular inflammation, to some extent, independent
of their lipid-lowering action [31–33]. Moreover, nearly one-half of patients undergoing
high-intensity lipid-lowering treatment with statins in a secondary prevention trial have a
residual inflammatory risk and an increased risk of major CV events, despite significant
lipid-lowering effects [34–38]. In the last few years, the inflammatory biology of atheroscle-
rosis has been translated into therapeutic strategies. Recent clinical trials indicated that
targeting inflammation results in a lower incidence of CAD and stroke [39–41]. This review
summarizes the current knowledge about the role of inflammation and the immune system
in the development of atherosclerosis, the progression to stable and vulnerable plaque, the
relationship between the central nervous system and arterial inflammatory response, the
role of ageing in promoting atherosclerosis beyond a prolonged exposure to the traditional
risk factors, and new therapeutic opportunities targeting inflammation to reduce the CVD
burden. Although most studies refer to CAD, the relationship between inflammation and
atherosclerosis in coronary and cerebral arteries is based on the same mechanisms [1,27,42].

Table 1. Triggers of inflammatory response leading to atherosclerosis.

Traditional CV risk factors
low-density lipoprotein cholesterol triglyceride-rich

lipoproteins hypertension, smoking, physical
inactivity diabetes, obesity

Chronic and acute mental stress autonomic nervous system

Ageing bone marrow activation and clonal hematopoiesis

Chronic autoimmune diseases rheumatoid arthritis, systemic lupus erythematosus, psoriasis,
inflammatory bowel disease

Chronic infections periodontitis, bronchitis

Acute infections urinary tract infections, endotoxins from gut microbiota

Viral infections influenza, COVID-19 viruses

Tissue injury myocardial infarction, non-healing skin ulcers
See text for references.

Endothelial dysfunction. The vascular endothelium has a critical role in transducing
the risk factors into CVD. In normal individuals, the endothelium has anti-inflammatory
and antithrombotic properties, and regulates the permeability to circulating molecules
and the vascular tone through the balance between the release of vasodilator substances,
such as nitric oxide (NO), and endothelium-derived constrictors, such as endothelin [43].
The CV risk factors, as well as bacterial and viral infections, and environmental stress,
reduce the bioavailability of NO, resulting in the loss of these protective properties, the
damage of endothelial junctions, and an increase in the permeability to macromolecules.
These changes lead to a subendothelial accumulation of cholesterol-containing lipoproteins
which triggers a low-grade inflammatory response (Figure 1) [44,45]. Several studies have
shown a strong relationship between low-density lipoprotein cholesterol (LDL-C) and
atherosclerosis [46,47]. Once in the subendothelial space, LDL-C undergo an oxidation
and aggregation in large complexes. Moreover, in an inflammatory environment, the
lipoprotein metabolism is shifted from large- and medium-size LDL-C towards small and
dense (sdLDL-C) sub-fractions with a lower affinity to the liver specific LDL-C receptor [48].
Elevated levels of sdLDL-C are associated with the increased risk of CAD [49,50]. These
particles have a greater atherogenicity than larger ones because of the reduced clearance
from the liver LDL receptors, resulting in a greater persistence in the blood. Hence, they
are more likely to enter the arterial wall due to their small size. These properties increase
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the exposure of the arterial wall to sdLDL-C and favour their atherogenic intravascular
modification, such as oxidation, thus making them pro-inflammatory and activating the
overlying endothelium.
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Figure 1. The early phase of atherosclerotic lesions starts with endothelial dysfunction which triggers
a low-grade inflammatory response. WSS: wall shear stress. VCAM: vascular cell adhesion molecule.
ICAM: intercellular adhesion molecule.

Despite large evidence of the causal relationship between oxidized LDL-C and atheroscle-
rosis, many CV events which occur in individuals with LDL-C levels are currently considered
to be normal, even in the absence of the conventional risk factors [51,52]. Moreover, in
recent years, the large increase in the prevalence of type 2 diabetes and obesity, and the
control of LDL-C with effective treatment, shifted the lipid risk profile in the population from
elevated LDL-C to elevated triglyceride-rich lipoproteins (TRL) and remnant lipoproteins
(RLP), which are more strongly associated with inflammation than LDL-C [50,53–57].

Modified lipoproteins in the subendothelial space are taken by macrophages and also
by dendritic cells, which are mononuclear phagocytes “resident” in the normal arterial
wall since fetal life, independently of atherosclerosis [58–61]. Activated endothelial cells
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and macrophages produce cytokines and adhesion molecules, such as the vascular cell
adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1, and E-selectin,
on the endothelial surface of the artery. Circulating monocytes originating from the bone
marrow or the spleen, adhere to the endothelial layer, migrate into the intima by diapedesis,
and differentiate into macrophages [2,62,63].

Additionally, endothelial cells can undergo an endothelial-mesenchymal transition
(EMT) and migrate into the intima, thus contributing to intimal thickening and inflam-
mation [64,65]. These changes are the first step in the development of atherosclerosis,
preceding angiographic or ultrasound evidence [30,45,66,67].

The endothelial inflammatory response includes the coordinate activation of both
innate immunity (macrophages) and adaptive immunity (T- and B-lymphocytes, den-
dritic cells) [44,68]. Leukocytes involvement in inflammation and atherosclerosis has
also been shown by human positron emission tomography (PET) studies, using 18F-
fluorodeoxyglucose (18F-FDG), a glucose analogue extensively used as a marker of metabolic
activity, for the malignancy staging. It is used in vascular inflammation imaging because it
accumulates mostly in macrophages due to their high glucose metabolic activity, especially
after an inflammatory activation [69,70]. The increased uptake has also been found in the
bone marrow and spleen of patients with CAD compared with those without. This confirms
the association between bone marrow and spleen hematopoietic activation and an increase
in the proinflammatory mediators involved in atherosclerotic plaque inflammation [71–73].

Once entering the subendothelial space, the recruited monocytes differentiate into
macrophages and then polarize, adopting different functional phenotypes, in response to
their microenvironment [74]. T lymphocytes activate these cells into pro-inflammatory
M1 macrophages, which elaborate pro-inflammatory cytokines (interleukin IL-1α, IL-1β,
IL-6, IL-12, IL-15, IL-18, and the tumour necrosis factor (TNF)-α) involved in atherosclero-
sis progression, or alternative anti-inflammatory M2 macrophages which elaborate anti-
inflammatory cytokines (IL-4, IL-10, IL-13, and the transforming growth factor (TGF)-β),
which have a critical role in the resolution of inflammation and plaque healing [75–79].
Some interleukins (IL-1β, IL-6, and IL-12) control the hepatic production of the C-reactive
protein (CRP), the most established inflammatory biomarker of CV risk [80–83]. Although
macrophages are the main source of cytokines, other cells, such as lymphocytes, endothelial
cells, and polymorphonuclear leukocytes contribute to their production.

Most components of the immune system can produce pro-inflammatory or anti-
inflammatory soluble factors and cells depending on the inflammatory environment.
Therefore, the atheroma progression is determined by an imbalance between the pro-
inflammatory and anti-inflammatory activities of immune cells [84,85]. This accounts
for the dynamic progression of atherosclerotic lesions, which occurs through phases of
quiescence and flares of activity triggered by systemic or regional inflammation [1,5].

From systemic inflammation to focal atherosclerosis. Although atherosclerosis is
associated with systemic CV risk factors and systemic inflammation, atherosclerotic plaque
formation has a focal distribution, predominantly at the arterial bifurcation or side branches,
which are exposed to a non-uniform, disturbed blood flow (Figures 2–4) [86–88]. This
pattern of flow generates low wall shear stress (WSS) which induces vascular inflammation
and drives the atherosclerosis pathology and plaque progression [89]. WSS is the tangential
force of the mechanical friction of the flowing blood which acts longitudinally on the
endothelial surface of the arterial wall [90]. Specific endothelial biomechanical receptors
such as glycocalyx, a proteoglycan layer which covers the apical surface of the endothelial
cells, sense and distinguish the laminar and non-uniform patterns of blood flow, translating
WSS into biochemical signals [91]. A uniform, laminar flow induces the secretion of
NO, which regulates the arterial tone, in order to maintain the anti-inflammatory and
antithrombotic properties of the endothelium. Conversely, decreased WSS induces the
expression of endothelial genes, controlled by flow-responsive endothelial microRNAs
(miRNA), such as miRNA 92a, 663, 712, promoting the production of adhesion proteins
and other inflammatory molecules that recruit leucocytes and direct their migration into
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the arterial wall [86,92–94]. This mechanism may also explain why local inflammation
episodes, remote from atherosclerotic lesions, stimulate an inflammatory activation and
coronary plaque progression.
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Figure 2. Selective angiography of the left coronary artery. Severe focal atherosclerotic narrowing of
the proximal segment of left anterior descending coronary artery.

Inflammation in coronary plaque development. Macrophages catabolize the oxidized
LDL-C within the arterial wall, forming the cholesterol-laden foam cells. Depending on the
inflammatory cytokine activity and the amount of oxidized LDL-C, macrophages undergo
apoptosis [77]. Dead macrophages coalesce into a lipid-rich necrotic core which stimulates
the migration of vascular smooth cells into the intima, encapsulated by a collagen fibrous cap,
leading to the formation of fibro-atheroma, generally a stable lesion [95]. In the conditions of
chronic inflammation, macrophages exert catabolic effects that degrade and thin the fibrous
cap, resulting in a thin-cap (<65 µm) fibro-atheroma (TCFA) (Figures 5 and 6) [85,96]. These
pathological changes, characterized by large lipid-rich necrotic core separated from the
arterial lumen by a thin fibrous cap, make the plaque unstable and prone to rupture, leading
to thrombosis [97,98]. In turn, thrombosis also promotes inflammation through the release
of inflammatory mediators from platelets [2]. As the plaque grows, the arterial wall under-
goes an outward enlargement, due to a WSS increase at the site of the luminal narrowing.
Initially, such (positive) expansive remodelling allows for maintaining a normal blood
flow. However, in more advanced stages, the arterial wall deformation activates a further
inflammation and lipid accumulation, making the plaque more prone to rupture [99,100].
Arterial remodelling due to WSS changes is also responsible for the development of a
cerebral aneurysm (Figure 7) [28,101]. Inflammatory changes within the plaque make it
hypoxic, leading to the development of neovascularization originating from adventitial
vasa vasorum. This process contributes to plaque vulnerability [102].
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Figure 3. Artery-to-artery embolism and in situ thrombotic occlusion of the middle cerebral artery due
to intracranial atherosclerotic disease. Hypertensive 67-year-old man. Diffusion-weighted magnetic
resonance imaging demonstrates multiple cortical-subcortical ischemic lesions in the territory of
the right middle cerebral artery (A–C). Digital subtraction angiography shows an occlusion of the
M1 segment of the right middle cerebral artery (D) and its complete recanalization after mechanical
thrombectomy (E). The magnified oblique projection after the recanalization (F) reveals an underlying
atherosclerotic plaque at the site of the previous occlusion (arrow) and additional stenotic lesions
along the course of the right anterior cerebral artery (arrowhead).

Plaque calcification. Inflammation also stimulates the development of calcifications
within the necrotic lesion as a healing response to the macrophage’s inflammatory activa-
tion [103–105]. Longitudinal imaging studies, using PET, have shown that inflamed arterial
sites undergo the subsequent deposition of calcium, and within the same arterial segment,
different degrees of inflammation show different rates of calcium deposition [106]. The
death of macrophages and smooth muscle cells release vesicles acting as nucleating sites
for the deposition of hydroxyapatite crystals which can aggregate, resulting in microcalcifi-
cations less than 50 µm in diameter being embedded in the fibrous cap [107,108]. Plaque
calcification further stimulates macrophage infiltration, thus increasing the nucleating sites
and new calcification [109]. If inflammation persists, there will be subsequent cycles of
monocytes infiltration which differentiate into macrophages, that undergo death, leading
to microcalcification development [110,111]. Along with TCFA and macrophage, microcal-
cifications strongly contribute to plaque instability, especially when they co-localize with
macrophages in the same plaque (a reciprocal distance less than 100 µm), as demonstrated
by optical coherence tomography (OCT) [112–115].
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Figure 4. Internal carotid artery occlusion, digital subtraction angiography: acute thrombotic oc-
clusion of the left internal carotid artery (A) causing sudden neurologic deficit in a 77-year-old
patient. The serigraphy performed after mechanical thrombectomy and recanalization of the artery
(B) highlights an ulcerated atherosclerotic plaque of the carotid bulb (arrow). After the administration
of intravenous boluses of antiplatelet agents and heparin, a self-expanding stent (arrow) was placed
in correspondence to the ulcerated plaque (C).
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Figure 5. A 61 year old man referred for Non-ST-segment elevation myocardial infarction (NSTEMI).
Coronary angiography showed no significant coronary lesions. Left circumflex showed haziness at
the proximal segment (panel (A), white arrow). The OCT pull-back showed a fractured plaque (panel
(B), 1, white arrow) associated with a lipid pool (panel (B), 1 and 2, “L”); thin-cap fibro-atheroma and
active macrophages are easily detected because of their typical bright line (2, white arrows) or spot
images, within a fibro-lipidic plaque (3, white arrows).
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Figure 6. A 54 year old woman after a scheduled angiogram and OCT pull-back 3 years after an
acute coronary syndrome. During index procedure 2 bioresorbable vascular scaffolds (BVS) were
implanted. Coronary angiography showed satisfactory angiographical result (panel (A), white line).
OCT pull-back confirmed a complete struts coverage and an acceptable lumen area (panel (B)), even
at the overlapping site (2). Black boxes are typical OCT images of BVS (1,2,3 and 4). Some black box
inclusions are detected (1,2 and 3 – white arrows) representing scaffold reabsorption processes. Some
areas immediately below the boxes showed bright spots indicating inflammation with macrophages
activation (1 and 2 - underlined area). These bright spots (3 and 4, white triangle) have been detected
closely to calcium arch (3, stars) and in a fibro-lipidic plaque (4).

In addition, to further stimulate the inflammation around the lesion, microcalcifica-
tions exert a mechanical stress within the fibrous cap [116]. Biomechanical studies have
shown that a plaque rupture may occur as a consequence of large stress at the interface of
tissues with a different stiffness, such as hard microcalcifications within the much softer
layer of the fibrous cap (large modulus mismatch) [113,117]. In accordance with this effect,
the risk of a plaque rupture is proportional to the extent of the interface area [118]. In an
early stage of inflammation, microcalcifications are sparse and the risk is low. As long as
inflammation persists, their number increases as well as the extent of the interface between
the rigid and soft regions. Over time, some of them merge into larger, dense calcified sheets
of macrocalcification which have a smaller interface area and a reduced risk of rupture,
thus progressing from a high-risk lesion to a more stable plaque [116,119,120]. Additionally,
macrocalcifications tend to limit the extent of inflammations, as it does in other inflam-
matory conditions such as tuberculosis [116,121]. These observations indicate that plaque
vulnerability is inversely proportional to the extent of the calcifications and account for
the paradox of an improved clinical outcome despite the highly calcified arterial plaques.
The extent and composition of calcified coronary artery plaques have different clinical
implications. Despite this, plaque calcification is considered to be a marker of plaque stabil-
ity, a direct quantitative assessment of coronary artery calcium (CAC) with an Agatston
score measured by non-contrast computed tomography (CT), has consistently shown to
be a strong predictor of CV events and the total plaque burden [122,123]. However, while
the CAC volume is directly associated with the subsequent CV events, the association
between the CAC density and the CV events is inverse [124,125]. It can be assumed that
less densely calcified plaques correspond to more inflamed, lipid-rich plaques in an early
stage of development, hence they are unstable. This corresponds to the decrease in the CV
events induced by the statins, which are known to reduce vascular inflammation while
increasing the plaque calcification and thickness, thus promoting plaque stability [126–133].
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Figure 7. Polyvascular disease: right frontal lobar haemorrhage due to cerebral amyloid angiopathy
(A) in an 82-year-old man with a prosthetic aortic valve and extensive calcifications of the aortic
arch and along the descending thoracic aorta (B). Three-dimensional digital subtraction angiography
reconstructions of the same patient (C,D) show diffuse arterial dysplasia with ecstatic origin of an
inferior temporal branch (arrow), a dysmorphic aneurysm of the Sylvian bifurcation of the middle
cerebral artery (arrowhead), and an infra-millimetric aneurysm of the anterior communicating artery (*).

Vulnerable plaque. Inflammation is a critical feature of vulnerable plaques, although
lesser degrees of inflammation have also been found in stable ones [134]. Atherosclerotic
plaques consist largely of an extracellular matrix (ECM), including collagen, elastin, proteo-
glycan, and glycosaminoglycan, synthesized by smooth muscle cells in the arterial wall. The
ECM is interlinked with plaque calcification, both contributing to the plaque stability [135].
Microcalcification localize between the collagen fibers and the regions lacking collagen,
so that the proportions of the ECM and microcalcification are inversely related. Although
interstitial collagen is a plaque stabilizing factor, it also contributes to the accumulation
of lipoprotein particles within the arterial wall [119,136]. In conditions of inflammation,
cytokines (IL-1β, TNF-α) induce the secretion of metalloproteinases (MMPs), especially
MMP-1, MMP-8, MMP-9, MMP-12, and MMP-13, from macrophages, controlled by mi-
croRNAs [137–139]. MMPs catalyse the breakdown of the interstitial collagen, resulting in
the thinning and weakening of the fibrous cap, thus compromising its tensile strength and
making the plaque unstable [140].

Additionally, the stability of the fibrous cap depends on collagen fibre cross-linking,
which is modulated by the enzyme lysyl oxidase (LOX) expressed by the endothelial
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cells [141,142]. High LOX levels are associated with plaque stability and the healing
process within the plaque [143]. Endothelial dysfunction induced by the CV risk factors
and mediators of inflammation, such as macrophages derived cytokines, reduce the LOX
activity, resulting in abnormal collagen cross-linking. This process weakens the fibrous cap
and increases the soluble forms of collagen which may undergo MMP degradation (Figure 8).
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Statins have been shown to inhibit the secretion of MMPs from inflammatory cells and
normalize an endothelial LOX expression, thus increasing the plaque collagen [144–148]. There-
fore, in addition to the lipid-lowering effect and the increase in the calcium content of the
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atherosclerotic plaque, these anti-inflammatory effects account for the plaque stabilization
induced by the statins.

The concept of vulnerable or high-risk plaque derives from autopsy studies showing
that the rupture of the thin fibrous cap of TCFA exposes the necrotic core to the circulation
blood, triggering acute thrombosis, such as a myocardial infarction and stroke [149,150].
The rupture of the fibrous cap of a TCFA has been implicated in about two thirds of acute
coronary events [96,151,152]. Hence, in recent decades, great efforts have been made
to identify and treat high-risk plaque. However, treating individual plaques showing
“vulnerable” characteristics with a coronary stent did not reduce the risk of a myocardial
infarction [153–155]. Moreover, in patients with myocardial infarction and multivessel
disease, a complete revascularization of the culprit and non-culprit lesions with a percuta-
neous coronary intervention (PCI), compared to the PCI treatment of culprit-lesion-only,
substantially reduced the risk of the subsequent coronary events [156–160]. In contrast with
the post-mortem observations, human intravascular imaging studies have shown that most
TCFA do not cause clinical events [161–163]. Imaging studies in patients with CAD have
shown plaques in different stages of development, coexisting in the same artery [164–166].
Moreover, their morphology may change over time, spontaneously or while on statin
therapy. Most progressively shift from high-risk lesions to more stable, calcified plaques,
while others undergo a subclinical rupture followed by their healing, resulting in a pro-
gressive coronary lumen obstruction [167,168]. Hence, vulnerable plaques at a high risk
of triggering thrombosis cannot be distinguished from the many others which will not
cause clinical events. According to the current evidence, efforts to identify and treat only
vulnerable plaques may be misleading.

In recent decades, another pathophysiological mechanism that triggers plaque disrup-
tion and thrombus formation, known as endothelial erosion, has been found to account
for an increasing proportion of acute coronary syndromes (ACS) [169–173]. Plaques un-
dergoing superficial (endothelial) erosion show less lipid accumulation, a smaller necrotic
core, fewer inflammatory cells, and an intact fibrous cap rich in collagen [174]. The thrombi
derived from a superficial erosion are white or platelet-rich, in contrast with red or fibrin
and erythrocyte-rich thrombi associated with the plaque rupture. These pathophysiological
changes are reflected in a shift of the clinical presentation of ACS. While patients with an
ST-segment elevation myocardial infarction (STEMI) associate more commonly with a plaque
rupture, those with a non-ST-segment elevation myocardial infarction (NSTEMI) show a much
higher prevalence of erosion [170]. In recent years, the clinical presentation of ACS has shifted
from STEMI to NSTEMI, even taking into account the introduction of more sensitive assays
for troponin and the reclassification of unstable angina into NSTEMI. This trend is probably
accounted for by the changes in the CV risk factors due to the widespread use of statins.

Whatever the mechanism, plaque rupture or erosion, the atherosclerotic plaque insta-
bility is not only related to intrinsic plaque vulnerability. Rather, the systemic factors which
influence the coagulation system, such as a systemic or local inflammation, and recurrent
infections, in addition to the conventional CV risk factors, increase the risk that plaque
disruption occurs in a pro-thrombotic environment [152,175,176].

Although high-risk plaques do not necessarily identify future culprit lesions, they may
be associated with extensive atherosclerotic lesions. The pathophysiological role of systemic
inflammation in plaque instability accounts for the frequent finding of high-risk plaques at
multiple distant arterial sites, known as multifocal coronary plaque instability [177–181]. These
observations support the concept that high-risk lesions, closely associated with systemic
disease and extensive atherosclerotic lesions, indicate a vulnerable patient rather than a
vulnerable plaque.

Inflammatory response to mental stress. The brain response to environmental stim-
uli may increase the risk of CV disease through increased inflammation, mediated by
the autonomic nervous system. Acute and chronic psychological stress are frequently
experienced in everyday life as anger, fear, job-strain, depression, financial problems, and
loneliness [182]. Neuroimaging studies have shown that psychological stress is associated
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with an increase in the metabolic activity of the central autonomic network (CAN), an
anatomically and functionally interconnected brainstem and the subcortical areas, includ-
ing amygdala, hypothalamus, hippocampus, and thalamus, currently referred to as the
limbic system. These areas are strictly connected with cortical regions, such as the medial
prefrontal cortex and insular cortex, into a cortico-limbic functional network [183]. These
cortical and subcortical brain regions regulate the stress perception and emotional response
through a sympathetic and parasympathetic autonomic nervous system [184,185]. Neu-
roimaging studies have also shown that the increased metabolic activity of these areas,
especially amygdala, predicts the development of CAD independently of the traditional
CV risk factors [186]. In normal conditions, the vascular system is under tonic inhibitory
control by the parasympathetic system in dynamic balance with the sympathetic system.
The parasympathetic (vagal) efferent innervations release acetylcholine which inhibits the
release of inflammatory cytokines, including the tumour necrosis factor alpha (TNF-α) and
interleukins (IL-1, IL-2, IL-6), by tissue macrophages. This cholinergic anti-inflammatory
pathway, known as “parasympathetic inflammatory reflex”, modulates the inflammatory re-
sponse [187–190]. An exposure to emotional stress results in an autonomic imbalance with an
increased sympathetic output and the withdrawal of the parasympathetic tone, thus leading to
the release of inflammatory cytokines [191,192]. These directly impair the endothelial function,
inhibiting nitric oxide (NO) synthesis and increasing the endothelin-1 (ET-1) release [45].

In addition to the response to environmental stimuli, the brain is thought to manage
information from atherosclerotic lesions, hence modulating their progression. The adventi-
tia of atherosclerotic arteries is innervated by sensory and sympathetic fibres, along with
the aggregates of immune cells, known as neuroimmune cardiovascular interfaces [193]. The
density of neural fibres correlates with the plaque size. This artery-brain circuit suggests
that the plaque-induced activation of sensory neuronal fibres on arterial adventitia leads to
the activation of hypothalamic nuclei which are involved in the sympathetic outflow, result-
ing in the neural regulation of plaque progression. This is confirmed by the experimental
observation that the disruption of sympathetic fibres reduces the density of adventitial
sympathetic nerve fibres, the aggregates of immune cells, and the plaque volume [194].

Ageing, bone marrow activation, and clonal haematopoiesis. Ageing is associated
with an increased risk of CV disease. In addition to the burden of a long-term exposure to
the CV risk factors, there is a direct relationship between ageing and low-grade systemic
inflammation, leading to atherosclerosis. Bone marrow hematopoietic stem cells (HSCs),
which reside in a specialized microenvironment known as the HSC niche, give rise to all
types of blood cells, including immune cells [195]. Bone marrow vasculature undergoes
the same stimuli as other tissues. Thus, inflammation-induced endothelial dysfunction
involves the bone marrow arteries inducing HSCs proliferation and the increased release
of leukocytes into the circulation [73,186,196]. Once recruited by the activated endothe-
lial cells, these leukocytes release cytokines and proteases, and migrate to the arterial
wall, further promoting inflammation [197,198]. Epidemiological studies have shown that
aging is associated with somatic (i.e., acquired) mutations in HSCs, in genes that drive
the development of leukaemia [199,200]. Over time, the accumulation of these somatic
mutations may lead to the progressive expansion of a mutant clone of leukocytes with
altered immunological properties [201]. Approximately 10% of individuals aged 70 carry
this condition. Although, they are at an increased risk of developing leukaemia; most of
them never develop blood cancer [202]. Therefore, this condition is referred to as clonal
haematopoiesis of indeterminate potential (CHIP) [203]. In contrast, the CHIP is associated
with nearly twice the risk for CAD and ischemic stroke, independently of traditional risk
factors, thus providing a new link between ageing and atherosclerosis [204,205]. Moreover,
an exposure to mental stress results in the activation of a neural-hematopoietic-arterial axis,
including the amygdala, bone marrow, and vascular endothelium [186,206,207]. The mental
stress-induced sympathetic activation increases the bone marrow levels of noradrenaline,
which promotes the HSCs proliferation, particularly myeloid cells, leading to an enhanced
release of leukocytes into the circulation [208].



Int. J. Mol. Sci. 2022, 23, 12906 13 of 23

2. Inflammation Targeted Therapy

CV prevention is based on life-style changes, a reduction in risk factors, and lipid-
lowering therapy. However, despite the optimal medical treatment and reduction in
LDL-C levels, individuals with signs of atherosclerosis, especially in older age or with
comorbidities, remain at a high risk for acute CV events [46]. Observational studies have
shown that individuals with rheumatic disease, which are characterized by elevated levels
of circulating cytokines, have a lower risk of atherosclerotic complications when treated
with a specific anti-inflammatory therapy [62]. Moreover, the beneficial effects of statins in
reducing the CV risk are due to both the reduction in cholesterol levels and inflammation
inhibition [31,33,209]. More recently, the relevance of inflammatory and immune systems in
the development and progression of CVD has stimulated the search for a specific systemic
anti-inflammatory blocking of the cytokines pathways (Table 2) [210,211].

Table 2. Anti-inflammatory therapies specifically blocking cytokines pathways.

Drug Trial Anti-Inflammatory
Effect

Sample
Size Study Patients Primary End Point Outcome Adverse Effects

Canakinumab CANTOS [192] interleukin-1β
Inhibition 10,061 previous MI

non-fatal MI
non-fatal stroke,

CV death

reduced hsCRP,
IL-6 −17% in

primary end points

higher incidence of
fatal infections

Methotrexate CIRT [194]
Replication inhibition of

B cells, T cells
neutrophils, monocytes

4786
previous MI and

T2 diabetes
metabolic syndrome

non-fatal MI
non-fatal stroke CV

death

no change in
hsCRP, IL-6, IL-1β

no reduction in
primary end points

increased liver
enzymes reduced

leukocytes

Colchicine COLCOT [198]
inhibition of microtubule
polymerization reduced

IL-1β, IL-6
4745 1 month after MI CV death, MI

stroke
−23% in primary

endpoints
diarrhoea,

pneumonia

LoDoCo2 [201] 5522 −31% in primary
endpoints

increased death
from non-CV causes

Canakinumab, a monoclonal IL-1β antibody, was tested in patients with a high CV
risk and an elevated high-sensitive C-reactive protein (hsCRP) in the Canakinumab Anti-
Inflammatory Thrombosis Outcomes Study (CANTOS). The treatment significantly reduced
the occurrence of a non-fatal myocardial infarction (MI), a non-fatal stroke, or a CV death [212].
The concentrations of hsCRP were also reduced, while the lipid levels did not change [41,213].
However, canakinumab was also associated with a small but statistically significant increase
in the risk of fatal infections, probably due to its immunosuppressive effect.

Methotrexate, a broad immunosuppressive agent successfully used in patients with
rheumatoid arthritis, has been tested in patients with type 2 diabetes or metabolic syndrome,
in the Cardiovascular Inflammation Reduction Trial (CIRT). Low-dose methotrexate did
not reduce a non-fatal MI, a non-fatal stroke, or a CV death, nor the levels of hsCRP [214].

Colchicine inhibits the activation of IL-1β and the migration of leucocytes to sites of
inflammation [215]. It is commonly used for the treatment of gout, pericarditis, and familial
Mediterranean fever [216,217]. The Colchicine Cardiovascular Outcome Trial (COLCOT),
and Low-Dose Colchicine (LoDoCo and LoDoCo2) randomized, double-blind trials, tested
its anti-inflammatory effect on the CV risk in both acute and chronic CAD. Low-dose
colchicine significantly reduced the risk of MI and a non-cardioembolic ischemic stroke,
as well as the inflammatory markers [218–221]. However, patients treated with colchicine
showed a tendency toward greater incidence gastro-intestinal adverse effects, pneumonia,
and death from non-CV causes, although the difference compared to the placebo group
was not statistically significant [222]. Moreover, two small-sized trials failed to show the
beneficial outcomes in patients with acute coronary syndromes [223,224].

Statins. All the anti-inflammatory drugs were tested in addition to optimal therapy,
including statins, which are known to exert anti-inflammatory effects in addition to lipid-
lowering. Imaging studies, using 18F-fluorodeoxyglucose (18F-FDG), a glucose analogue
that accumulates in the atherosclerotic lesions in proportion to the macrophage concentra-
tion and serial intravascular ultrasound, have shown that statins reduce coronary plaque
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inflammation, expressed by a decrease in the plaque necrotic core and volume, closely
associated with a reduction in hsCRP, independently of the changes in LDL-C [225,226].

Overall, the meta-analyses of the randomized trials indicate that anti-inflammatory
interventions in patients with coronary artery disease, who were already on statin therapy,
reduce the risk of myocardial infarction and stroke [39,227,228]. However, their potential
use is limited by the increased incidence of infections and non-CV death. Hence, there is a
need to select high-risk patients who could benefit from a potentially harmful treatment.
Although targeting inflammation upstream seems promising, therapies acting systemically
may have important negative side effects. A further improvement will be the use of
nanotechnology to produce nanoparticle drug formulations which can be delivered to
specific tissues or cell populations [229].

3. Conclusions

Recent epidemiological, clinical, and imaging studies support the hypothesis of sys-
temic inflammatory and immune pathogenesis of atherosclerosis and its clinical complica-
tions. The detection of features of atherosclerotic plaque vulnerability for the prediction of
major CV events has limited clinical relevance. A comprehensive appraisal of atheroscle-
rosis should shift from an anatomical imaging evaluation of atherosclerotic lesions to a
qualitative assessment of a patient’s vulnerability. The current markers of inflammation
have a low specificity, poorly reflecting the underlying biological processes. Hence, a com-
bination of circulating, cellular, and imaging markers, measured over time, may identify
individuals at a high risk of CVD, thus modulating specific treatments. Targeting inflam-
mation upstream, and modulating the early phases of atherosclerosis development, may
become an effective therapeutic approach. A more advanced understanding of atheroscle-
rosis inflammatory pathways may lead to designing more specific treatments, without
compromising the immune system defence against pathogens.
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